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Abstract

Alzheimer’s disease (AD) is a neurodegenerative
disorder with slow onset, which could result in the
deterioration of the duration of persistent neurolo-
gical dysfunction. How to identify the informative
longitudinal phenotypic neuroimaging markers and
predict cognitive measures are crucial to recognize
AD at early stage. Many existing models related
imaging measures to cognitive status using regres-
sion models, but they did not take full considera-
tion of the interaction between cognitive scores. In
this paper, we propose a robust low-rank structured
sparse regression method (RLSR) to address this is-
sue. The proposed model simultaneously selects ef-
fective features and learns the underlying structure
between cognitive scores by utilizing novel mixed
structured sparsity inducing norms and low-rank
approximation. In addition, an efficient algorithm
is derived to solve the proposed non-smooth ob-
jective function with proved convergence. Empi-
rical studies on cognitive data of the ADNI cohort
demonstrate the superior performance of the propo-
sed method.

1 Introduction

Alzheimer’s disease (AD), a common form of dementia, af-
fects nerve cells in areas of the brain responsible for memory,
cognition, language, and motor activity [Dailey, 2017]. By
linear extrapolation of estimates from 2006, the population
worldwide who have AD will increase to over 100 million
by 2050 [Thompson ef al., 2003; Moradi et al., 2015]. In
fact, researchers believe that early detection will be key to
preventing, slowing and stopping Alzheimer’s disease. Neu-
roimaging as a powerful tool for accurate identification and
understanding informative feature is necessary for early Alz-
heimer’s disease prognosis and diagnosis [Liu er al., 2015;
Nie et al., 2016]. Therefore, many machine learning met-
hods have been proposed to study neuroimaging measu-
res to detect pathology associated with AD and to predict
cognitive scores [Wang et al., 2011b; Huo et al., 2016;
Wang et al., 2016]. Among them, structural magnetic reso-
nance imaging (MRI) scans are one of the most extensively
used imaging modality in tracking AD progression.
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Figure 1: The sparse shrinkage patterns of matrix B imposed diffe-
rent structured sparsity-inducing norms: (a) l2,1-norm, (b) l2,1-norm
+ ly,1-norm, (c) l2,1-norm + /1 >-norm. Blue points represent the
non-zero weights and white points represent the zero weights. In
(b), the I1,1-norm suppresses the first feature selected by /2 1-norm.
In (c), l1,2-norm will keep at least one non-zero weight for this fea-
ture, leading to the stable feature selection results.

In the association study of selecting effective longitudi-
nal phenotypic markers to predict cognitive scores from ima-
ging features, the input usually consists of two matrices: the
imaging feature matrix X = [x1,---,X,] € R¥™ and the
corresponding cognitive score matrix Y = [y,, - ,y,]? €
R™ ™ where n is the number of samples, d is the number
of features and m is the number of different measures of a
certain cognitive performance.

A forthright method to identify informative imaging mar-
kers is to perform feature selection [Chang and Yang, 2016],
which has been demonstrated as a useful way to reflect the
correlation between cognitive measures after removing the
indistinctive neuroimaging markers. More recently, sparse
regularization model has been extensively utilized to learn
the structure of data and obtain effective feature in different
applications. The sparsity-inducing norm based feature se-
lection methods solve the convex optimization problems of
the form:

mBinﬁ(B;X)—i-)\Q(B) (1)

where L is a convex function and €2 can include one or more
non-smooth sparsity-inducing norms.

When 2 is the [;-norm, the [; shrinkage methods such
as LASSO identify informative longitudinal phenotypic mar-
kers in the brain that are related to pathological changes of
AD by imposing flat sparsity [Liu er al., 2014]. However,
the selected features distribute randomly among the whole
brain that can not be well explained. In predicting cognitive
scores task, we expect to select the most informative mar-
kers, which are important to all participants including AD,
mild cognitive impairment (MCI) and heathy control (HC).
To address this issue, group LASSO with a 5 ;-norm is used



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

to impose the structured sparsity on parameter matrix for
feature selection [Obozinski et al., 2010; Jie et al., 2015;
Yang et al., 2017; Chang et al., 2017]. It enforces the impor-
tant features to have non-zero weights cross all participants,
however many important features often are only discriminant
to partial classes, i.e. having large weights on these partici-
pants. Thus, such important features may be ignored by the
above methods.

On this account, Lee ef al. and Wang et al. proposed to add
one more [ 1-norm regularization term to achieve both struc-
tured and flat sparsity [Lee et al., 2010; Wang er al., 2011al.
However, because the [; ;-norm regularization term enforces
the flat sparsity and is prone to shrink the non-large values to
zeros, the non-zero weights of some important features may
also be forced to be zeros, i.e. some features selected by the
l,1-norm regularization term can be totally suppressed by the
l1,1-norm regularization term. As a result, many informative
longitudinal phenotypic markers are neglected during the fea-
ture selection procedure. Thus, more properly designed struc-
tured sparsity-inducing norms are desired in feature selection
research.

In this paper, we propose a robust low-rank structured
sparse regression method (RLSR) to simultaneously select
the important neuroimaging markers and learn the underlying
structure between cognitive measures. Our main contributi-
ons are three-fold: (1) The new mixed structured sparsity-
inducing norms are introduced to overcome the above over-
shrinkage drawback in the existing sparse learning based fe-
ature selection models. (2) The explicit rank-k low-rank ma-
trix fitting approach is used to extract the underlying inter-
relation structures between cognitive measures. (3) Because
our method leads to a highly non-smooth objective, we derive
an efficient algorithm to solve the new objective with proved
convergence. We validate our method on cognitive data of the
ADNI cohort and obtain promising results.

Notations. We summarize the notations used in this pa-
per. Matrices are written as uppercase letters and vectors are
written as bold lowercase letters. For matrix W = {w;;},
its ¢-th row, j-th column are denoted as w, w; respecti-
vely. The l,-norm of the vector v &€ R" is defined as

v, = -, |U¢\p)% for p > 0. The l5 1 -norm of matrix W
isdefined as ||W||21 = Z?:l |[w?||2 (in some related papers,
people also used the notation Iy /lz-norm). /; o-norm of ma-
trix W is defined as || W||; 2 = /32", ||wi|[2 and 1 ;-norm

of matrix W is defined as ||W|[, 1 = 3%, doimy lwig).

2 Robust Low-Rank Structured Sparse
Learning

The I 1-norm based objectives select the informative ima-
ging markers across all the cognitive scores with joint spar-
sity, i.e. each imaging marker has either small score or large
score for all the cognitive measures. However, for accurate
identification of effective imaging markers, we utilize parti-
cipants including AD, MCI and HC during deferent period.
Consequently, many features may be irrelevant to each other,
which could deteriorate the feature selection performance if
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we consider all the imaging markers as one group to do fea-
ture selection. On the other hand, as we discussed in the intro-
duction section, an extra [; ;-norm regularizer will suppress
too many non-zero values and lead unstable feature selection
results. For example, when we target to select top 20 featu-
res and adjust the trade-off parameter to let 5 ;-norm makes
about 20 features with relatively large weights, the added [ ;-
norm will dramatically shrink the weights such that only few
important features (much less than 20) can be selected. To
tackle this over-shrinkage problem, we add a convex squared
11 2-norm regularizer instead of [, ;-norm and solve:

min ||V — XTB||% + M||Bll21 + Al [Bll 2. @)

The typical loss functions are the least square loss and lo-
gistic loss. To improve the computational efficiency, we uti-
lize the least square loss in this paper to select informative
markers for ADNI data. Thus, our method can be applied to
both classification tasks (e.g. AD/MCI versus Normal Con-
trols (NC)) and regression tasks (e.g., estimation of clinical
cognitive scores). We perform the latter in this paper.

In Eq. (2), we proposed the novel mixed structured spar-
sity norms. The standard /5 ;-norm enforces the joint spar-
sity across all cognitive measures to select imaging markers.
The new [ >-norm uses [>-norm between markers, such that
at least one non-zero element in the rows of B selected by
l2,1-norm regularizer will be kept. Thus, we won’t lose the
discriminative imaging markers selected by the I3 ;-norm re-
gularization. At the same time, the I; o-norm imposes the
l1-norm between cognitive score weights of each marker to
shrink the weight values of uncorrelated or irrelevant cogni-
tive measures. For illustration purpose, in Fig. 1, we plot the
sparse shrinkage patterns of the matrix B using: (a) [ ;-norm
regularizer only, (b) I3 1- norm and [y ;-norm regularizers,
(c) l3,1-norm and [, »-norm regularizers. The [; ;-norm over-
shrinks the weights and removes the first feature selected by
l5,1-norm. The [; 2-norm suppress some weights with sup-
porting the results of I3 ;-norm, e.g. the first feature is still
kept in the list.

More important, with regard to this specific task that pre-
dicting AD progression, we hope to extract and utilize the
underlying interrelations between cognitive measures to en-
hance the accuracy of feature selection. In recent research [Ji
and Ye, 2009; Deng et al., 2015], the trace norm regulari-
zation has been used to seek the low-rank structured shared
common representations:

min [[Y — X7 B[7 + A|[B|.. 3)

However, there are two deficiencies: 1) the optimal low-rank
approximation is resulted by tediously tuning the parameter
A, which has no direct connection to the rank value; 2) the
feature selection isn’t enforced in this model.

To address the above problems, we consider the following
low-rank regression:

mBin lY — XTB||3 st. rank(B)=s < min(m,d), (4)
where m is the number of classes and d is the dimension of

features. Compared to the parameter A in Eq. (3), the para-
meter s is more feasible to be decided by users. Moreover, in
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order to select features and simultaneously keep the low-rank
matrix fitting, we propose the following model,

min [[Y = XTWPI[F 4+ Aa[[W |20 + Xl W[3 5

st. PPT =1

where W € R¥**, P € R**™ and s < min(m,d). The
product B = WP is a low-rank matrix with rank(B) <
s. Our new objective simultaneously learns the underlying
interrelation between cognitive measures by low-rank matrix
fitting and selects the informative neuroimaging markers by
mixed structured sparsity-inducing norms. We also consider
the real world data often have outliers and hence replace the
least square loss by the /3 ;-norm based loss function, which
imposes the /;-norm between data points to reduce the effect

of outliers. Our final objective is to solve:
min |[Y = X WPl + M [[W]l21 + Ao [W]

2
1,2

(6)
st. PP =1

The resulted objective has three non-smooth terms, such that

the optimization becomes difficult. To solve our new ob-

jective, we will derive an efficient algorithm in next section
with proved convergence.

3 Optimization
In this section, an efficient algorithm is proposed to tackle
Eq. (6), followed by the proof of its convergence.

3.1 Algorithm Derivation

We will alternatively and iteratively solve Eq. (6). To begin
with, we rewrite Eq. (6) as:

min Tr((Y — X"WP)"H(Y — X"WP))
W,P,H,D,Dy

HMTr(WTDW) + X2 Y wi Dgwy, st. PPT =T

k=1
@)
where W = [wy, wa, ..., w] € R¥**, Denote
E=Y - X"WP, 8)
then H € R™*"™ is a diagonal matrix and defined as:
1
H(i,i) = ———, ©))
0= afje
where e(Vi = 1,2,...,n) is the i-th row of matrix E in
Eq. (8). D € R?*4 is a diagonal matrix and defined as
D) = g Vi = 1,2, d (10)

2[[wl|2’
and Dj, € R%*% s also a diagonal matrix and defined as:
(w71
|wj]

The first step is to fix P, H, ﬁ, Dy, and to solve W. Thus,
we need solve the following subproblem:

Vk=1,2,..,8Yj =12 .d (1)

min Z —Qwak + WE(XHXT)wk + A1wkTﬁwk
Lt (12)

+ Aewp Dypwi,
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where zj, is the k-th column of the matrix X HY PT vk =
1,2,...,s. Then taking derivative of Eq. (12) w.r.t. wy and
setting it to zero, we get,

—2zp + 2(XHX)wi, 4+ 201 Dwi + 200 Dpwi, =0 (13)

wi, = (XHX" + 2D+ XoDy) 'z, (14)

The second step is to fix W, H, D, Dy, and to solve P. Be-
cause

Y = XTWP||2.
=Tr((Y = X"WP)'H(Y — X"WP))

=Tr(Y'HY) = 2Tr(YTHX"WP) + Tr(W  XHX"W).
(15)

Then the subproblem becomes:

max Tr(PY"HX"W) st. PPT =1 (16)

The solution to Eq. (16) can be obtained by the Theorem 1.
The third step is to fix W, P, and to solve H by Eq. (8) and
Eq. (9), solve D by Eq. (10), and solve Dj, by Eq. (11).

We repeat the above three steps iteratively, until the prede-
fined stopping criterion is satisfied. We summarize the whole
algorithm in Alg. 1.

The Step 2 in the iteration of Alg. 1 can be calculated by
linear equation system, which can be efficiently solved. Thus,
our algorithm can be applied in large-scale datasets.

Algorithm 1 The algorithm to solve Eq. (6)

Input:
1. The training data X € R*™ with label matrix Y € R™"*™
2. The regularization parameters A\; and A2, and the rank s.

Output:

1. The matrices W € R%*® and P € R®*™.

Initialization:

1. Sett = 0, initialize H® = Iy, DO = Igyq, DY =
Taxda,Vk = 1,...,s, randomly initialize P® ¢ R¥*™ with
pOpOT — [ g gexs,

Repeat:

1.  Calculate z,(f>, which is the k-th column of the matrix

XH®OYy p®T,

2. Calculate W® column by column by w'” = (XH®XT +
M DO 4 2D~ 15(0.

. Calculate M = YTHO XTWw®,

. Do SVD of M), M®) = y®x®y®T,

. Update P40 = v 1, 0)u® T

. Update E¢tD =y — xTw® ptt+D),

. Update H+V (4,4) = m,w =1,2,....n.
. Update D4+ (5, 5) = @ ¥ =12, d.
B L W S

- (t) y V) = L4, Q..

Jwtt |
ik

[V}

0 NN L B

9. Update Dy (j,7)

10. Update t = ¢t + 1.
Until Converge

3.2 Convergence Analysis

Theorem 1. The solution to the optimization problem
ma’XPTT(PM) s.t. PPT = 17 Wherep c Rsxm’ M €
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R™*S gnd s < m is
P*=VII,0UT (17)

where U and V are the SVD of M, M = UAV” and I is
the identify matrix, I € R**5. 0 € R3*X(m=5) s the matrix
with all zeros entries. And [®, V] is the matrix operation to
horizontally concatenate two matrices ® and V who have the
same number of rows.

Proof. We do SVD of M, M = UAVT, where U € R™*"™,
A e R™*S V € R%%5, Then, we have

Tr(PM) = Tr(PUAVT) = Tr(AVT PU)
¢ (18)
= Z AkkQkk
k=1

where Q = VT PU, Q € R**™. Note that s < m. Ay, and
gk are the k-th element in the diagonal of matrix A and @
respectively. Moreover,

QQT =vTpPUUTPTV =1, (19)

where I € R*** is the identity matrix. Thus, ¢i; < 1,

Vk,k =1,2,...,s. Therefore,

= Mekrk < > Mk, (20)
k=1 k

and when qir, = 1,Vk, k = 1,2,...,s, the equality holds.
In other words, T'r(PM) reaches the maximum when @) =
[1,0]. Recall that @ = VT PU, thus the optimal solution to
Eq. (16) is Eq. (17). O

The convergence of the Alg. 1 is summarized in the follo-
wing theorem:

Theorem 2. The Alg. 1 will monotonically decrease the ob-
Jective of the problem in Eq. (6) in each iteration and con-
verge to the local optimum solution to the problem.

Proof. On one hand, denote the updated P by P. Because of
Theorem 1, when we fix W, H, D and Dy, we get:

Tr((Y = XTWP)TH(Y — XTWP))

+MTr(WTDW) + A2 Y wi Dpw
=t @1

<Tr((Y —= XTWP)TH(Y - XTWP))

+ AlTT(WTDW) + Ao ZWZDka
k=1

After plugging the definition of H by Eq. (9), we can
obtain,

le ||§

+)\12WkDWk+)\2 Zwk Dywy,
k=1 k=1

+)\12kawk+/\2 Zwk Dywy,
k=1 k=1

) (22)
2
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At the same time, beginning with (||&%||]2 — [|e?||2)? > 0,
we can get

- &'l - [le’l13

> (&2 - 2|e <20 el ET

i=1

Therefore, adding Eq. (22) and Eq. (23) together, we get

||Y — XTWp”Q’l + M Zw,{ﬁwk + Ag ngDkwk
k=1 k=1

<Y = XTWP|laq+ M Y wiDwi+ X2 Y wiDpwy,
k=1 k=1
] (24)
On the other hand, denote the updated W by W, when we fix
P, H. According to the step 2 in the Repeat part in Alg. 1,
we have:

S
Tr(YTHY) + ) (-22f Wy, + Wi (XHX )W,
k=1

+ MWL DWy, + AWl Dy
1Wi k 2W i Uk k) (25)

<Tr(YTHY) + ) (—2z{ wi + Wl (XHX")w},
k=1
+ Alwgf)wk + /\gwkT.Dk.wk)
where zy, is the k-th column of X HY PT.
We plug in the definition of D and Dy, by Eq. (10) and
Eq. (11) respectively into Eq. (25), and have:
Tr(YTHY) + Y (~22] Wy + Wi (XHXT)Wy)
k=1

+>‘122 J||

k=1j5=1

s d
+)‘QZZ HW ||1 ~2
k=1j5=1

(—2z;‘5wk +wi (XHXT)w

. (26)

<Tr(YTHY) +
k=

+)\1222H

k=1 j=1

k=1j=1

Similarly, beginning with (||W?||2 — [|W?|]2)? > 0, we get
2
2

- j %713 : [[w]]
W]z = = < lw |l —

27)

2[[wl[2 2[[wl|2

Therefore,

sH

s ~2

d
xrJ
2 =22 e =

i WS g

j=1k=1
(28)

Meanwhile, according to am-gm inequality, we have

Z 1w ]]1 2
Jk|

> (|[W7])” 29)
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Thus,
S Y S
i\ o= Wl s — (111’ - llw?|lx
k=1 k=1
g 2 e W]
=S (W) =D
j=1 k=1j=1 |w3k| ’
d s d
~ WJH1 2
<=3 (') -3 Il
j=1 k=1g7=1 |wJ ‘
(30)

Sum up Eq. (26), \; XEq. (28), A2 xEq. (30), we can arrive
at the following conclusion:

Tr((Y = X"WP)"H(Y — XTWP))
+ MW l21 + X2l [W][E 2
<Tr((Y — X"WP)"H(Y — X"WP))
AWz + AW 2
We update W and P alternatively, then we arrive at our goal:
1Y — XTWE|21 + At |[W][2 + Aol [W][F
<Y = XTWP|l21 4+ M|[W]l21 + Xe|[W]T2 (32)
st. PPT =1, PPT =1

(€29}

O

In other words, using Alg. 1, we can monotonically decre-
ase the objective function Eq. (6) in each iteration and finally
it will converge.

4 Experimental Results

In this section, we evaluate prediction performance of the pro-
posed method by applying it to Alzheimer’s Disease Neuroi-
maging Initiative (ADNI) cohort (adni.loni.usc.edu), where a
wide range of imaging markers measured over a period of 2
years are examined and associated to cognitive scores that are
relevant to AD.

4.1 Data Descriptions

We apply the proposed method to the ADNI cohort to pre-
dict the cognitive scores of the participants from each of their
two types of imaging phenotypes, i.e. FreeSurfer markers and
voxel-based morphometry (VBM) markers. The detailed in-
formation are shown in Table 1. Mean modulated gray matter
measures obtained from 90 target regions of interest, norma-
lized by the total intracranial volume, were extracted as fea-
tures.

Table 1: Numbers of participants in the experiments using two dif-
ferent types of imaging markers

Imaging phenotypes #Total #AD #MCI #HC
FreeSurfer 496 99 225 172
VBM 440 85 203 152

4.2 Performance Comparison on the ADNI Cohort

First, we intend to identify a certain set of informative mar-
kers that are closely relate to pathological change due to
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AD. We compared our method against three most related al-
gorithms including multivariate ridge regression (RR), joint
l2,1-norm minimization (2 1) on both loss function and regu-
larization [Nie et al., 2010], linear regression with trace norm.
These comparing methods are all widely used in statistical le-
arning and brain image analysis.

In all experiments, we automatically tune the regulari-

zation parameters by selecting among the values {10”
r € {—5,...,5}} with standard 5-fold cross-validation stra-
tegy.After the algorithm converges, we sort the row index of
matrix W by the summation of the absolute values in each
row, and features are selected by the top ranked indices. To
measure prediction performance, we compute the root mean
square error (RMSE) between the predicted score and the
ground truth.

The prediction experiment evaluated by ridge regression
is repeated for 100 times and average results are reported in
Fig. 2. As shown in Fig. 2, we can clearly see that the pre-
diction results of our method consistently outperforms other
competing methods in nearly all the test cases for all the cog-
nitive tasks except some outlier part in Fig. 2f. But it doesn’t
really matter since the proposed method catches up soon. The
reasons why the proposed method performs best go as fol-
lows: RR assumed the cognitive measures to be independent
at different time point which neglects the correlations along
the time. And for /5 1, since the pathological change of brain
structures due to AD usually do not occur in the pre-identified
regions with certain shapes, thus it is difficult to define mea-
ningful feature groups. This makes [ ; perform worse. Trace
norm is a good way to seek the underlying interrelations be-
tween cognitive scores, but it ignores the fact that the infor-
mative markers relate to AD among all the imaging measures
only occupy a small part. As for the proposed method, we
not only detect group structure within longitudinal phenoty-
pic neuroimaging markers, but also capture the correlations
among cognitive measures. In addition, for ease of compari-
son, we also list the RMSE using top 10 and top 20 selected
features evaluated by ridge regression in Table 2.

4.3 Identification of Informative Markers

The primary goal of the proposed method is to identify the
informative markers which is important for AD diagnosis
and prediction. Therefore, we examine the imaging mar-
kers selected by our method and show it in Fig. 3. Due
to the limit size of display, we only provide one tenth of
feature names for both FreeSurfer and VBM markers. As
shown in Fig. 3, we observe that hippocampal measures
(LHippocampus, RHippocampus, LHippVol and RHippVol)
are among the top selected features. These findings are in ac-
cordance with the known knowledge that in the pathological
pathway of AD, hippocampal is one of sections that can re-
cognize Alzheimer-related changes [Braak and Braak, 1991;
Delacourte et al., 1999].

In summary, the identified neuroimaging markers are
highly suggestive and effective for tracking the progression
of AD, since it strongly agrees with the existing research fin-
dings. It also illustrates the necessity and correctness of the
selected imaging cognitive associations to reveal the relati-
onships between MRI measures and cognitive scores.
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Table 2: Prediction performance measured by RMSE

RMSE of top 10 features RMSE of top 30 features
RR l21 Trace  Proposed RR l21 Trace  Proposed
FLUENCY 0.8777 0.8849 0.8982 0.8328 0.9411 09145 0.9560 0.8710
FreeSurfer ~ RAVLT 08202 08073 08066  0.7685  0.8245 08132 08150  0.7726
TRAILS 0.8467 0.8471 0.8441 0.8110 0.8970  0.8820 0.8923 0.8302
FLUENCY 0.8937 0.8937 0.8906 0.8639 0.9601 0.9501 0.9555 0.8891
VBM RAVLT 0.8420 0.8682 0.8215 0.8610 0.8834 0.8779 0.8781 0.8459
TRAILS 0.8758 0.8899 0.8754 0.8667 0.9273  0.9297 0.9241 0.8719
e =l s i
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Figure 2: RMSE of four feature selection algorithms on different cognitive assessment scores.
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Figure 3: Heat maps of our learned weight matrices on different cognitive assessment scores.

5 Conclusion

To reveal the relationship between cognitive measures and
neuroimaging markers, we proposed a novel robust low-rank
structured sparse regression model, which selects the most
informative imaging markers to predict the cognitive scores
for complex brain disorders. Using the new mixed structu-
red sparsity inducing norms and the low-rank approximation
function, the proposed method can efficiently identify the ef-
fective neuroimaging markers with utilizing the underlying
interrelation structures between different cognitive measures.
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In addition, we provide an efficient algorithm with proved
convergence. Validation experiments conducted on multiple
data demonstrate the promise of the proposed method.
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