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Abstract
With the rapid increase of complex and high-
dimensional sparse data, demands for new meth-
ods to select features by exploiting both labeled
and unlabeled data have increased. Least regres-
sion based feature selection methods usually learn
a projection matrix and evaluate the importances of
features using the projection matrix, which is lack
of theoretical explanation. Moreover, these meth-
ods cannot find both global and sparse solution of
the projection matrix. In this paper, we propose
a novel semi-supervised feature selection method
which can learn both global and sparse solution of
the projection matrix. The new method extends the
least square regression model by rescaling the re-
gression coefficients in the least square regression
with a set of scale factors, which are used for rank-
ing the features. It has shown that the new mod-
el can learn global and sparse solution. Moreover,
the introduction of scale factors provides a theoret-
ical explanation for why we can use the projection
matrix to rank the features. A simple yet effective
algorithm with proved convergence is proposed to
optimize the new model. Experimental results on
eight real-life data sets show the superiority of the
method.

1 Introduction
Feature selection is an effective mean to identify relevant fea-
tures from high-dimensional data [Liu and Yu, 2005]. Dur-
ing the past ten years, many feature selection methods have
been proposed and various studies show that feature selection
can help to remove irrelevant features without performance
deterioration [Huang, 2015]. Feature selection can be con-
ducted in a supervised or an unsupervised manner, depending
on whether the label information is available. In supervised
feature selection, feature relevance can be evaluated accord-
ing to the correlations of the features with the class labels,
e.g., Fisher score [Richard et al., 2010], Relief-F [Kira and
Rendell, 1992; Kononenko, 1994], RFS [Nie et al., 2010],
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CSFS [Chang et al., 2014] and GRM [Wang et al., 2015].
In unsupervised feature selection, without label information,
feature relevance can be evaluated by feature dependency or
similarity, e.g., Laplacian Score [He et al., 2005] and RSF-
S [Shi et al., 2014].
With the rapid increase of data size, it is often costly to

obtain labeled data [Luo et al., 2013]. Therefore, we often
have a small set of labeled data together with a large col-
lection of unlabeled data in most machine learning and data
mining applications, such as image annotations and catego-
rizations. Under such circumstances, it is desirable to devel-
op feature selection methods that are capable of exploiting
both labeled and unlabeled data. The task of conducting fea-
ture selection from mixed labeled and unlabeled data is called
“semi-supervised feature selection".
Various semi-supervised feature selection methods have

been proposed recently. Most semi-supervised feature s-
election methods are filter-based by ranking the features
wherein the highly ranked features are selected and applied
to a predictor [Zhao and Liu, 2007; Zhao et al., 2008;
Doquire and Verleysen, 2013; Xu et al., 2016]. However,
as argued in [Guyon and Elisseef, 2003], the filter-based fea-
ture selection could discard important features that are less
informative by themselves but are informative when com-
bined with other features. Ren et al. proposed a wrapper-type
forward semi-supervised feature selection framework [Ren et
al., 2008], which performs supervised sequential forward fea-
ture selection on both labeled and unlabeled data. However,
this method is time consuming for high-dimensional data be-
cause it involves iterative feature subset searching. Embed-
ded semi-supervised methods take feature selection as part of
the training process, therefore, are superior to others in many
respects. Kong and Yu et al. proposed a semi-supervised fea-
ture selection algorithm for graph data [Kong and Yu, 2010].
Xu et al. proposed a discriminative semi-supervised feature
selection method based on the idea of manifold regulariza-
tion, but their method has high computational complexity of
O(n2.5) where n is the number of objects [Xu et al., 2010].
Least square regression is a widely-used statistical anal-

ysis technique. It has been used for many real-world ap-
plications due to its effectiveness for data analysis as well
as its completeness in statistics theory. Many variants have
been developed, including weighted LSR [Strutz, 2010], par-
tial LSR [Wold et al., 1984], ridge regression [Cristianini
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and Shawe-Taylor, 2000], discriminative LSR [Xiang et al.,
2012]. Least regression based feature selection methods usu-
ally learn a projection matrixw and evaluate the importances
of features according to {

∥∥w1
∥∥
2
, ...,

∥∥wd
∥∥
2
}. Nie et al. pro-

posed a sparse Least Squares Regression model for super-
vised feature selection [Nie et al., 2010], which introduces
ℓ2,1 norm to enforce W sparse in rows, thus is particularly
suitable for feature selection. However, it lacks of theoretical
explanation for why we can use {

∥∥w1
∥∥
2
, ...,

∥∥wd
∥∥
2
} to rank

the features.
In this paper, we propose a novel semi-supervised feature

selection method, named Rescaled Linear Square Regression
(RLSR). We first propose a new convex model by extending
the least square regression by rescaling the regression coeffi-
cients with a set of scale factors, which are used to evaluate
the importances of features. The new model is proved to be
equivalent to a sparse model in which the ℓ2,1 norm regular-
ization term is used. Therefore, the new model can learn both
global and sparse solution. Moreover, the optimal solution
of scale factors provides a theoretical explanation for why
we can use {

∥∥w1
∥∥
2
, ...,

∥∥wd
∥∥
2
} to rank the features. We

propose a simple yet effective algorithm with proven conver-
gence to solve the new feature selection objective function.
A series of experiments have been performed on real-life da-
ta sets. The experimental results have shown that the new
method outperformed seven commonly used feature selection
methods, including semi-supervised, supervised and unsuper-
vised feature selection methods.
The rest of this paper is organized as follows. Section 2

presents the notations and definitions used in this paper. In
Section 3, the new method RLSR is proposed. The experi-
mental results are presented in Section 4. Conclusions and
future work are given in Section 5.

2 Notations and Definitions
We summarize the notations and the definition of norms used
in this paper. Matrices are written as boldface uppercase let-
ters. Vectors are written as boldface lowercase letters. For
matrix M = (mij), its i-th row is denoted as mi, and its j-th
column is denoted by mj . The Frobenius norm of the matrix

M ∈ Rn×m is defined as ∥M∥F =
√∑n

i=1

∑m
j=1 m

2
ij . The

ℓ2,1-norm of matrix M ∈ Rn×m is defined as ∥M∥2,1 =∑n
i=1

√∑m
j=1 m

2
ij .

3 The Proposed Method
In semi-supervised learning, a data set X ∈ Rd×n with c
classes consists of two subsets: a set of l labeled object-
s XL = (x1, ...,xl) which are associated with class label-
s YL = {y1, ...,yl}T ∈ Rl×c, and a set of u = n − l
unlabeled objects XU = (xl+1, ...,xl+u)

T whose label-
s YU = {yl+1, ...,yl+u}T ∈ Ru×c are unknown. Here,
yi ∈ Rc(1 ≤ i ≤ l) is a binary vector in which yj

i = 1 if xi

belongs to the j-th class.
Let F1,...,Fd denote the d features of X , the semi-

supervised feature selection is to use bothXL andXU to rank
F . To measure the importances of d features, we introduce d

scale factors θ in which θj > 0(1 ≤ j ≤ d) measures the im-
portances of the j-th feature. We use θ to evaluate the impor-
tances of the d features and the k most important features can
be selected according the biggest k values in θ. To learn Θ
andYU simultaneously, we form the following convex prob-
lem

min
(∥∥XTΘW + 1bT −Y

∥∥2
F
+ γ ∥W∥2F

)
st. W,b, θ > 0,1T θ = 1,YU ≥ 0,YU1 = 1

(1)

where YU are relaxed as values in [0, 1], and Θ ∈ Rd×d is a
rescale matrix which is a diagonal matrix and Θjj =

√
θj .

Then we rewrite problem (1) as a sparse problem according
to the following theorem
Theorem 1. Problem (1) is equivalent to the following prob-
lem

min
W,b,YU≥0,YU1=1

(∥∥XTW + 1bT −Y
∥∥2
F
+ γ ∥W∥22,1

)
(2)

where θj can be computed as

θj =

∥∥wj
∥∥
2∑d

j=1 ∥wj∥2
(3)

Proof. Let W̃ = ΘW, then W = Θ−1W̃. Problem (1) can
be rewritten as

min

∥∥∥XTW̃ + 1bT −Y
∥∥∥2
F
+ γ

d∑
j=1

∥∥w̃j
∥∥2
2

θj


s.t. W̃,b, θ > 0,1T θ = 1,YU ≥ 0,YU1 = 1

(4)

If W̃ andY are fixed, we can get the optimal solution of θ
by solving the following problem

min
θ>0,θT 1=1

d∑
j=1

∥∥w̃j
∥∥2
2

θj
(5)

It can be verified that the optimal solution of θ is

θj =

∥∥w̃j
∥∥
2∑d

j′=1 ∥w̃j′∥2
(6)

With the above optimal solution of θ, problem (5) is equiv-
alent to

min
θ>0,θT 1=1

∥∥∥W̃∥∥∥2
2,1

(7)

So, problem (4) can be rewritten as

min
W̃,b,YU≥0,YU1=1

(∥∥∥XTW̃ + 1bT −Y
∥∥∥2
F
+ γ

∥∥∥W̃∥∥∥2
2,1

)
(8)

which is equivalent to problem (2).
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Since the new problem in Eq. (2) uses ℓ2,1 norm regular-
ization, the learnt W are sparse in rows. The scale factor θj

is explicitly computed as
∥wj∥

2∑d
j′=1∥wj′∥

2

which provides per-

fect theoretical explanation for why we can rank the j-th fea-
ture as

∥∥wj
∥∥
2
. Note that problem (1) is convex, therefore,

problem (2) is also convex. In the following, we propose an
effective algorithm to solve problem (2).

3.1 Update b withY andW Fixed
WhenY and W are fixed, problem (2) becomes

min
b

∥∥XTW + 1bT −Y
∥∥2
F (9)

By setting the partial derivative of the above function with
respect to b as 0, we get the optimal solution of b as

b =
1

n
(YT1−WTX1) (10)

3.2 Update W with b and YU Fixed
When b andYU are fixed, problem (2) becomes

min
W

(∥∥XTW + 1bT −Y
∥∥2
F
+ γ ∥W∥22,1

)
(11)

Obviously, ∥W∥2,1 can be zero in theory, however, it will
make Eq. (11) non-differentiable. To avoid this condition,

we regularize ∥W∥22,1 as
(∑d

j=1

√
∥wj∥22 + ϵ

)2

where ϵ is

a small enough constant. Therefore, we have

min
W

∥∥XTW + 1bT −Y
∥∥2
F
+ γ

 d∑
j=1

√
∥wj∥22 + ϵ

2


(12)
which is equal to problem (11) when ϵ is infinitely close to
zero.
The Lagrangian function of problem (12) is

L(W) =
∥∥XTW + 1bT −Y

∥∥2
F
+ γ

 d∑
j=1

√
∥wj∥22 + ϵ

2

(13)

Taking the derivative ofL(W)with respect toW, and setting
the derivative to zero, we have

∂L(W)

∂W
= 2X(XTW + 1bT −Y) + 2γQW = 0 (14)

where Q ∈ Rd×d is a diagonal matrix with the j-th diagonal
element as

qjj =

∑d
v=1

√
∥wv∥22 + ϵ√

∥wj∥22 + ϵ
(15)

Note that Q is unknown and depends on W, we can iter-
atively solve Q and W. With W fixed, Q can be obtained
by Eq. (15). And with Q fixed, we turn to solve the follow-
ing problem which will be proved to be equivalent to problem
(12) latter

min
W

[∥∥XTW + 1bT −Y
∥∥2
F
+ γTr(WTQW)

]
(16)

With the fixedY andQ, substituting b in Eq. (10) into Eq.
(16), we get

min
W

[∥∥HXTW −HY
∥∥2
F
+ γTr(WTQW)

]
(17)

whereH = I− 1
n11

T .
The partial derivative of the above problem with respect to

W is

2XHT (HXTW −HY) + 2γQW = 0 (18)

Then we get the optimal solution ofW as

W = (XHTHXT + γQ)−1XHTHY (19)

Since H is an idempotent matrix, the optimal solution of
W can be rewritten as

W = (XHXT + γQ)−1XHY (20)

We propose an iterative algorithm in this paper to obtain
the optimal solution ofW such that Eq. (20) is satisfied. The
algorithm is described in Algorithm 1. In each iteration,W is
calculated with currentQ, and thenQ is updated based on the
currently calculated W. The iteration procedure is repeated
until the algorithm converges.

Algorithm 1 Algorithm to solve problem (12)

1: Input: Data matrix X ∈ Rd×n, labels Y ∈ Rn×c.
2: Output: W ∈ Rd×c and Q ∈ Rd×d.
3: Set t = 0.
4: InitializeQ as an identity matrix.
5: repeat
6: UpdateWt+1 = (XHXT + γQt)

−1XHY.
7: Update the diagonal matrix Qt+1, where the j-th di-

agonal element is
∑d

j=1

√
∥wj

t+1∥2

2
+ϵ√

∥wj
t+1∥2

2
+ϵ

.

8: t := t+ 1
9: until Converges

3.3 Update YU with b andW Fixed
Note that the above problem is independent between different
l + 1 ≤ i ≤ l + u, so we can solve the following problem
individually for each yi ∈ YU with fixedW and b

min
yi≥0,yT

i 1=1

∥∥WTxi + b− yi

∥∥2
2 (21)

The Lagrangian function of the above problem is
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L(YU) =
[∥∥WTxi + b− yi

∥∥2
2
+ η(yT

i 1− 1)− yT
i βi

]
(22)

where η and βi ≥ 0 are the Lagrangian multipliers.
It can be verified that the optimal solution of yi is

yi = (WTxi + b+ η)+ (23)

where η can be obtained by solving yT
i 1 = 1.

The detailed algorithm to solve problem (1), named
Rescaled Linear Square Regression (RLSR), is summarized
in Algorithm 2. In this algorithm, W, b and YU are al-
ternately updated until convergence. Finally, θ is computed
from the learned W and the k most important features are
selected according to θ.

Algorithm 2 Algorithm to solve problem (1): RLSR

1: Input: Data matrixX ∈ Rd×n, labelsYL ∈ Rl×c, num-
ber of selected features k, regularization parameter γ.

2: Output: k selected features.
3: t := 0.
4: repeat
5: UpdateWt+1 via Algorithm 1.
6: Update b = 1

n (Y
T1−WTX1).

7: UpdateYU , in which each yi ∈ YU is calculate from
Eq. (23) individually.

8: t := t+ 1.
9: until Converges

10: Compute θ ∈ Rd, where θj =
∥w̃j∥

2∑d
j=1∥w̃j∥2

.

11: Sort θ in descending order, and select top k ranked fea-
tures as ultimate result.

3.4 Convergence Analysis of Algorithm 2
To prove the convergence of Algorithm 2, we first prove the
following lemma
Lemma 1. The following inequality holds for any positive
vector u ∈ Rd and v ∈ Rd. d∑

j=1

uj

2

−
d∑

j=1

vj

d∑
j=1

u2
j

vj
≤

 d∑
j=1

vj

2

−
d∑

j=1

vj

d∑
j=1

v2j
vj

(24)

Proof. According to the Cauchy-Schwarz inequality, we have d∑
j=1

uj

2

=

 d∑
j=1

uj√
vj

√
vj

2

≤
d∑

j=1

u2
j

vj

d∑
j=1

vj (25)

Then we have(
d∑

j=1

uj

)2

−
d∑

j=1

u2
j

vj

d∑
j=1

vj ≤ 0 =

(
d∑

j=1

vj

)2

−
d∑

j=1

vj

d∑
j=1

v2j
vj

(26)

which completes the proof.

The convergence of Algorithm 1 can be proven by the fol-
lowing theorem.
Theorem 2. In Algorithm 1, updating W will decrease the
objective function of problem (2) until the algorithm con-
verges.

Proof. In the t-th iteration, suppose we have obtained the op-
timal solutionWt+1 by solving problem (16)

Wt+1 = argW min

[∥∥∥XTW + 1bT
t −Yt

∥∥∥2
F
+ γTr(WTQtW)

]
(27)

which indicates that
∥∥∥XT

Wt+1 + 1b
T
t − Yt

∥∥∥2

F
+ γ

d∑
j=1

√∥∥∥wj
t

∥∥∥2

2
+ ϵ

d∑
j=1

∥∥∥wj
t+1

∥∥∥2

2
+ ϵ√∥∥∥wj

t

∥∥∥2

2
+ ϵ

≤
∥∥∥XT

Wt + 1b
T
t − Yt

∥∥∥2

F
+ γ

d∑
j=1

√∥∥∥wj
t

∥∥∥2

2
+ ϵ

d∑
j=1

∥∥∥wj
t

∥∥∥2

2
+ ϵ√∥∥∥wj

t

∥∥∥2

2
+ ϵ

(28)

Based on Lemma 1, we know

γ


 d∑

j=1

√∥∥∥wj
t+1

∥∥∥2

2
+ ϵ

2

−
d∑

j=1

√∥∥∥wj
t

∥∥∥2

2
+ ϵ

d∑
j=1

∥∥∥wj
t+1

∥∥∥2

2
+ ϵ√∥∥∥wj

t

∥∥∥2

2
+ ϵ



≤γ


∑

j

√∥∥∥wj
t

∥∥∥2

2
+ ϵ

2

−
d∑

j=1

√∥∥∥wj
t

∥∥∥2

2
+ ϵ

d∑
j=1

∥∥∥wj
t

∥∥∥2

2
+ ϵ√∥∥∥wj

t

∥∥∥2

2
+ ϵ


(29)

From the above two inequalities, we get

∥∥XTWt+1 + 1bT
t −Yt

∥∥2
F
+ γ

 d∑
j=1

√∥∥∥wj
t+1

∥∥∥2
2
+ ϵ

2

≤
∥∥XTWt + 1bT

t −Yt

∥∥2
F
+ γ

 d∑
j=1

√∥∥∥wj
t

∥∥∥2
2
+ ϵ

2

(30)

which completes the proof.

The convergence of Algorithm 2 can be proven by follow-
ing theorem.
Theorem 3. Algorithm 2 decreases the objective function of
problem (1) at each iteration and the solution converges to its
global optimum.

Proof. In the t-th iteration, suppose we have obtained the so-
lutionWt+1 by solving problem (16), and then we fixWt+1

and update bt+1 and Yt+1 separately. According to Theo-
rem 2, we have∥∥∥XTWt+1 + 1bT

t+1 −Yt+1

∥∥∥2
F
+ γ

(
d∑

j=1

√∥∥wj
t+1

∥∥2
2
+ ϵ

)2

≤
∥∥∥XTWt + 1bT

t −Yt

∥∥∥2
F
+ γ

(
d∑

j=1

√∥∥wj
t

∥∥2
2
+ ϵ

)2

(31)
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Table 1: Characteristics of 8 benchmark data sets.

Name #Samples #Features #Classes
Glass 214 9 6

Segment 2310 19 7
LM 360 90 15
USPS 2007 256 10

Binalpha 1404 320 36
Ecoli 336 343 8

CNAE-9 1080 856 9
Colon 62 2000 2

Therefore, Algorithm 2 decreases the objective function of
Eq. (2) at each iteration. According to Theorem 1 that prob-
lem (2) is equivalent to problem (1), we know that Algorith-
m 2 also decreases the objective function of Eq. (1) at each
iteration. Note that problem (1) is convex, therefore, the so-
lution obtained by Algorithm 2 will converge to its global
optimum.

According to Theorem 3, our model can learn a global op-
timal solution ofW which is also sparse solution. Moreover,
it can use unlabeled data to improve performance.

4 Experimental Results
In order to validate the performance of our proposed method,
we have conducted a series of experiments on 8 benchmark
data sets. The experimental results are reported in this sec-
tion.

4.1 Benchmark Data Sets and Comparison
Scheme

The 8 benchmark data sets were selected from Feiping Nie’s
page1. The characteristics of these 8 data sets are summarized
in Table 1.
To validate the effectiveness of RLSR, we compared it

with seven state-of-the-art feature selection approaches, in-
cluding three semi-supervised feature selection methods sS-
elect [Zhao and Liu, 2007], LSDF [Zhao et al., 2008] and
RRPC [Xu et al., 2016], three unsupervised feature selection
method Laplacian Score (LS) [He et al., 2005], UDFS [Yang
et al., 2011] and MCFS [Cai et al., 2010], and a supervised
feature selection method RFS [Nie et al., 2010]. We also
used all features to perform SVM as baseline. We set the
regularization parameter γ of LS, LSDF, RFS, UDFS, sSelec-
t and RLSR as {10−3, 10−2, 10−1, 1, 102, 103}, λ of sSelect
as {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. The projection dimensions for
LS, LSDF, sSelect and UDFS were set empirically around d

3

to 2d
3 in our experiments, where d is the number of features in

the data. For the selected features, we first performed 10-fold
cross-validation to select the best SVMmodel, then we tested
the selected SVM model on the test part.
For each of the 8 data sets, the training exam-

ples were randomly selected with the given ratio
{10%, 20%, 30%, 40%, 50%}. The remaining examples
were then used as the test data. The test data were also

1http://www.escience.cn/system/file?fileId=
82035

used as the unlabeled data for the semi-supervised feature
selection methods.
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(a) Results on the Glass data
set.
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(b) Results on the Segment data
set.
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(c) Results on the LM data set.
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(d) Results on the USPS data
set.
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(e) Results of the Binalpha data
set.
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(f) Results on the Ecoli data set.
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(g) Results on the CNAE-9 data
set.
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(h) Results on the Colon data
set.

Figure 1: The maximum accuracies versus the percentage of labeled
records by 8 feature selection methods on 8 data sets.

4.2 Results and Analysis
The maximum accuracies of eight feature selection methods
versus the percentage of labeled records are shown in Fig-
ure 1. In general, the more labeled data we have, the bet-
ter accuracy we can achieve. This indicates that we are able
to select features with higher quality if more labeled data is
available. Overall, the proposed method RLSR outperformed
other methods on most cases. For example, on the CANE-
9 data set, RLSR has 4% average improvement compared to
the second best approach RFS. 3% average improvement was
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(a) Results of the Binalpha data
set.

(b) Results on the CNAE-9 data
set.

Figure 2: θ versus different γ.

achieved by the proposed method RLSR on the LM data set,
compared to the second best approach LSDF. We also notice
that RLSR outperformed RFS on almost all cases, which in-
dicates that RLSR can improve RFS with the unlabeled data.
This verifies the effectiveness of the semi-supervised feature
selection method.

4.3 Parameter Sensitivity Study
We show the effect of γ on the performance of RLSR in this
section. The relationship between γ and θ is shown in Fig-
ure 2. For brevity, we only show the results on two data sets
(i.e., the Binalpha and CNAE-9 data sets). As γ increased
from 0.001 to 1000, the high weights in θ occurred on fewer
features. With the increase of γ, θ will contain more values
which are close to zero. In real applications, we hope that θ
only contains a few features with high weights. Therefore,
we can use γ to control the distribution of θ.
In RLSR, γ is used to control the row sparsity of W, and

its value seriously influences the final performance. Varying
the value of γ, the average clustering accuracies on two data
sets are shown in Figure 3. This indicates that RLSR did not
change much with the change of γ. In real life applications,
we can perform hierarchy grid search to get better result.

4.4 Convergence Study
We have proposed Algorithm 1 to iteratively solve problem
(12), and proved its convergence in the previous section. Now
we experimentally show the speed of its convergence. The
convergence curves of the objective value on two data sets are
shown in Figure 4. We can see that, Algorithm 1 converged
very fast, which ensures the speed of the whole proposed ap-
proach.

5 Conclusions
In this paper, we have proposed a novel semi-supervised fea-
ture selection approach named RLSR. The new method ex-
tends the least square regression by rescaling the regression
coefficients in the least square regression with a set of scale
factors, which are used to rank the features. We have proved
that the new model can learn both global and sparse solution.
Moreover, the optimal solution of scale factor provides a the-
oretical explanation for why we can use {

∥∥w1
∥∥
2
, ...,

∥∥wd
∥∥
2
}

to rank the features. We have proposed a simple yet effective
algorithm with proved convergence to solve the new mod-
el. Empirical studies have been performed on eight data sets,

(a) Results of the Binalpha data set.

(b) Results on the CNAE-9 data set.

Figure 3: Average accuracies versus γ and the number of selected
features.
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(a) Results of the Binalpha data
set.
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(b) Results on the CNAE-9 data
set.

Figure 4: The objective value versus the number of iterations.

to demonstrate the superior performance of our method over
seven commonly-used feature selection methods. In the fu-
ture work, we will improve this method to handle large scale
data.
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