
Supervised Deep Features for Software Functional Clone Detection by Exploiting
Lexical and Syntactical Information in Source Code ∗

Hui-Hui Wei and Ming Li
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization
Nanjing 210023, China

{weihh, lim}@lamda.nju.edu.cn

Abstract
Software clone detection, aiming at identifying out
code fragments with similar functionalities, has
played an important role in software maintenance
and evolution. Many clone detection approaches
have been proposed. However, most of them rep-
resent source codes with hand-crafted features us-
ing lexical or syntactical information, or unsuper-
vised deep features, which makes it difficult to de-
tect the functional clone pairs, i.e., pieces of codes
with similar functionality but differing in both syn-
tactical and lexical level. In this paper, we ad-
dress the software functional clone detection prob-
lem by learning supervised deep features. We for-
mulate the clone detection as a supervised learning
to hash problem and propose an end-to-end deep
feature learning framework called CDLH for func-
tional clone detection. Such framework learns hash
codes by exploiting the lexical and syntactical in-
formation for fast computation of functional sim-
ilarity between code fragments. Experiments on
software clone detection benchmarks indicate that
the CDLH approach is effective and outperform-
s the state-of-the-art approaches in software func-
tional clone detection.

1 Introduction
Software clones are introduced when developers reuse code
by the copy-paste-modify operations [Roy and Cordy, 2007],
or when a developer implements a functionality that is very
similar to an existing one [White et al., 2016]. Since software
clone may easily lead to the injection of software defects or
infringement of copyright [Baker, 1995; Brixtel et al., 2010],
software clone detection, aiming to identify similar code frag-
ments, has attracted significant attention.

Software clone can be categorized into four different types
based on different levels of similarity [Roy and Cordy, 2007]:
Type-1: identical code fragments in addition to variations in
comments and layout; Type-2: apart from Type-1 clones, i-
dentical code fragments except for different identifier names
and literal values; Type-3: apart from Type-1 and -2 clones,
∗This research was supported by NSFC (61422304, 61272217).

syntactically similar code that differ at the statement level.
The code fragments have statements added, modified and/or
removed with respect to each other; Type-4: syntactically
dissimilar code fragments that implement the same function-
ality. Among these four types of clones, effectively detect-
ing Type-4 clones (also known as functional clones) is most
challenging since the implementation of the same functional-
ity may be quite different (e.g., summation implemented with
for-loop and recursion) and it would be difficult to measure
the functional similarity simply based on the appearance of
the code fragments.

Many methods have been proposed to detect software
clones. The key idea is to hand-craft certain similarity be-
tween two code fragments by exploiting either lexical infor-
mation or syntactical information of the codes. NICAD [Roy
and Cordy, 2008] applies slight transformations to code and
measures similarity by comparing sequences of text. CCFind-
erX [Kamiya et al., 2002] and SourcererCC [Sajnani et al.,
2016] treat source codes as bags of tokens and compare sub-
sequences to detect clones. Deckard [Jiang et al., 2007] in-
troduces AST (Abstract Syntax Tree) to measure the structure
similarity of two code fragments. NICAD, SourcererCC and
CCFinderX are typical lexicon-based approaches which on-
ly consider the similarity in lexical level of code fragments
and ignore the syntactical information. Thus, these method-
s may be able to successfully detect the lexical clones (e.g.,
Type-1 and Type-2) and would be ineffective for detecting
Type-3 and Type-4 clones in most cases. On the other hand,
Deckard is a typical syntax-based approach which uses struc-
ture information of software while the lexicon information of
the code has not been taken into consideration. Although the
syntactical information may be helpful in detecting Type-3
clones, it may still not be effective in detecting Type-4 clones.
All these methods exhibit their incapability in detecting the
Type-4 functional clones, while Type-4 clones are much more
than the other types of clones (e.g., more than 98% in Big-
CloneBench dataset as shown in Table 3) in practice. In or-
der to detect most of the clones, detecting the Type-4 clones
should be explicitly considered.

Intuitively, the functional similarity could be measured if
the functional behaviors of the code fragments can be care-
fully modeled. To achieve this goal, latent features that char-
acterizing the functionality of the code could be learned by
simultaneously considering both the lexical information and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3034

syntactical structures of code fragments. Recently, autoen-
coder [Socher et al., 2011] has been applied to learn latent
features for source codes [White et al., 2016]. Since autoen-
coder works in an unsupervised way, although this method
may leverage the lexical and syntactical information to learn
semantical latent features, the goal of feature learning is to
reach an informative and compact representation of code
fragments rather than identify the functional similarity be-
tween code fragments. With the explicit guidance for func-
tional similarity, the similar code fragments based on such
representations may not similar in their functions. There-
fore, to learn latent representations in the purpose of captur-
ing the similarities in terms of functional behaviors of code
fragments, the feature learning should be conducted in a su-
pervised manner, where the similarity in functional behaviors
is used as supervision to bias the feature learning.

In this paper, we address software functional clone detec-
tion, i.e., Type-4 clone detection, by learning supervised deep
features. The basic idea is to exploit deep learning method-
s to extract deep features automatically, meanwhile use the
similarity in functional behaviors as the supervised informa-
tion to guide the deep feature learning process. Besides, we
use learning to hash [Kong and Li, 2012] to further transfor-
m the real-valued representations to binary hash codes in the
purpose of improving the detection efficiency and saving s-
torage space. Specifically, we formulate the clone detection
problem as a supervised deep feature learning problem vi-
a pairwise labels where clone pairs are regarded as positive
examples and non-clone pairs are negative pairs. We pro-
pose an end-to-end deep feature learning framework for clone
detection, namely CDLH (Clone Detection with Learning to
Hash), which simultaneously learn hash functions and rep-
resentations of code fragments via AST-based LSTM (Long
Short-Term Memory) to take into account both the lexical and
syntactical aspects of source codes. Experimental results on
software clone detection benchmarks indicate that CDLD is
effective and outperforms the state-of-the-art approach in de-
tecting the functional clones of code fragments.

The contribution of this paper lies in three folds:

• We formulate clone detection as a supervised deep learn-
ing problem by introducing pairwise labels, which can
effectively solve Type-4 clone detection, as well as the
other types of clone. To the best of our knowledge, no
previous methods adopt similar formulation of the prob-
lem and can achieve similar performance as our method.

• We propose CDLH, an end-to-end deep feature learning
framework which simultaneously learns representations
of code fragments and parameters of hash functions. The
learned binary representation enables a fast computation
of the similarity comparison of the code fragments and
a low cost of storage space .

The rest of the paper is organized as follows: Section 2
presents the problem definition. Section 3 introduces the pro-
posed approach CDLH. Section 4 reports the experimental
results. Finally, Section 5 concludes the paper.

Figure 1: The overall architecture of CDLH.

2 Problem Definition
Given n code fragments {C1, · · · ,Cn} where Ci is the i-th
raw code fragment, and pairwise labels to indicate whether
two code fragments belong to a clone pair or not: yi,j = 1
if (Ci, Cj) is a clone pair, yi,j =−1 if (Ci, Cj) is not a clone
pair, and yi,j=0 if their relation is undefined, then the training
set is represented by a set of triplets D = {(Ci,Cj ,yi,j)|i, j ∈
[n], i < j}, where [n] = {1, 2, · · · , n}, and our goal is to learn
a function Φ which maps any pairs of raw code fragments to
{−1, 1} to decide whether they belong to a clone pair.

Specifically, we simultaneously learn the non-linear rep-
resentation mapping function φ for the code fragment rep-
resentation (i.e., zi = φ(Ci), ∀i ∈ [n] transforming raw
code fragments {Ci}n to representations {zi}n) and a hash
function ψ : Rd → {−1, 1}m mapping the d dimension-
al representation into the Hamming space (i.e. ψ(zi) =
[h1(zi), h2(zi), . . . , hm(zi)], ∀i ∈ [n] encoding {zi}n into
binary hash codes {ai}n), so that the Hamming distance be-
tween the hash codes of two clone pairs can be as small as
possible, and the distance between the hash codes of none-
clone pairs can be as large as possible. Given a pair of hash
codes (ai,aj), we apply a common function g(ai,aj) =
I
(∑m

k=1 1/4 ∗ (ai,k − aj,k)
2 ≤ thr

)
to decide whether they

belong to a clone pair 1, where I(.) is the indicator function
which returns 1 if the condition is satisfied and returns -1 oth-
erwise. Then we have Φ(Ci,Cj) = g(ψ(φ(Ci)), ψ(φ(Cj))).

3 The Proposed Approach: CDLH
In this section, we present our proposed approach CDLH,
which is an end-to-end learning approach that unifies the rep-
resentation extraction layer and hashing layer into an integra-
tion. Figure 1 summarizes the overall architecture of CDLH.

3.1 The General Framework
As shown in Figure 1, CDLH mainly contains two parts: rep-
resentation extraction layer and hashing layer. The inputs of
CDLH are raw code fragments. CDLH first transforms them

1Usually, the threshold thr is set as 2.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3035

(a) Traditional LSTM for statement a=b+c; (b) AST-based LSTM for statement a=b+c;

Figure 2: Comparison between traditional LSTM and AST-based LSTM.

into ASTs, then uses AST-based LSTM to obtain the real-
valued representation for each code fragment (i.e., represen-
tation extraction layer). After that, CDLH tries to learn hash
functions to encode those representations into binary hash
codes (i.e., hashing layer), so that code fragments belonging
to a clone pair can be close to each other in terms of hamming
distance, otherwise they should be far away. These two parts
are integrated into one architecture, learning to map raw code
fragments to pairwise labels.

Specifically, we try to simultaneously learn the represen-
tation mapping φ and the hash function ψ. In order to force
the hash codes for clone pairs to be close to each other, and
those for none-clone pairs to be far away, similar to [Lin et
al., 2014] we define the optimization problem as follows:

min
W,φ

n∑
i=1

n∑
j=1

|yi,j |

[
yi,j −

1

m

m∑
k=1

hk (φ(Ci))hk (φ(Cj))

]2
, (1)

where hk (φ(Ci)) = sign(w>k φ(Ci) + bk), bk is a bias term,
W = {w1, · · · ,wm, b1, · · · , bm}.

In order to learn the representation mapping function φ
which incorporates both the lexical and syntactical informa-
tion of source codes, we design AST-based LSTM, which will
be introduced in the next subsection. For parameter learning,
we use AdaDelta [Zeiler, 2012] for optimization.

3.2 Representation Extraction with AST-based
LSTM

In this section, we present AST-based LSTM to learn the rep-
resentation mapping function φ, which can incorporate the
lexical and syntactical information of source codes, since it
leverages the AST to capture structure information of code
fragments and LSTM to extract the semantic information car-

ried by lexical tokens of source codes. An illustration of AST-
based LSTM is shown in Figure 2(b).

AST extracts the syntactic information (or structure) of a
code fragment, which will much facilitate software clone de-
tection. For example, given two simple statements int 1 =
int 2 + int 3; and float 1=float 2-float 3;
// a simple subtraction operation, they
are quite different as two lexical sequences. However,
they share the same AST structure. Actually, these two
expressions is a Type-2 clone pair, and through comparing
their ASTs this conclusion can be draw correctly. Besides,
from the definition of Type-3 clone, we can expect that using
AST is also very helpful, since syntactically similar codes
can be detected by comparing their ASTs even with different
statements.

Before introducing AST-based LSTM, we first briefly in-
troduce the traditional LSTM [Zaremba and Sutskever, 2014].
The lower part of Figure 2(a) shows how traditional LSTM
processes expression a = b + c;. It treats the expression
as a chain structure and extracts the representation in lexical
level. The upper part of Figure 2(a) shows the detailed struc-
ture of a single traditional LSTM unit. It can be observed
that each unit contains a forget gate ft which is the weight of
remembering old information, an input gate it which is the
weight of acquiring new information, a memory cell ct which
records the cell state vector, an output gate ot which is the
weight of outputing memory cell, and a hidden state rt which
is the representation for tokens seen till now.

Then we apply LSTM units on AST structure. The lower
part of Figure 2(b) presents AST-based LSTM for the same
expression as that in Figure 2(a). Unlike traditional LSTM
which processes the expression in a sequential way, AST-
based LSTM processes the expression following the AST

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3036

structure. For example, in Figure 2(b) AST-based LSTM
firstly processes subexpression ‘b+c’ and obtains r3, then us-
es r3 and r4 to obtain r5, which is also the representation
for the expression ‘a = b + c;’. The upper part of Figure
2(b) shows the detailed structure of an AST-based LSTM u-
nit, in which the differences from the traditional LSTM unit
are emphasized with orange color, i.e., the addition of cell s-
tate (ct−2) and hidden state (rt−2) of another previous unit,
together with the forget gate (ft2) for it. Similar to tradition-
al LSTM unit, each AST-based LSTM unit also contains an
input gate, a memory cell and an output gate, whereas differ-
ent from standard LSTM unit which only has one forget gate
for its previous unit, an AST-based LSTM unit contains mul-
tiple forget gates (i.e., each for one of its children). Similar
to [Tai et al., 2015], an AST-based LSTM unit is updated as
following:

i = σ(Wix +
L∑

l=1

Uilrl + bi),

fl = σ(Wfx + Uflrl + bf), l = 1, 2, . . . , L

o = σ(Wox +

L∑
l=1

Uolrl + bo),

u = tanh(Wux +
L∑

l=1

Uulrl + bu),

c = i� u +
L∑

l=1

fl � cl,

r = o� tanh(c),

(2)

where x is the input word embedding of the corresponding
token, L is the number of children, fl (l = 1, 2, . . . , L) are
L forget gates for children of the AST node, l is index num-
ber for its children, Wi,Wf ,Wo,Wu, Uil, Ufl, Uol, Uul are
weight matrices, bi, bf , bo, bu are bias vectors, σ is the logis-
tic sigmoid function and � is element-wise multiplication.

Notice that the number of children L varies for differ-
ent nodes of different ASTs, which may cause problem in
parameter-sharing. To facilitate subsequent procedure, we
transform ASTs to binary trees whose nodes only contain 2
or 0 children. The process contains two steps: 1) split nodes
with more than 2 children, and generate a new right child to-
gether with the old left child as its children, and then put all
children except the leftmost as the children of this new node.
Repeat this operation in a top-down way until only nodes with
0, 1, 2 children left; 2) combine nodes with 1 child with its
child. Now only nodes with 0 or 2 children remain and the
AST could be transformed into a binary tree.

For implementation, we compute the hidden states and cell
states for each AST-based LSTM unit recursively in a bottom-
up way. Then the output from the AST root (e.g., r5 in Figure
2(b)) is the representation for the code fragment.

4 Experiment
In this section we conduct experiments on real-world datasets
and report the results. Specifically, we first compare CDLH

Table 1: Overall information for datasets.

Datasets Language # code
fragments

% clone
pair

AVG
length

BigCloneBench JAVA 9,134 13.97 28.60
OJClone C 7,500 0.07 35.25

with state-of-the-art clone detection approaches, then we val-
idate the effectiveness of representations extracted by CDLH
using AST-based LSTM. All our experiments for CDLH are
complemented on a NVIDIA K80 GPU server.

4.1 Experimental Setting
We conduct our experiments on two real-world datasets cov-
ering different programming languages: a widely used bench-
mark dataset for clone detection BigCloneBench [Svajlenko
et al., 2014] (with JAVA code fragments), and OJClone from
a pedagogical programming open judge (OJ) system2 (with C
code fragments).

Specifically, BigCloneBench consists of projects
from 25,000 systems, covers 10 functionalities includ-
ing 6,000,000 true clone pairs and 260,000 false clone pairs.
Note that all those clone types are given by domain experts.
We discard code fragments without any tagged true and false
clone pairs, and use the remaining 9,134 code fragments.

OJClone contains 104 programming problems together
with different source codes students submit for each problem
[Mou et al., 2016]. In OJClone, two different source codes
solving the same programming problem are considered as a
clone pair, since they realize the same functionality, and at
least belong to Type-3 clone. In the experiment, we select the
first 15 programming problems, and for each problem, there
are 500 source code files. Note that two source code frag-
ments for the same problem belong to a clone pair, and those
for different problems are none clone pairs. For OJClone, we
do not have experts to distinguish different clone types.

For BigCloneBench, a code fragment is a method, and for
OJClone, a code fragment is a file. In order to extract AST
structure, we use javalang3, a pure python library for work-
ing with Java source code, to parse JAVA codes to ASTs, and
apply pycparser4 to parse C files to ASTs. To obtain word
embeddings for tokens of original code fragments, we use
word2vec5 to generate word embeddings of length 100 for
both datasets. For the length of hash code, we perform exper-
iments with different length: {8, 16, · · · , 48} 6. The overall
information for datasets is listed in Table 1.

4.2 Comparison with Clone Detection Approaches
To evaluate the performance of CDLH, we compare CDL-
H with several state-of-the-art clone detection approaches as
follows:

2http://programming.grids.cn
3https://github.com/c2nes/javalang
4https://pypi.python.org/pypi/pycparser/
5http://radimrehurek.com/gensim/models/word2vec.html
6Due to the limited space, the experimental results exhibited in

the following sections are with 32 bit hash code. For other length,
similar results can be concluded.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3037

Table 2: Precision, recall and F1 comparison of all clone detection
approaches.

Approaches BigCloneBench OJClone
P R F1 P R F1

Deckard 0.93 0.02 0.03 0.99 0.05 0.10
DLC 0.95 0.01 0.01 0.71 0.00 0.00
SourcererCC 0.88 0.02 0.03 0.07 0.74 0.14
CDLH 0.92 0.74 0.82 0.47 0.73 0.57

• Deckard [Jiang et al., 2007], a popular syntactical-based
clone detection tool.
• Approach proposed by [White et al., 2016], which is

the latest approach extracting unsupervised deep fea-
tures using autoencoder. Later we will name it DLC for
short.
• SourcererCC [Sajnani et al., 2016], a state-of-the-art

lexical-based clone detector.
We compare the CDLH with these clone detection ap-

proaches in terms of: precision (P), recall (R), F1 value, and
F1 with respect to various clone types. Since apart from the
overall detection performance measured by precision, recall
and F1 value, we also wish to know the performance across
various clone types, especially for Type-4 clone.

Table 2 shows the values of overall precision, recall and
F1. We can see that CDLH significantly outperforms other
clone detection methods in terms of F1 value. In general,
it achieves much higher recall than other baselines, although
precision may be sacrificed a little. This observation is mainly
due to that CDLH is able to deal with Type-4 clone, and oth-
er baselines almost fail to detect any Type-4 clone, whereas
Type-4 clone takes up more than 98% over all clone types ac-
cording to Table 3. Such result indicate that it is beneficial to
leverage the supervised information to learn suitable (laten-
t) feature vectors of code fragments for the clone detection
tasks. Other clone detection approaches get poor F1 values
on BigCloneBench, due to their poor F1 values with respec-
t to Type-4 clone which are nearly 0 according to Table 4.
Among which DLC is an approach using deep learning tech-
niques, meaning that using latent features extracted by deep
learning techniques also fails to detect Type-4 clone without
the guidance of supervised information.

Without detailed clone types, it can be inferred that most
clone pairs of OJClone belong to Type-3 or Type-4 clone, s-
ince two submitted files for OJ systems are hardly identical
or only differ in identifier names, variable values, etc. The
compared clone detection methods also achieve poor perfor-
mance on OJClone. For Deckard and DLC, the reason is sim-
ilar to that on dataset BigCloneBench. SourcererCC obtains
high recall on OJClone, while relatively low precision, since
it treats many code fragment pairs as clone pairs, which leads
to many false positives. This happens because OJClone con-
sists of code written by students, the name of variables and
comments are less normalized, even though two code frag-
ments contains many overlap tokens such as a, b, i, j, it is
also unsuitable to treat them as clones.

As only BigCloneBench is tagged with various clone types,
we measure F1 value with respect to various clone types only

Table 3: Number percentage of various clone types for Big-
CloneBench.

Type-1 Type-2 Strong Type-3 Mid Type-3 Type-4
0.005 0.001 0.002 0.010 0.982

Table 4: Comparison of F1 values with respect to various clone types
on BigCloneBench, the best performed across each clone type is
emphasized with boldface.

Clone types Deckard DLC SourcererCC CDLH
Type-1 0.73 1.00 0.94 1.00
Type-2 0.71 0.97 0.93 1.00

Strong Type-3 0.54 0.60 0.77 0.94
Mid Type-3 0.21 0.03 0.10 0.88

Type-4 0.02 0.00 0.00 0.81

on BigCloneBench. In [Svajlenko et al., 2014], due to the am-
biguity in Type-3 and Type-4 clones, the author divide clone
types for BigCloneBench into 5 categories: Type-1, Type-2,
Strong Type-3 with similarity range in [0.7, 1), Mid Type-3 in
[0.5, 0.7), and Type-4 in [0.5, 0). The percentage of various
clone types in BigCloneBench is exhibited in Table 3, we can
see that Type-4 clone pairs take up 98% over all clone types,
Mid Type-3 take up 1% and left less than 1% for other clone
types. It shows the importance of Type-4 clone again: most
of clones are Type-4 clone. Table 4 shows the F1 values with
respect to these 5 clone types. It can be observed that CDLH
can find over 80% Type-4 clones, whereas the F1 values for
other baselines on Type-4 clone detection are nearly 0, which
strongly supports our previous statement. For other types,
CDLH also performs well, which validates the effectiveness
of our approach.

4.3 The Effectiveness of Representation Extraction
In previous section we validate the superiority of CDLH on
Type-4 clone detection by using supervised information. In
this section we further validate the influence of representa-
tion extraction layer of CDLH, i.e., the effectiveness of AST-
based LSTM by comparing other representation extraction
approaches for programming language. For this purpose we
use DLC, a state-of-the-art clone detection approach which
extracts unsupervised deep features, P-CNN derived from
subnetwork of NP-CNN [Huo et al., 2016], a state-of-the-
art deep method which handles programming languages, and
a well-known sentence embedding tool Doc2Vec7, together
with CDLH to extract representations for code fragments.

To validate the effectiveness of representations extracted
by CDLH, we fix the hashing layer of CDLH and compare
following approaches with CDLH:

• representations extracted by DLC, and hashing layer of
CDLH, we name it DLC+H for short;

• representations extracted by P-CNN, and hashing layer
of CDLH, we name it P-CNN+H in the following;

• representations extracted by Doc2Vec, and hashing layer
of CDLH, we name it Doc2Vec+H for short;

7http://radimrehurek.com/gensim/models/doc2vec.html

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3038

Table 5: Precision, recall and F1 comparison of all.

Approaches BigCloneBench OJClone
P R F1 P R F1

CDLH 0.92 0.74 0.82 0.47 0.73 0.57
DLC+H 0.24 0.60 0.35 0.07 0.01 0.02
P-CNN+H 0.20 0.87 0.33 0.07 0.04 0.05
Doc2Vec+H 0.25 0.96 0.39 0.07 0.03 0.05
CDLH+LSH 0.64 0.45 0.53 0.25 0.72 0.37
DLC+LSH 0.14 0.68 0.24 0.07 0.33 0.11
P-CNN+LSH 0.13 0.00 0.01 0.07 0.02 0.03
Doc2Vec+LSH 0.18 0.17 0.17 0.07 0.36 0.11

Table 6: Comparison of F1 values with respect to various clone
types for approaches using learning to hash techniques on Big-
CloneBench, the best performed across each clone type is empha-
sized with boldface.

Clone types CDLH DLC
+H

P-CNN
+H

Doc2Vec
+H

Type-1 1.00 1.00 0.95 1.00
Type-2 1.00 0.39 0.33 0.40

Strong Type-3 0.94 0.32 0.82 0.40
Mid Type-3 0.88 0.32 0.75 0.40

Type-4 0.81 0.34 0.33 0.39

To eliminate the effect of learning to hash has on represen-
tations extracted by CDLH, and to show that without learn-
ing to hash CDLH is still a good way to extract binary hash
codes for programming language, we use unsupervised data-
independent hashing LSH instead of learning to hash method
used by CDLH, and compare following methods:

• representations extracted by CDLH, and LSH, we name
it CDLH+LSH;

• representations extracted by DLC, and LSH, we name it
DLC+LSH;

• representations extracted by P-CNN, and LSH, we name
it P-CNN+LSH;

• representations extracted by Doc2Vec, and LSH, we
name it Doc2Vec+LSH;

We treat above approaches as two groups according to
hashing techniques they used.

Table 5 shows the precision, recall and F1 comparison of
above approaches. We can see that CDLH+H and CDL-
H+LSH achieve highest F1 values in each group, which vali-
dates that representations extracted by AST-based LSTM can
obtain good performance despite of the hashing techniques
used. Approaches using representations extracted by DLC,
P-CNN and Doc2Vec can either obtain low precision or low
recall no matter using learning to hash technique or not, sug-
gesting that representations extracted by them are less dis-
tinguished compared with representations extracted by AST-
based LSTM. Approaches using LSH rather than learning to
hash can obtain relatively inferior performance. Since LSH is
an unsupervised data-independent hashing method, it can not
learn task-specific pattern from training data and lack of guid-

Table 7: Comparison of F1 values with respect to various clone types
for approaches using LSH on BigCloneBench, the best performed
across each clone type is emphasized with boldface.

Clone types CDLH
+LSH

DLC
+LSH

P-CNN
+LSH

Doc2Vec
+LSH

Type-1 1.00 1.00 0.00 0.73
Type-2 1.00 0.25 0.03 0.28

Strong Type-3 0.77 0.01 0.01 0.27
Mid Type-3 0.69 0.23 0.01 0.25

Type-4 0.52 0.23 0.01 0.16

Figure 3: The influence of hash code length on CDLH.

ance of supervised information. Even in this case, the rep-
resentations extracted by CDLH still outperform other rep-
resentations, which confirms the effectiveness of representa-
tions extracted by CDLH.

F1 values with respect to various clone types for approach-
es using learning to hash techniques and LSH are listed in Ta-
ble 6 and Table 7 respectively. As observed, CDLH and CDL-
H+LSH outperform other approaches in each group, they ob-
tain high F1 values for Type-4 clone, together with other
clone types. This further validates the effectiveness of the
representations extraction layer of CDLH.

4.4 Sensitivity to Hyper-Parameter
In previous experimental settings, we use code length 32 for
learned binary hash codes. Now we study the influence of
different length of hash code on clone detection performance
of CDLH, measured by F1 value. Figure 3 shows the F1 val-
ues of CDLH with respect to different code lengths, which
ranges from 8 to 48. We can find that the overall performance
of CDLH is not sensitive to hash code length in this range.

5 Conclusion
In this paper, we address the software functional clone de-
tection problem by learning supervised deep features. We
formulate the clone detection as a supervised learning to
hash problem and propose an end-to-end deep feature learn-
ing framework called CDLH for functional clone detection,
where an AST-based LSTM is used to exploit the lexical and
syntactical information and the supervision on the function-
al similarity is used to guide the feature learning. Experi-
ments on software clone detection benchmarks indicate that
the CDLH approach is effective and outperforms the state-of-
the-art approaches in software functional clone detection.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3039

References
[Baker, 1995] Brenda S. Baker. On finding duplication and

near-duplication in large software systems. In Proceedings
of the 2nd Working Conference on Reverse Engineering,
pages 86–95, Toronto, Canada, 1995.

[Baxter et al., 1998] Ira D. Baxter, Andrew Yahin, Leonar-
do Mendonça de Moura, Marcelo Sant’Anna, and Lorraine
Bier. Clone detection using abstract syntax trees. In Pro-
ceedings of the 1998 International Conference on Software
Maintenance, pages 368–377, Bethesda, Maryland, USA,
1998.

[Brixtel et al., 2010] Romain Brixtel, Mathieu Fontaine,
Boris Lesner, Cyril Bazin, and Romain Robbes.
Language-independent clone detection applied to plagia-
rism detection. In Proceedings of the 10th IEEE Interna-
tional Working Conference on Source Code Analysis and
Manipulation, pages 77–86, Timisoara, Romania, 2010.

[Huo et al., 2016] Xuan Huo, Ming Li, and Zhi-Hua Zhou.
Learning unified features from natural and programming
languages for locating buggy source code. In Proceedings
of the 25th International Joint Conference on Artificial In-
telligence, pages 1606–1612, New York, NY, USA, 2016.

[Jiang et al., 2007] Lingxiao Jiang, Ghassan Misherghi,
Zhendong Su, and Stéphane Glondu. DECKARD: scal-
able and accurate tree-based detection of code clones. In
Proceedings of the 29th International Conference on Soft-
ware Engineering, pages 96–105, Minneapolis, MN, USA,
2007.

[Kamiya et al., 2002] Toshihiro Kamiya, Shinji Kusumoto,
and Katsuro Inoue. Ccfinder: A multilinguistic token-
based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering,
28(7):654–670, 2002.

[Kong and Li, 2012] Weihao Kong and Wu-Jun Li. Isotropic
hashing. In Proceedings of the 26th Annual Conference
on Neural Information Processing Systems, pages 1655–
1663, Lake Tahoe, Nevada, USA, 2012.

[Lin et al., 2014] Guosheng Lin, Chunhua Shen, Qinfeng
Shi, Anton van den Hengel, and David Suter. Fast super-
vised hashing with decision trees for high-dimensional da-
ta. In Proceedings of the 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1971–1978,
Columbus, OH, USA, 2014.

[Mou et al., 2016] Lili Mou, Ge Li, Lu Zhang, Tao Wang,
and Zhi Jin. Convolutional neural networks over tree struc-
tures for programming language processing. In Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence,
pages 1287–1293, Phoenix, Arizona, USA, 2016.

[Roy and Cordy, 2007] Chanchal Kumar Roy and James R
Cordy. A survey on software clone detection research.
Queens School of Computing TR, 541(115):64–68, 2007.

[Roy and Cordy, 2008] Chanchal Kumar Roy and James R.
Cordy. NICAD: accurate detection of near-miss intention-
al clones using flexible pretty-printing and code normal-
ization. In Proceedings of the 16th IEEE International

Conference on Program Comprehension, pages 172–181,
Amsterdam, The Netherlands, 2008.

[Sajnani et al., 2016] Hitesh Sajnani, Vaibhav Saini, Jeffrey
Svajlenko, Chanchal K. Roy, and Cristina V. Lopes.
Sourcerercc: scaling code clone detection to big-code. In
Proceedings of the 38th International Conference on Soft-
ware Engineering, pages 1157–1168, Austin, TX, USA,
2016.

[Socher et al., 2011] Richard Socher, Jeffrey Pennington,
Eric H. Huang, Andrew Y. Ng, and Christopher D. Man-
ning. Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language
Processing, pages 151–161, Edinburgh, UK, 2011.

[Svajlenko et al., 2014] Jeffrey Svajlenko, Judith F. Islam,
Iman Keivanloo, Chanchal Kumar Roy, and Moham-
mad Mamun Mia. Towards a big data curated bench-
mark of inter-project code clones. In Proceedings of the
30th IEEE International Conference on Software Mainte-
nance and Evolution, pages 476–480, Victoria, BC, Cana-
da, 2014.

[Tai et al., 2015] Kai Sheng Tai, Richard Socher, and
Christopher D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Language Pro-
cessing, pages 1556–1566, Beijing, China, 2015.

[White et al., 2016] Martin White, Michele Tufano, Christo-
pher Vendome, and Denys Poshyvanyk. Deep learning
code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automat-
ed Software Engineering, pages 87–98, Singapore, 2016.

[Zaremba and Sutskever, 2014] Wojciech Zaremba and Ilya
Sutskever. Learning to execute. CoRR, abs/1410.4615,
2014.

[Zeiler, 2012] Matthew D. Zeiler. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701, 2012.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3040

