
Incremental Matrix Factorization:
A Linear Feature Transformation Perspective

Xunpeng Huang†, Le Wu‡, Enhong Chen†∗, Hengshu Zhu\, Qi Liu†, Yijun Wang†
†Anhui Province Key Lab. of Big Data Analysis and Application, University of S&T of China

‡School of Computer and Information, HeFei University of Technology
\Baidu Talent Intelligence Center

hxpsola@mail.ustc.edu.cn, lewu@hfut.edu.cn, cheneh@ustc.edu.cn,
zhuhengshu@baidu.com, qiliuql@ustc.edu.cn, wyjun@mail.ustc.edu.cn

Abstract
Matrix Factorization (MF) is among the most wide-
ly used techniques for collaborative filtering based
recommendation. Along this line, a critical demand
is to incrementally refine the MF models when new
ratings come in an online scenario. However, most
of existing incremental MF algorithms are limited
by specific MF models or strict use restrictions. In
this paper, we propose a general incremental MF
framework by designing a linear transformation of
user and item latent vectors over time. This frame-
work shows a relatively high accuracy with a com-
putation and space efficient training process in an
online scenario. Meanwhile, we explain the frame-
work with a low-rank approximation perspective,
and give an upper bound on the training error when
this framework is used for incremental learning in
some special cases. Finally, extensive experimen-
tal results on two real-world datasets clearly vali-
date the effectiveness, efficiency and storage per-
formance of the proposed framework.

1 Introduction
Recent years, Matrix Factorization (MF) models have been
successfully applied to various real-world recommender sys-
tems [Liu et al., 2011; Wu et al., 2012; Zhu et al., 2015;
Lin et al., 2017; Wu et al., 2017], due to the advantages of
high accuracy, low computational cost and easy implementa-
tion [Salakhutdinov and Mnih, 2008; Bach et al., 2008; Haz-
an, 2008; Zeng et al., 2015; Chen et al., 2016]. Indeed, most
of MF models are batch-based, which usually have intensive
computational cost when updating the latent feature vectors
after the training phase [Rendle and Schmidt-Thieme, 2008;
Luo et al., 2012]. Therefore, a critical demand is to incremen-
tally refine the MF models with new ratings for real-world
online scenarios.

In the literature, to facilitate the computational overhead
of batch-based MF models, a number of incremental MF s-
tudies have been made. However, there are still some major
challenges to be addressed. First, most of the algorithms for
incremental MF are not general, which are limited by specific
∗Corresponding author.

batch-based MF models [Wang et al., 2011; Luo et al., 2012;
Vinagre et al., 2014], such as Non-negative Matrix Factor-
ization (NMF) [Lee and Seung, 1999] or Probabilistic Ma-
trix Factorization (PMF) [Salakhutdinov and Mnih, 2008], or
some strict use restrictions, such as a pre-processed matrix
without any missing elements [Brand, 2003; Sarwar et al.,
2002], the small-scale incremental data batch [Rendle and
Schmidt-Thieme, 2008; Wang et al., 2011; Luo et al., 2012;
Devooght et al., 2015; Matuszyk et al., 2015] and the scenar-
ios of the new user/item problem [Song et al., 2015]. Second,
most existing incremental MF models have to store coming
ratings nearly as much as that in batch-based MF models [Luo
et al., 2012; Devooght et al., 2015], which is not truly incre-
mental from a data storage perspective. Moreover, as most
incremental MF models are non-convex and complex, the er-
ror bounds of them are hardly theoretical analyzed. To the
best of our knowledge, there still lacks a holistic view for ad-
dressing all the above challenges at the same time.

To fill the above void, in this paper, we propose a general
Linear Feature Transformation (LFT) framework for incre-
mental MF. Specifically, the framework only needs to train
a small-sized feature transformation matrix for capturing the
changes of model parameters when new data stream comes.
Furthermore, only a small constructed collection of samples
needs to be saved to train the feature transformation matrix
in our framework, and most coming ratings will be dropped
in short periods of time. In particular, to demonstrate that the
proposed framework is generally applicable for incremental-
ly updating most of MF models, we select a representative
batch-based MF model (i.e., a constrained MF model), and
detail how to incrementally update it under the proposed LFT
framework. We further theoretically explain the framework
and analyze the training error bound from a low-rank approx-
imation perspective. To be specific, the contributions of this
paper can be summarized as follows:

• We propose a general LFT framework of incremental M-
F for efficient online recommendation, which is gener-
ally applicable for incrementally updating most of MF
models. In particular, we develop a concrete LFT imple-
mentation for a constrained MF model.

• We theoretically explain our proposed framework from a
low-rank approximation perspective. In the case of using
the framework for MF models with no constraints and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1901

no regularization terms, we prove the upper bound of
the training error expectation in the incremental phase.

• We conduct extensive experiments on two real-world
datasets. The results clearly validate the effectiveness,
efficiency and storage performance of our concrete LFT
implementation comparing with other state-of-the-art in-
cremental MF models.

2 Related Work
In this section, we illustrate some existing incremental model-
s, which are often designed for updating latent feature matri-
ces in an online recommendation scenario. Up to now, incre-
mental MF models can be mainly divided into the following
three categories from a technical point of view.

SVD-based Model. This kind of incremental MF mod-
els is characterized by using SVD as its batch-based model
(eg., [Brand, 2003; Sarwar et al., 2002]). Incremental updat-
ing operations through the basic algebraic properties of SVD
such as one-rank operations [Brand, 2003] leads to a high
efficiency. However, SVD requires a matrix that has no miss-
ing elements to be decomposed. Therefore the performance
of these models on the sparse datasets is limited.

Vector-retraining Model. Unlike the SVD-based Mod-
el, there are different kinds of batch-based MF approaches
which can be applied into vector-retraining models [Rendle
and Schmidt-Thieme, 2008; Devooght et al., 2015]. Partic-
ularly, the key idea of this models is that, when a new rat-
ing arrives, the latent feature vectors used to estimate the rat-
ing need to be slightly updated [Vinagre et al., 2014] or re-
trained [Rendle and Schmidt-Thieme, 2008; Luo et al., 2012;
Devooght et al., 2015; Matuszyk et al., 2015] in order to have
a better performance in later time periods. Although some s-
trategies to improve efficiency [Rendle and Schmidt-Thieme,
2008; Matuszyk et al., 2015] and accuracy [Luo et al., 2012]
are introduced, this kind of models can only update coming
ratings one by one. Besides, when the data comes incremen-
tally, discarding some of the existing data will reduce the av-
erage number of elements corresponding to each user (item),
which brings a quite negative impact on the effectiveness for
such models. As a result, vector-retraining models have lim-
ited efficiency when large-scale incremental ratings arrive at
the same time and relatively high storage consumption for
saving ratings (in Section 4.2).

Space-retraining Model. In order to rule out the re-
dundant calculation of the overhead which is caused by the
“One by One” updating in the vector-retraining models, some
space-retraining models are proposed. [Wang et al., 2011] as-
sumes the smooth evolution of the latent feature matrix, and
optimizes the increment of the latent feature matrix by min-
imizing the upper bound of the loss function with a bunch
of incremental ratings. However, the assumption is only es-
tablished when the F-norm of the incremental rating matrix
is small. Another space-retraining model [Song et al., 2015]
retrains the feature space via auxiliary feature learning and
matrix sketching strategies [Liberty, 2013], while it is only
designed for solving the new user/item problem.

Compared to vector-retraining models, the matrix we
trained in this paper is to reflect the linear change of latent fea-

Table 1: Several important mathematical notations.

Notations Description
Xi,: the row vector in the i-th row of the matrixX
X:,j the column vector in the j-th column of the matrixX

ΩX
the set of coordinates of the ratings that can
be observed in matrixX

IΩ
a binary matrix whose element is 1 if the corresponding
coordinate is in the set Ω

X|t the matrixX in the time period t
� Hadamard product (Ai,j = Bi,j × Ci,j , if A = B � C)
K the rank of latent feature matrices
η the step size during iterations
n the number of users
m the number of items

P ∈ Rn×K the latent feature matrix of users
Q ∈ Rm×K the latent feature matrix of items
R ∈ Rn×m the rating matrix

ture vectors over time, rather than latent feature vectors them-
selves. Therefore, algorithms based LFT framework have
better time-space complexity when the incremental data scale
reaches a certain size (in Section 4.2). Besides, the different
assumption from [Wang et al., 2011] makes the feasibility of
our approach unaffected by the large-scale incremental rating
matrix and the new user/item problem. Moreover, we illus-
trate the reasonableness of our assumption from a low rank
approximation perspective and guarantee the quality of the
solution when batch-based MF problems are formulated with
no constraints and no regularization terms (in Section 5).

3 The Proposed LFT Framework
In this section, we introduce the overview of our incremental
MF framework LFT (Linear Feature Transformation). For
better illustration, we first list some important notations and
their descriptions in Table 1. Moreover, for a matrix A, we set

Sy(A) =

[
0 A
AT 0

]
, where the 0 means the missing ratings

rather than the exact values.
Indeed, most of incremental MF methods are made up of

two steps. First, a batch-based MF method is used to train the
initial latent feature matrices. Second, an incremental train-
ing process is developed for updating latent feature matrices
when a bunch of new ratings come. As designing more so-
phisticated batch-based MF models is not the focus of our
paper, here we pay close attention to the second step, and de-
sign an incremental MF framework with a linear transforma-
tion assumption to describe latent feature changes. Then we
introduce the problem formulation, followed by the proposed
LFT framework.

In a recommender system, there are n users and m item-
s. In each time period t + 1, incremental ratings are record-
ed as ∆R|t+1 ∈ Rn×m. And ∆Y|t+1 = [∆P|t+1,∆Q|t+1] ∈
R(n+m)×K is the latent feature matrix decomposed by the ma-
trix ∆X|t+1 = Sy(∆R|t+1) with the batch-based MF model
G (e.g., PMF or NMF). We concatenate all the ratings till
time t as R|t ∈ Rn×m estimated by P|tQ

T
|t, where matrix

Y|t =
[
P|t, Q|t

]
has been learned before. Here, the time peri-

od is application-depended such as an hour, a day or a week.
Given the above definition, the incremental MF problem turns
into: how to efficiently learn and update the new feature ma-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1902

Time

Ratings

∆� � ∈ �
� �

Batch MF
∆�� ∈ �

� � �

LFT

Period 1

∆�

Period 3

∆�

Period 2

∆�

	

	

	

Period T

∆� T

	|T

|T

	|

|

......

...

...

Figure 1: Work flow of the LFT framework.

trix Y|t+1 from Y|t when a bunch of new ratings ∆R|t+1 come
in time period t+ 1. We have the assumption:
Assumption 3.1. The transformation of the latent feature
matrix Y|t over the time period (t = 1, 2, ...) can be described
as a linear function of its past value and the incremental la-
tent feature matrix:

Y|t+1 = Y|tC|t+1 + ∆Y|t+1D|t+1 = O|t+1L|t+1, (1)

where there are

L|t+1 =

[
C|t+1

D|t+1

]
∈ R2K×K

, O|t+1 =
[
Y|t ∆Y|t+1

]
∈ R(n+m)×2K

.

(2)

It should be noted that C|t+1 and D|t+1 are K-dimensional
matrices which project different latent feature vectors (Yi,:|t+1

and ∆Yi,:|t+1) into a same linear space. In fact, the above
linear transformation Eq.(1) presents a special form that re-
sembles Vector Auto Regression (VAR) [Scott Hacker and
Hatemi-J, 2008; Hatemi-J, 2004], which is an econometric
model to capture the linear interdependencies among multi-
ple time series. Besides, we will introduce this transforma-
tion with a low-rank approximation perspective in Section 5.
In particular, we show the work flow of updating the latent
feature matrix in Figure 1.

In order to get the updated feature matrix Y|t+1, we need
to figure out the matrix L|t+1 when the matrix X|t+1 =
Sy(R|t+1). Specifically, the incremental training problem
could be generally formulated as Eq.(3), where fG(.) is the
objective function. n1 and n2 are the numbers of equality
constraints hG(.) and inequality constraints gG(.) respective-
ly. As shown in Eq.(3), the proposed incremental framework
LFT is applicable to any batch-based MF model G with ex-
plicit objective functions (and explicit constrains).

min
L|t+1

f
G (

X|t+1, O|t+1L|t+1

)
s.t. h

G
i

(
X|t+1, O|t+1L|t+1

)
= 0 i = 1, 2, ..., n1

g
G
i

(
X|t+1, O|t+1L|t+1

)
≤ 0 i = 1, 2, ..., n2

(3)

Before introducing the concrete algorithms to solve the ob-
jective function, we summarize the LFT framework in Algo-
rithm 1. As can been seen from this algorithm, the key to LFT
framework lies in Step 3. We leave the details for learning the
matrix L|t+1 in the next section.

Algorithm 1 The Linear Feature Transformation Process.
Input: Incremental matrix ∆R|t+1; Feature matrix Y|t; The select-

ed batch-based MF model G;
Output: Updated latent feature matrix Y|t+1;
1: Decompose the incremental matrix ∆R|t+1 with the selected

MF model G and get a feature matrix ∆Y|t+1;
2: Combine the matrix Y|t and ∆Y|t+1 to get O|t+1 by Eq.(2);
3: Calculate L|t+1 until the objective function Eq.(3) converges;
4: return Updated feature matrix Y|t+1 = O|t+1L|t+1;

4 Implementation of LFT
In this section, we introduce a concrete LFT implementation
for a constrained MF model named FAVA [Zeng et al., 2015].
Compared to the choice of unconstrained batch-based MF
models (e.g., PMF), choosing FAVA can be more represen-
tative to show that our framework is generally applicable to
incrementally updating most of batch-based MF models by
formalizing the corresponding incremental training problem
as Eq.(3). After that, we compare the time-space complexity
of our proposed model with some state-of-the-art methods.

4.1 The Incremental FAVA Model based on LFT
In this section, we develop a model named FAVA LFT which
incrementally update a batch-based MF model named FAVA
as an example of applying LFT framework to batch-based
constrained MF models.

Batch MF Phase. As with FAVA, FAVA LFT uses the
hyper-parameters written as {σj}Kj=1, which can ensure that
the superiority of hyper-parameters will not lose when the
scale of the rating matrix is increasing [Zeng et al., 2015].
The loss function is formulated in the following

f
FAV A

(X,Y) =
1

2
‖IΩX

�
(
X − Y Y T

)
‖2F , (4)

where X = Sy(R) and Y denotes the combination of user
and item feature matrix as shown in Section 3.

Through the FAVA algorithm, we can get the matrix ∆Y|t+1

from optimizing the problem [Zeng et al., 2015]:

min
∆Y|t+1

f
FAV A (

∆X|t+1,∆Y|t+1

)
s.t.

1

n+m

n+m∑
i=1

∆Yi,k|t+1 ≤ σ
2
k (k = 1, 2, ..., K) .

(5)

LFT Phase. After getting the matrix ∆Y|t+1, we can es-
tablish O|t+1 with the Assumption 3.1 and the known latent
feature matrix Y|t, then Y|t+1 can be updated by Eq.(1) after
getting the matrix L|t+1 through optimizing the problem:

min
L|t+1

f
FAV A

(
X|t+1, Y|t+1

)
s.t. L

T
:,i|t+1O

T
|t+1O|t+1L:,i|t+1 ≤ (n+m)σ

2
i (i = 1, 2, ..., K),

(6)

where X |t+1 = Sy
(
R|t+1

)
, and R|t+1 consists of some o-

riginal rating samples (a sub-matrix of R|t) and new com-
ing ratings (∆R|t+1). The scale of the matrix X |t+1 could
be manually adjusted for balancing the effectiveness and ef-
ficiency of FAVA LFT. Considering from the reasonableness,

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1903

Algorithm 2 FAVA LFT Algorithm.
Input: Threshold of the absolute difference of the objective func-

tion ε; Sample rating matrix R|t+1; Factorization Variances
{σ2

i }Ki=1; Latent feature matrix Y|t; Incremental latent feature
matrix ∆Y|t+1;

Output: Updated latent feature matrix Y|t+1;
1: Initialize L|t+1 and combined feature matrix O|t+1 by Eq.(2);
2: do
3: Calculate the gradient of L|t+1 by Eq.(8);
4: Use the steepest descent method to get the step size η;
5: Update column vectors of L|t+1 by Eq.(7);
6: Calculate the absolute difference εt of the objective function

before and after the update of L|t+1;
7: while εt ≥ ε;
8: return Y|t+1 = O|t+1L|t+1

such process can also be regarded as a kind of approximation
of original rating matrix by sparsification [Halko et al., 2011].

For the constrained nonconvex optimization problem
Eq.(6), we use a non-standard projection gradient method to
update the optimization variables while maintaining its feasi-
bility as follows:

L:,i|t+1 ← Π

L:,i|t+1 − η
∂fFAV A

(
X|t+1, Y|t+1

)
∂L:,i|t+1

, i

 , (7)

where the gradient of L|t+1 and the projection function Π (.)
are respectively described as Eq.(8) and Eq.(9). Besides, the
step size η can be calculated by the steepest descent method.

∇L|t+1 =− 2O
T
|t+1

[
IΩ

X|t+1
�
(
X|t+1

−O|t+1L|t+1L
T
|t+1O

T
|t+1

)]
O|t+1L|t+1

(8)

Π (l, i) =


√
n+mσil√

lTOT
|t+1

O|t+1l
, l

T
O

T
|t+1O|t+1l ≥ (n+m)σ

2
i

l, else

(9)

It should be noted that we project the different colum-
n vectors L:,i|t+1 of the intermediate solution to the hyper-
ellipsoidal surface in direction of the connection between the
L:,i|t+1 and the origin, which can help us to approximate a
feasible point without solving linear equations established by
proximal methods. In addition, the selection of the initial val-
ues for L|t+1 in the feasible set is also a critical step. A sim-
ple idea is that we set L|t+1 = [I, 0] as the initial optimization
variable, because the solution Y|t in the previous time period
necessarily satisfies the constraints.

To summarize the process that we iteratively update L|t+1

and η until Eq.(6) converges, the implementation of FA-
VA LFT has been detailed in Algorithm 2.

4.2 Complexity Analysis
In this section, we compare FAVA LFT with Batch MF and
vector-retraining models (e.g., RMF R [Rendle and Schmidt-
Thieme, 2008] and IRMF [Luo et al., 2012]) in terms of the
time-space complexity. And the results are shown in Table 2,
where D is the iteration number. To a certain extent, the re-
sult can show the high efficiency and low storage overhead of

Table 2: The complexity of algorithms in the incremental phase

Methods Time Complexity
Batch MF O(D(|ΩRt |+ |Ω∆Rt |)K)
RMF R O(D|Ω∆Rt |(|ΩRt |/n+ |ΩRt |/m)K)
IRMF O(D|Ω∆Rt |(|ΩRt |/n+ |ΩRt |/m)K)

FAVA LFT O(D(|ΩRt
|K + (n+m)K2))

Methods Space Complexity
Batch MF O(|ΩRt |+ (n+m)K)
RMF R O(|ΩRt |+ (n+m)K)
IRMF O(|ΩRt |+D(n+m)K)

FAVA LFT O(|ΩRt
|+ (n+m)K)

our framework. And the same complexity can be extended to
LFT implementations based on some other batch-based MF
models (e.g., PMF or NMF).

Time Complexity. According to Table 2, Batch MF is
usually slower than RMF R and IRMF in the case of |ΩRt | �
|Ω∆Rt |. However, when |Ω∆Rt | ≥ min{n,m}, RMF R and
IRMF would have lower efficiency than the Batch MF. As a
result, most vector-retraining models (e.g., RMF R and IRM-
F) cannot address the incremental MF problem well when the
number of coming ratings in each time period is large. On
the other hand, the efficiency of our framework in incremen-
tal phase can be easily controlled by tuning

∣∣ΩRt

∣∣ which is
usually a constant multiple of |Ω∆Rt |. Besides, according to
Table 2, the scale of the incremental rating matrix has limited
impact on the efficiency of LFT based models, and we believe
that LFT framework will have high efficiency in large-scale
online recommender systems.

Space Complexity. Vector-retraining models usually re-
quire a large number of user’s historical ratings Ri,: when re-
training the user’s feature vector Pi,:, which leads a certain
number of historical ratings to be stored for each user. And
because of the sparseness of the rating matrix, most of com-
ing ratings cannot be dropped in each time period. As a re-
sult, the overhead of saving ratings shown in Table 2 should
not be ignored. On the other hand, the matrix trained in LFT
framework is a linear change of latent feature vectors over
time rather than specific feature vectors. Therefore, only a
small-scale sample matrix

∣∣ΩRt

∣∣ is needed and the data stor-
age overhead can be reduced.

5 Theoretical Analysis
In this section, we conduct theoretical analysis to further ex-
plain the LFT framework and discuss its properties. Specifi-
cally, we first introduce a kind of model based on LFT named
extend LFT (eLFT), and then analyze eLFT from the low-
rank approximation perspective. It is worth mentioning that
we prove an upper bound on the training error expectation of
the model. The bound can give the theoretical basis to guar-
antee that incremental MF models using the LFT framework
is reasonable and practical.

Problem Formulation. Similar to Eq.(3), we formulate
the eLFT problem with no constraints and no regularization
terms as follows:

min
L|t+1

1

2

∥∥∥∥IΩX̃|t+1

�
(
X̃|t+1 − O|t+1L|t+1L

T
|t+1O

T
|t+1

)∥∥∥∥2

F

, (10)

where X̃|t+1 is defined as

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1904

X̃|t+1 =Sy

(
IΩR|t

�
(
R|t + ∆P|t+1∆Q

T
|t+1

))
+ Sy

(
IΩ∆R|t+1

�
(

∆R|t+1 + P|tQ
T
|t

))
.

(11)

It should be noted that since users cannot repeat rating, we as-
sume ΩR|t

⋂
Ω∆R|t+1

= ∅ in all subsequent analysis. Through
Eq.(11), the estimated rating matrix has an offset which is re-
lated to the latent feature matrix. Therefore, we need some
other methods to predict the missing ratings (e.g., the average
of the ratings which are predicted as exact values in previous
time periods).

Equivalence and Approximation. In order to under-
stand eLFT from the perspective of low rank approximation,
we consider the following joint optimization problem of ex-
isting ratings and incremental ratings in time period t+ 1

min
P,Q,∆P,∆Q

1

2

∥∥∥∥IΩSy(∆R|t+1)
� Sy

(
∆R|t+1 −∆P∆Q

T
)∥∥∥∥2

F

+
1

2

∥∥∥∥IΩSy(R|t)
� Sy

(
R|t − PQ

T
)∥∥∥∥2

F

.

(12)

We replace the variable with O ∈ R(n+m)×2K , and O =[
P ∆P
Q ∆Q

]
. The optimization problem Eq.(12) can be e-

qually expressed as

min
O

1

2

∥∥∥∥IΩSy(∆R|t+1)
�
(
Sy
(

∆R|t + PQ
T
)
− OOT

)∥∥∥∥2

F

+
1

2

∥∥∥∥IΩSy(R|t)
�
(
Sy
(
R|t + ∆P∆Q

T
)
− OOT

)∥∥∥∥2

F

,

(13)

where P =
[
In 0

]
O

[
IK
0

]
. Besides, Q,∆P,∆Q can

be obtained in a similar way.
We know that a local optimal solution O|t+1 of Eq.(13) can

be easily found when O|t+1 =

[
P|t ∆P|t+1

Q|t ∆Q|t+1

]
. And the dis-

tinction between the local optimal and the global optimal so-
lutions only depends on the batch-based model which is used
to decompose R|t and ∆R|t+1 into P|tQT

|t and ∆P|t+1∆QT
|t+1.

To solve the incremental problem Eq.(13) in different time pe-
riods, an intuitive idea is that when incremental data arrives,
the columns of the matrix O are expanded with the incremen-
tal latent feature matrix to obtain the local optimal solution
of the joint optimization problem Eq.(13). However, as time
goes by, we cannot tolerate the continuous growing of the
rank of the latent feature matrix. Therefore, we should find a
K-rank approximation of O|t+1.

According to [Halko et al., 2011], the approximation can
be set as O|t+1MMT , where the column vectors of matrix
M ∈ R2K×K are orthonormal. The problem Eq.(13) can be
relaxed as follows:

min
M

1

2

∥∥∥∥(IΩSy(∆R|t+1)
+ IΩSy(R|t)

)
�(

X̃|t+1 − O|t+1MM
T
O

T
|t+1

)∥∥∥2

F
,

(14)

which is equivalent to Eq.(10) when columns of L|t+1 are
orthonormal vectors.

In summary, the eLFT can be considered as to find a spe-
cial K-rank approximation of a local optimal solution which
can be got through optimizing a joint optimization problem of
existing ratings and incremental ratings in time period t + 1.
In particular, we have the following theorem.
Theorem 5.1. In any time period t+ 1, we can obtain a solu-
tion of the optimization problem Eq.(10) to make the expec-
tation of the training error e|t+1 satisfies Eq.(15) when K ≥ 2.

E√e|t+1 ≤
√
e|t + ∆e|t+1 +

(
2K − 1
√

2K −
√

2

) ∑
2K≥j>K

λ
2
j

 . (15)

In Eq.(15), λj means the j-th largest singular value of matrix
O|t+1, and ∆e|t means the residual sum of squares (RSS) of
the matrix ∆R|t and ∆P|t∆Q

T
|t.

Proof. According to the discussion above, we know that the
optimization problem Eq.(14) is equal to the low-rank ap-
proximation of a local optimal solution of problem Eq.(12).

For any known M , we have
∥∥∥∥(IΩSy(∆R|t+1)

+ IΩSy(R|t)

)
�
(
X̃|t+1 − O|t+1MM

T
O

T
|t+1

)∥∥∥∥
F

≤
∥∥∥∥(IΩSy(∆R|t+1)

+ IΩSy(R|t)

)
�
(
O|t+1

(
I −MM

T
)
O

T
|t+1

)∥∥∥∥
F

+

∥∥∥∥(IΩSy(∆R|t+1)
+ IΩSy(R|t)

)
�
(
X̃|t+1 − O|t+1O

T
|t+1

)∥∥∥∥
F

≤
∥∥∥∥(IΩSy(∆R|t+1)

+ IΩSy(R|t)

)
�
(
X̃|t+1 − O|t+1O

T
|t+1

)∥∥∥∥
F

+
∥∥∥O|t+1

(
I −MM

T
)
O

T
|t+1

∥∥∥
F

=

∥∥∥∥O|t+1

(
I −MM

T
)2
O

T
|t+1

∥∥∥∥
F

+
√

2e|t + 2∆e|t+1.

(16)

According to the Average Frobenius errors mentioned
in [Eckart and Young, 1936], in Eq.(16), if we initialize the
M with M which can be got by Randomized Range Finder
algorithm [Halko et al., 2011], we have

E
∥∥∥(I −MM

T
)
O

T
|t+1

∥∥∥2

F
≤
(

1 +
K

K − 1

) ∑
2K≥j>K

λ
2
j , (17)

when K ≥ 2. And we can get the following inequality for
any M through the Cauchy-Schwarz inequality.

∥∥∥∥O|t+1

(
I −MM

T
)2
O

T
|t+1

∥∥∥∥
F

≤
∥∥∥(I −MM

T
)
O

T
|t+1

∥∥∥2

F
(18)

Through Eq.(17) and Eq.(18), we can easily get

E
∥∥∥∥O|t+1

(
I −MM

T
)2
O

T
|t+1

∥∥∥∥
F

≤
(

2K − 1

K − 1

) ∑
2K≥j>K

λ
2
j

 . (19)

Then we substitute Eq.(19) into Eq.(16).
As the problem Eq.(10) and Eq.(14) are equivalent when

matrix of L|t+1 is orthonormal, we can apparently obtain a
solution that meets Eq.(15) when L|t+1 is initialized with M .
Besides, the error bounds will be maintained after the gra-
dient descent process of optimizing Eq.(10). Therefore, the
theorem has been proved.

According to the theorem and the proof, regardless of the
number of incremental ratings, the total error will always be

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1905

a function of the rank of latent feature matrices K and the
singular values {λj}2Kj=K+1 of matrix O|t+1. Thus, finding the
optimalK-rank approximation of the joint optimization prob-
lem is a good way to solve the incremental problem.

6 Experiments
In this section, we mainly introduce four experiments, which
evaluate our method and baselines from four aspects: effec-
tiveness, efficiency, the storage and use rate of rating samples.

Dataset. The experiments were conducted on two real-
world datasets MovieLens1M (ML1M) and MovieLens10M
(ML10M), which are standard datasets in rating prediction.
The data is collected by the GroupLens Research from the
MovieLens web site 1.

Measurements. The four metrics, which are designed to
evaluate the effectiveness, efficiency, storage and use rate of
rating samples are the RMSE of all predicted ratings [Luo et
al., 2012], the cumulative runtime, the number and the use
rate of rating samples in each time period, respectively.

Baselines. We chose two widely used incremental M-
F methods, namely RMF R [Rendle and Schmidt-Thieme,
2008] and IRMF [Luo et al., 2012], for comparison on a small
dataset. Besides, we accelerated the above two models as new
baselines, namely QRMF R and QIRMF, on both datasets.
Otherwise, the efficiency of original vector-retraining mod-
els on ML10M is intolerable because of the high time com-
plexity. For QRMF R and QIRMF, the main idea is that we
update a latent feature vector only when the corresponding
user (item) last appears in the incremental ratings. Therefore,
we can effectively reduce the number of gradient calculation
to improve the efficiency. Of course, it will make algorithm-
s less effective because of incomplete updates, and specific
performance gaps will be shown on the ML1M dataset.

Experimental Process. The specific steps of experimental
process is as follows:

• First, the experimental data sorted by timestamp was di-
vided into T disjoint continuous parts with a similar s-
cale. We call the i-th incremental data part i-ID.

• Second, 1-ID was used as the batch training set of incre-
mental recommenders.

• After that, we applied i-ID to simulate the real-world
rating batch, and evaluated each model by calculating
the four metrics mentioned above. Note that, we only
predicted the ratings of whom the user and item have
appeared in former ID.

• Then, vector-retraining models (RMF R, IRMF, QRM-
F R and QIRMF) need to deal with the coming ratings
one by one, and FAVA LFT can update the whole feature
matrix with batch production (e.g., Algorithm 1).

• We repeated steps 3 and 4 from i = 2 until i = T

Through such experimental setup demonstrated in Figure 2,
we can observe that the incremental training process is shown
as the arrow from testing 2-ID to training 2-ID.

1http://movielens.org

Training Testing Unobservable

...
.

.

.

.

.

.

.

.

.

1-ID 2-ID

1-ID 2-ID

3-ID 4-ID 5-ID

...
3-ID 4-ID T-ID

T-ID

T-ID(T-1)-ID(T-2)-ID

Figure 2: The Change of the State of Each i-ID.

Parameters Settings. The initial values of the feature ma-
trices of RMF R, IRMF, QRMF R and QIRMF were random-
ly drawn from a normal distribution (N (0, 0.01)). The main
parameters listed in Table 3 are: the regularization term coef-
ficient λ, the step size η, the number of iteration in incremen-
tal training phase D, the rank of latent feature matrices K,
the size of sampled matrix |Ω|, the threshold of the absolute
difference of the objective function in FAVA LFT ε, and the
ID number for each dataset T .

It should be noted that all the MF parameters (λ, η, D) are
obtained by five folds cross tuning on original datasets with
corresponding batch-based MF models.

Experimental Results. The experimental results on M-
L1M and ML10M are depicted in Figure 3 and Figure 4, and
the accurate values at last time period are shown in Table 4.

Effectiveness and Efficiency. We can see that original
vector-retraining models (RMF R and IRMF) are usually
more effective, while the efficiency of them is much low-
er than the accelerated baselines (QRMF R and QIRMF) in
Figure 3. Especially for IRMF, it is difficult to find a bal-
ance between effectiveness and efficiency, because the nega-
tive effect of speeding up the algorithm cannot be accepted.
And we think the main reason is that the non-standard de-
scent method in IRMF will expand the error in the case of
incomplete updates. For RMF R, although speeding up the
algorithm has only a limited effect on the precision, its per-
formance in terms of effectiveness is also less satisfactory on
ML1M dataset. As a contrast to IRMF, the FAVA LFT algo-
rithm based LFT framework has increased the speed almost
174 times in the case of losing about 2% accuracy on ML1M.
Meanwhile, compared to RMF R, FAVA LFT in terms of ac-
curacy and efficiency can achieve more outstanding perfor-
mance. And a similar result also appears on ML10M dataset,
which is shown by Figure 4.

Table 3: Parameters in the experiments

λ η D K |Ω| ε T
ML1M 50

(Q)RMF R 0.02 0.0002 600 70
(Q)IRMF 0.02 0.0002 600 70

FAVA LFT 70 105 1.0
ML10M 200
QRMF R 0.01 0.00018 1200 70
QIRMF 0.01 0.00018 1200 70

FAVA LFT 70 3× 105 1.0

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1906

0 10 20 30 40 50

ID Part

0.95

1

1.05

1.1

1.15

1.2
R

M
S

E

0 10 20 30 40 50

ID Part

10
4

10
6

10
8

T
im

e
(m

s
)

0 10 20 30 40 50

ID Part

0

2

4

6

8

10

T
h

e
 n

u
m

b
e

r
o

f
s
a

m
p

le
s
 s

a
v
e

d

×10
5

0 10 20 30 40 50

ID Part

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h

e
 u

s
e

 r
a

te
 o

f
s
a

m
p

le
s
 s

a
v
e

d

RMF_R QRMF_R IRMF QIRMF FAVA_LFT

Figure 3: The experimental results on ML1M.

0 50 100 150 200

ID Part

0.85

0.9

0.95

1

1.05

1.1

R
M

S
E

0 50 100 150 200

ID Part

10
4

10
6

10
8

10
10

T
im

e
(m

s
)

0 50 100 150 200

ID Part

0

1

2

3

4

5

T
h

e
 n

u
m

b
e

r
o

f
s
a

m
p

le
s
 s

a
v
e

d

×10
6

0 50 100 150 200

ID Part

0.4

0.5

0.6

0.7

0.8

0.9

1

T
h

e
 u

s
e

 r
a

te
 o

f
s
a

m
p

le
s
 s

a
v
e

d

QRMF_R QIRMF FAVA_LFT

Figure 4: The experimental results on ML10M.

Table 4: Comparison on incremental learning performance

Dataset ML1M ML10M

Metrics
Models RMF R QRMF R IRMF QIRMF FAVA LFT QRMF R QIRMF FAVA LFT

RMSE 0.97373878 0.99632469 0.95135957 1.10995587 0.97089095 0.92735359 1.02200030 0.90891774
Runtime(ms) 4.90× 106 7.29× 105 1.86× 108 6.19× 106 1.07× 106 4.92× 107 3.02× 108 5.72× 107

Samples saved 396620 486695 1000000 534826 99914 4527003 4802356 299107

Storage Overhead and Sample Use Rate. In Figure 3 and
Figure 4, RMF R, QRMF R, IRMF and QIRMF have to store
much more rating samples than FAVA LFT, which is caused
by the uncertainty of using historical data. While consuming
a large amount of storage resources, the low sample use rate
causes the bad impacts on the effectiveness of QRMF R and
QIRMF. As for FAVA LFT, with the high sample use rate, we
are able to calculate the feature transformation matrix (L|t+1)
while saving a small amount of rating samples.

In summary, experimental results on two real-world
datasets clearly validate the excellent effectiveness, efficiency
and storage performance of the proposed framework.

7 Conclusions
In this paper, we designed a framework of incremental M-
F for enhancing the performance of online recommendation.
Specifically, we demonstrated that the LFT framework is
generally applicable for incrementally updating most of M-
F models. Besides, This framework shows a relatively high
accuracy with a computation and space efficient training pro-
cess in a online scenario. Furthermore, we explained the
LFT framework in a low-rank approximation perspective, and
proved an upper bound on the training error expectation of the
model. Finally, extensive experimental results on two real-
world datasets clearly validated the superiority of the pro-
posed framework.

Acknowledgements
This research was partially supported by grants from the
National Key Research and Development Program of China
(Grant No. 2016YFB1000904), the National Science Foun-
dation for Distinguished Young Scholars of China (Grant No.
61325010), the National Natural Science Foundation of Chi-
na (Grants No. 61403358, No. 61602147 and U1605251),
and the Anhui Provincial Natural Science Foundation(Grant
No. 1708085QF155). Qi Liu gratefully acknowledges the
support of the Youth Innovation Promotion Association of
CAS (No. 2014299).

References
[Bach et al., 2008] Francis Bach, Julien Mairal, and Jean

Ponce. Convex sparse matrix factorizations. arXiv preprint
arXiv:0812.1869, 2008.

[Brand, 2003] Matthew Brand. Fast online svd revisions for
lightweight recommender systems. In SDM, pages 37–46.
SIAM, 2003.

[Chen et al., 2016] Chao Chen, Dongsheng Li, Qin Lv,
Junchi Yan, Stephen M Chu, and Li Shang. Mpma: mix-
ture probabilistic matrix approximation for collaborative
filtering. In IJCAI, pages 1382–1388, 2016.

[Devooght et al., 2015] Robin Devooght, Nicolas Kourtellis,
and Amin Mantrach. Dynamic matrix factorization with

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1907

priors on unknown values. In SIGKDD, pages 189–198.
ACM, 2015.

[Eckart and Young, 1936] Carl Eckart and Gale Young. The
approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[Halko et al., 2011] Nathan Halko, Per-Gunnar Martinsson,
and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate ma-
trix decompositions. SIAM review, 53(2):217–288, 2011.

[Hatemi-J, 2004] Abdulnasser Hatemi-J. Multivariate tests
for autocorrelation in the stable and unstable var models.
Economic Modelling, 21(4):661–683, 2004.

[Hazan, 2008] Elad Hazan. Sparse approximate solutions to
semidefinite programs. In Latin American Symposium on
Theoretical Informatics, pages 306–316. Springer, 2008.

[Lee and Seung, 1999] Daniel D Lee and H Sebastian Seung.
Learning the parts of objects by non-negative matrix fac-
torization. Nature, 401(6755):788–791, 1999.

[Liberty, 2013] Edo Liberty. Simple and deterministic matrix
sketching. In SIGKDD, pages 581–588. ACM, 2013.

[Lin et al., 2017] Hao Lin, Hengshu Zhu, Yuan Zuo, Chen
Zhu, Junjie Wu, and Hui Xiong. Collaborative company
profiling: insights from an employees perspective. AAAI,
2017.

[Liu et al., 2011] Qi Liu, Yong Ge, Zhongmou Li, Enhong
Chen, and Hui Xiong. Personalized travel package rec-
ommendation. In Data Mining (ICDM), 2011 IEEE 11th
International Conference on, pages 407–416. IEEE, 2011.

[Luo et al., 2012] Xin Luo, Yunni Xia, and Qingsheng Zhu.
Incremental collaborative filtering recommender based on
regularized matrix factorization. Knowledge-Based Sys-
tems, 27:271–280, 2012.

[Matuszyk et al., 2015] Pawel Matuszyk, João Vinagre,
Myra Spiliopoulou, Alı́pio Mário Jorge, and João Gama.
Forgetting methods for incremental matrix factorization in
recommender systems. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing, pages 947–953.
ACM, 2015.

[Rendle and Schmidt-Thieme, 2008] Steffen Rendle and
Lars Schmidt-Thieme. Online-updating regularized kernel
matrix factorization models for large-scale recommender
systems. In RecSys, pages 251–258. ACM, 2008.

[Salakhutdinov and Mnih, 2008] Ruslan Salakhutdinov and
Andriy Mnih. Bayesian probabilistic matrix factorization
using markov chain monte carlo. In ICML, pages 880–887.
ACM, 2008.

[Sarwar et al., 2002] Badrul Sarwar, George Karypis, Joseph
Konstan, and John Riedl. Incremental singular value de-
composition algorithms for highly scalable recommender
systems. In Fifth International Conference on Computer
and Information Science, pages 27–28. Citeseer, 2002.

[Scott Hacker and Hatemi-J, 2008] R Scott Hacker and Ab-
dulnasser Hatemi-J. Optimal lag-length choice in stable

and unstable var models under situations of homoscedas-
ticity and arch. Journal of Applied Statistics, 35(6):601–
615, 2008.

[Song et al., 2015] Qiang Song, Jian Cheng, and Hanqing
Lu. Incremental matrix factorization via feature space re-
learning for recommender system. In RecSys, pages 277–
280. ACM, 2015.

[Vinagre et al., 2014] João Vinagre, Alı́pio Mário Jorge, and
João Gama. Fast incremental matrix factorization for rec-
ommendation with positive-only feedback. In Internation-
al Conference on User Modeling, Adaptation, and Person-
alization, pages 459–470. Springer, 2014.

[Wang et al., 2011] Fei Wang, Hanghang Tong, and Ching-
Yung Lin. Towards evolutionary nonnegative matrix fac-
torization. In AAAI, volume 11, pages 501–506, 2011.

[Wu et al., 2012] Le Wu, Enhong Chen, Qi Liu, Linli X-
u, Tengfei Bao, and Lei Zhang. Leveraging tagging for
neighborhood-aware probabilistic matrix factorization. In
CIKM, pages 1854–1858. ACM, 2012.

[Wu et al., 2017] Le Wu, Yong Ge, Qi Liu, Enhong Chen,
Richang Hong, Junping Du, and Meng Wang. Modeling
the evolution of users preferences and social links in social
networking services. IEEE Transactions on Knowledge
and Data Engineering, 29(6):1240–1253, 2017.

[Zeng et al., 2015] Guangxiang Zeng, Hengshu Zhu, Qi Liu,
Ping Luo, Enhong Chen, and Tong Zhang. Matrix factor-
ization with scale-invariant parameters. In IJCAI, pages
4017–4024. AAAI Press, 2015.

[Zhu et al., 2015] Hengshu Zhu, Enhong Chen, Hui Xiong,
Kuifei Yu, Huanhuan Cao, and Jilei Tian. Mining mo-
bile user preferences for personalized context-aware rec-
ommendation. ACM Transactions on Intelligent Systems
and Technology (TIST), 5(4):58, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1908

