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1 AGH University of Science and Technology, Krakow, Poland
2 The Open University of Israel

3 Technion - Israel Institute of Technology, Haifa, Israel
4 Charles University, Prague, Czech Republic
5 Ben-Gurion University, Be’er Sheva, Israel

faliszew@agh.edu.pl, ricagonen@gmail.com, koutecky@kam.mff.cuni.cz, talmonn@bgu.ac.il

Abstract
We study the effects of campaigning, where the so-
ciety is partitioned into voter clusters and a dif-
fusion process propagates opinions in a network
connecting the clusters. Our model is very power-
ful and can incorporate many campaigning actions,
various partitions of the society into clusters, and
very general diffusion processes. Perhaps surpris-
ingly, we show that computing the cheapest cam-
paign for rigging a given election can usually be
done efficiently, even with arbitrarily-many voters.

1 Introduction
The introduction of online social networks to modern polit-
ical campaigning is a disruptive game changer, as it is now
practical to influence individuals on a scale not possible be-
fore. Political campaigns now routinely use these networks to
attempt to sway elections in their favor, for instance by target-
ing segments of voters with fake news [Allcott and Gentzkow,
2017]. To be efficient, campaigners would like to factor-in the
nuances of how each voter segment behaves and how beliefs
diffuse in the underlying social graph. However, following
this line of reasoning to its natural conclusion, and relying on
an unsegmented model to approach voters individually, leads
to targeting algorithms that are unable to compute solutions in
a reasonable timeframe. We show that refining the traditional
campaign tools of polling and directly considering voter clus-
ters presents a solution to this computational problem.

We study the diffusion of political ideas in a setting where
a society is partitioned into clusters of voters. In our model,
an external agent with limited funds observes a given elec-
tion and then alters the preferences of the voters in some of
the clusters (through campaign actions or bribes, targeted at
specific voter groups). Voters’ opinions then diffuse through
a network connecting the voter clusters, until convergence,
at which point an election winner is chosen according to a
predetermined voting rule. We show that in many cases the
external agent can efficiently compute the cheapest campaign

for swaying a given election, in time which depends exponen-
tially on the number of candidates but only logarithmically on
the number of voters. This makes our algorithm particularly
well-suited for political elections, which often involve many
voters, but only a handful of candidates.

In the quickly growing literature studying the interface be-
tween social choice and social networks (see, e.g., the book
chapter of Grandi 2017), each voter is modeled as a ver-
tex and edges represent relations between them (such as,
e.g., friendships, common interests, or various forms of in-
teraction). Swaying elections in this standard social network
model, however, implies a number of classical worst-case and
parameterized hardness results, even for the case of two can-
didates (i.e., in the case where each voter holds one of two
possible opinions).1 We study a different type of a network,
which we refer to as a society graph, where each node rep-
resents a cluster of voters (e.g., people with similar prefer-
ences) and the edges represent possible channels of influence
(e.g., clusters of similarly minded people may influence each
other). By such clustering of voters, it is possible to model
large, realistic elections, while still maintaining computa-
tional tractability (in our case, captured by fixed-parameter
tractability with respect to the number of different clusters).

Our model is a generalization of the standard model be-
cause, as we use more and more fine-grained partitions, the
clusters become smaller and smaller and, eventually, end up
holding single individuals. More importantly, the model can
capture many natural social behaviors within the clusters, a
plethora of bribery actions, and various diffusion processes.
In the context of an election campaign, this includes, e.g., us-
ing polling to understand voters’ preferences and preference
strength, and creating clusters based on this data, allowing the
campaign managers to target those voters that are most likely
to influence the final result. Our efficient algorithm naturally
extends to these generalized settings.

1See, e.g., Corollary 1 of Bredereck et al. [2017], showing com-
putational hardness related to the Target Set Selection problem, and
Theorem 2 of Wilder and Vorobeychik [2017], showing computa-
tional hardness related to the Influence Maximization problem.
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Related Work. We study the possibility of manipulating
outcomes of elections, assuming social diffusion processes.
There is an extensive literature on manipulating elections, es-
pecially relevant are the works on bribery in elections [Fal-
iszewski et al., 2009], such as that on swap bribery [Elkind
et al., 2009], shift bribery [Elkind and Faliszewski, 2010;
Bredereck et al., 2016a], and bribery in multiwinner elec-
tions [Faliszewski et al., 2017; Bredereck et al., 2016b], as
well as the survey of Faliszewski and Rothe [2015]. There
is also a vast amount of literature on diffusion in social net-
work, such as, e.g., the works of Kempe et al. [2003] and
Chen et al. [2009], which, among other results, develop effi-
cient heuristics for maximizing influence in social networks;
we also point to reader to the book of Shakarian et al. [2015].

The study of the interface between social choice and social
networks is gaining attention and is already quite established
(see, e.g., Grandi [2017]). Contrary to these works, where
each voter is modeled as a vertex, in our model voters are
grouped into voter types (clusters), and edges correspond to
relations between these types. Our view of voter types fol-
lows the model described by Knop et al. [2018], which con-
siders manipulation on such so-called societies. (In this con-
text we also mention the work of Izsak et al. [2018], which
considers selecting a committee where candidate synergies
are expressed on the candidate-group level.)

Bredereck and Elkind [2017] identify some cases where
manipulating the diffusion of opinions in a social network
can be done efficiently (e.g., elections with two candidates,
held on a path). Wilder and Vorobeychik [2017] consider a
related problem, albeit studying the probabilistic Linear Cas-
cade model, while we (as well as Bredereck and Elkind) study
the Linear Threshold model. Brill et al. [2016] do not con-
sider bribery, but study diffusion of pairwise preferences with
arbitrary number of candidates. Botan et al. [2017] consider
a diffusion process where opinions regarding boolean propo-
sitions propagate through a social network. We also mention
the work of Procaccia et al. [2015], which considers maxi-
mum likelihood estimations as related to a certain diffusion
process of preferences, the work of Talmon [2017], which
considers the possibility of using a social network to increase
the social welfare when electing a proportional committee,
and further related papers [Silva, 2016; Christoff and Grossi,
2017; Auletta et al., 2015; Sina et al., 2015].

2 Formal Model and Combinatorial Problem
In this section we present a very basic variant of our model,
where voter types correspond to preference orders, edges ex-
ist between two orders that can be obtained by a single swap
of adjacent candidates, the diffusion process is done in a sim-
ple, specific way, and the bribery actions are limited. Later,
in Section 4, we discuss various generalizations of our ap-
proach, by considering arbitrary voter types, arbitrary bribery
actions, and generalized diffusion processes. Yet, the basic
model will allow us to develop useful intuitions, prove strong
hardness results, and clearly present out tractability results.
For n ∈ N, by [n] we mean the set {1, . . . , n}.
Elections and voting rules. We consider ordinal elections
held with n voters, expressing preferences over m candidates

a � b � c

type 1; w(1) = 21 b � a � c

type 2; w(2) = 10

b � c � a

type 3; w(3) = 10

c � b � a

type 4; w(4) = 21

c � a � b

type 5; w(5) = 42

a � c � b

type 6; w(6) = 42

Figure 1: A society graph with three candidates and six types (cor-
responding to the six possible preference orders on those three
candidates). E.g, there are 42 voters of type 6, each with pref-
erence order a � c � b; this graph corresponds to a society
w = [21, 10, 10, 21, 42, 42].

C = {c1, . . . , cm}, where the preference order of a voter is
a linear order over C. A voting rule R is a function taking
an election as input and returning a set of tied winners. A
candidate winning under R for a given election is called an
R-winner of the election. As an example, under the Plural-
ity rule the candidates ranked first most frequently win, and
under the Borda rule, each voter givesm−i points to the can-
didate she ranks in the i-th position, and the candidates with
the highest total number of points win.
Voter types, societies, and society graphs. For the time
being, we let the preference order of a voter be her type. Thus,
there are at most τ ≤ m! types present in a given election and
we order them so that we can speak of “the j-th type” for a
given j. By the weight of voters with type j, denoted either
wj or w(j), depending on the context, we mean the number
of voters of type j. Sometimes we represent an election as
a vector w ∈ Nτ , whose j-th entry represents the weight
of type j. We refer to such vectors as societies. (Here we
somewhat follow the model of Knop et al. [2018].)

As we are interested in a certain diffusion process oper-
ating on the voter types, we associate a given election with
a vertex-weighted graph G = (V,w, E), termed the soci-
ety graph. The society graph contains τ vertices, where τ
is the number of types in the election (specifically, V =
{v1, . . . , vτ}, where vertex vj corresponds to voter type j,
and its weight wj is equal to the number of voters of that type
in the given election). There is an edge between vertices vj
and vj′ if the preference orders corresponding to types j and
j′ differ by the ordering of a single pair of adjacent candi-
dates (in other words, if it is possible to transform one into
the other with a single swap of two consecutive candidates).
We show an example of a society graph in Figure 1.
Diffusion of preferences. Given a society graph (which
encodes a given election), we consider two variants of a cer-
tain diffusion process: asynchronous and synchronous. In the
asynchronous variant, in each step of the iterative diffusion
process, a certain vertex v of the society graph G is picked,
and then the following occurs. We consider the closed neigh-
borhoodN [v] of v inG and check whether there is a neighbor
x of v for which wx > 1/2

∑
u∈N [v] wu; that is, a neighbor

whose weight exceeds the sum of the weights of all other ver-
tices in the closed neighborhood of v. If such an x exists, then
we add the current weight wv of v to that of x and change the
weight wv to be 0. Intuitively, the voters of type represented
at v look at all the voters with similar or identical preferences,
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and if there is a majority support among these voters for some
preference order, they switch to it. In the synchronous variant
we proceed in the same way, but simultanously for all ver-
tices. The diffusion process halts whenever it stabilizes.

Bribery in society graphs. Besides issues related to sta-
bility and convergence of society graphs, in this paper we are
mainly interested in understanding the possibility of manipu-
lating the outcome of an election. Thus we assume an exter-
nal briber which has some budget and, using this budget, can
change the way by which certain voters vote. Specifically, by
one bribery action the briber can choose one voter and shift
the position of his preferred candidate forward, by swapping
him with the candidate ahead of him in the corresponding
vote. (Indeed, this type of bribery is usually termed unit-cost
shift-bribery [Bredereck et al., 2016a].) Crucially, after the
act of bribery takes place, the diffusion process initiates, and
the goal of the briber is to have his preferred candidate win in
the resulting election, using some predetermined voting rule.
Formally, we are interested in the following general problem.

R-BRIBERY IN SOCIETY GRAPHS (R-BSG)
Input: A society graph G (given directly as a
graph), a preferred candidate p, and a budget b.
Question: Are there at most b (unit-cost, shift-)
bribery actions, such that, after performing them on
G, and then running the diffusion process, p is an
R-winner of the election corresponding to G after
convergence?

Corresponding to the synchronous and asynchronous diffu-
sion processes, we consider both sync-R-BSG and async-R-
BSG problems. For the asynchronous diffusion, we further
consider the optimistic and pessimistic variants of the prob-
lem: In the former, we ask whether there exists some asyn-
chronous diffusion process, initiated after the bribery actions,
such that after reaching convergence p is anR-winner; in the
latter, we ask whether this happens for every possible order of
diffusion steps. (Indeed, as shown in Example 1, the order of
diffusion can sometimes affect the result of a given election.)

Remark 1. The input to R-BSG is a labeled graph with
weighted vertices (and a preferred candidate p and a budget
b). Thus, the size of the input encoding is linear in the number
of voter types and only logarithmic in the number of voters.

2.1 Convergence and Diffusion Order
Before we tackle theR-BSG problem, we first show that con-
sider the diffusion process always converges. For the syn-
chronous case, this follows by arguing that in each diffusion
step at least one vertex loses its weight completely, and a ver-
tex of weight zero never increases its weight. In consequence,
the number of synchronous diffusion steps is bounded by the
number of voter types. The asynchronous case is even sim-
pler, but requires appropriate terminology: If a diffusion step
does not change the society graph (e.g., due to the choice of
the vertex) then we call it redundant. We say that a sequence
of non-redundant diffusion steps is irredundant. A maximal
irredundant sequence is an irredundant sequence after exec-
tuting which all remaining steps are redundant.

Proposition 1. For each society graph G, the synchronous
diffusion process converges in at most τ steps. The asyn-
chronous diffusion process converges if the sequence con-
tains a maximal irredundant sequence as a subsequence. The
length of a maximal irredundant sequence is bounded by τ .

Proof. For the asynchronous model, either no vertex changes
any further, or at least one vertex, if chosen for the next dif-
fusion iteration, will have its weight reduced to zero. Since
no weight-zero vertex can ever increase its weight (by the
definition of the diffusion step), it follows that every irredun-
dant sequence consists of at most τ steps. By definition, if
a sequence contains a maximal irredundant subsequence, it
produces the same graph as this subsequence.

For the synchronous model, suffices to show that after ev-
ery diffusion step (prior to convergence), the number of ver-
tices with non-zero weight decreases. Consider a diffusion
step before convergence. There is some vertex v, which is to
be assimilated into one of its neighbors, u. If no other neigh-
bor of v is to be assimilated by v in this step, then we are done:
The number of vertices with non-zero weight would decrease
by at least one. Perhaps, however, there is some neighbor v′
of v that is to be assimilated by v in the current step. It must
be that v′ 6= u, as we require a strict majority for a vertex to
be assimilated by one of its neighbors. If no neighbor of v′
is assimilated by v′, then we are done (by the same token as
before, we see that the number of weight-zero vertices will
increase). Otherwise, there is some neighbor v′′ of v′ which
is to be assimilated by v′. Exhaustively following this logic,
either we reach a vertex whose weight is to decrease to zero,
or some vertex repeats. However, the latter is impossible as,
by definition of our diffusion process, the weights of the ver-
tices that we encounter form a decreasing sequence. Thus the
number of weight-zero vertices has to increase after execut-
ing the diffusion step and the proof is complete.

Convergence is guaranteed, but different asynchronous dif-
fusion orders may lead to different election results.
Example 1. Consider the society graph depicted in Figure 1.
If we select first type 3, then 4, then 6, and then 2, then we
reach convergence with 115 voters with c � a � b and 31
voters with a � b � c; thus, Plurality selects c. However, if
we select first type 2, then 1, then 5, and then 3, then we reach
convergence with 115 voters with a � c � b and 31 voters
with c � b � a; thus, Plurality selects a.

The above example suggests that an external agent might
be interested in controlling the diffusion process, to help a
certain candidate win. This task is NP-hard.
Theorem 1. Given a society graph G and a preferred can-
didate p, deciding whether there is an order of asynchronous
diffusion steps which results in p being a Plurality winner in
the converged election is NP-hard.

Proof. We reduce from the NP-hard problem Partition [Garey
and Johnson, 1979], in which we are given integers
x1, . . . , xn whose sum is 2B =

∑
i∈[n] xi and we ask if it

is possible to partition them into two groups of equal sum.
We assume, w.l.o.g, that xi > n7 for each i ∈ [n], and reduce
a given instance of Partition to an instance of our problem.
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d ; 2 d ; 4 d ; xi\2 e ; 1 f ; xi

c ; 2 c ; 4 c ; xi\2 e ; 1 f ; xi

Figure 2: An element gadget used in the proof of Theorem 1.

We create five important candidates, p (the preferred candi-
date), c, d, e, and f , and we will also use a few dummy ones.
We will make sure that for each no-instance of Partition, one
of c, d, e, or f will be the election winner, irrespective of the
order of asynchronous diffusion steps, whereas for each yes-
instance, there will be a diffusion order leading to p’s victory.

We describe the society graph by specifying the weight and
the candidate ranked first by each vertex, as well as the edges
connecting these vertices; importantly, it is possible to realize
such a graph by adding dummy candidates and setting the
swap distances according to the edges. A vertex which ranks
candidate x on top is called an x-vertex.

We construct a p-vertex vp of weight 5B + 7n5, a c-vertex
vc of weight 4B, a d-vertex vd of weight 4B, an e-vertex
ve of weight 5B + 7n5 − n, and an f -vertex vf of weight
5B + 7n5 − 4B − n. These vertices are isolated (and remain
so). The idea is that, as vp is the only p-vertex, to make sure
that p is the winner of the converged election, there can be
c-vertices of total weight at most B + 7n5, d-vertices of total
weight at most B + 7n5, e-vertices of total weight at most n,
and f -vertices of total weight at most 4B + n. The main part
of the construction is an element gadget, which is a subgraph
Gi, created for each integer xi. Each Gi acts as a selection
gadget, selecting, through different diffusion orders, whether
a weight of roughly xi will be counted for candidate c or d.

The subgraph Gi, i ∈ [n], shown in Figure 2, contains
the following 10 vertices: v1 is a d-vertex of weight 2; v2
is a d-vertex of weight 4; v3 is a d-vertex of weight xi/2;
v4 is a e-vertex of weight 1; v5 is a f -vertex of weight xi;
v6 is a c-vertex of weight 2; v7 is a c-vertex of weight 4;
v8 is a c-vertex of weight xi/2; v9 is a e-vertex of weight
1; v10 is a f -vertex of weight xi. Each Gi is a connected
component (in particular, different Gi’s are not connected to
each other), which is internally connected using the edges
{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v6, v7}, {v7, v8},
{v8, v9}, {v9, v10}, {v3, v8}. This completes the reduction.

For correctness, consider a solution to the Partition in-
stance, corresponding to X ⊆ {x1, . . . , xn} such that∑
xi∈X xi =

∑
xi /∈X xi = B. For each xi ∈ X we per-

form the following diffusion steps (the order is crucial): we
assimilate v1 into v2, v2 into v3, v8 into v3, v4 into v3, v6
into v7, and finally we assimilate v9 into v10. After these dif-
fusion steps only v3 (with weight xi + 7), v5 (with weight
xi), v7 (with weight 6), and v10 (with weight xi+1), remain.
Similarly, for each xi /∈ X we assimilate v6 into v7, v7 into
v8, v3 into v8, v9 into v8, v1 into v2, and finally we assimilate
v5 into v5. After these diffusion steps only v8 (with weight
xi+7), v10 (with weight xi), v2 (with weight 6), and v5 (with
weight xi + 1), remain.

After performing the above asynchronous diffusion steps
for each element gadget, the diffusion process is conver-

genced and no more steps are possible. The plurality score
of each of p, e, and f , is 5B + 7n5, as vp is the only p-
vertex, one e-vertex of weight 1 remains in each element gad-
get, and two f -vertices of total weight 2xi+1 remain in each
element gadget. The plurality score of each of c and d is
4B +B + 7|X| ≤ 5B + 7n5. Thus, p is a plurality winner.

For the other direction, we assume a no-instance of Par-
tition and show that no diffusion order results in p being a
plurality winner. To see this, consider each element gadget
and notice that for one of the e-vertices to be assimilated into
a c-vertex or a d-vertex, it must be that v3 is first assimilated
into v8 or that v8 is first assimilated into v3. As the two e-
vertices cannot remain e-vertices nor can both be assimilated
into the f -vertices (to make sure that p indeed wins), each Gi
is indeed a selection gadget, resulting in a plurality score of
at least xi for either c or d. Since we consider a no-instance
of Partition, it follows that either c or d would be selected in
Gi’s corresponding to xi’s whose sum is strictly greater than
B. As xi > n7 holds for each xi, it folows that the score of
either c or d would be at least 5B + n7.

3 Complexity of Manipulating Society Graphs
R-BSG is generally intractable (both in the synchrounous and
asynchronous variants), but fixed-parameter tractable wrt. the
number of candidates for a large class voting rules.

3.1 General Intractability of BSG
We first consider Borda as an example for intractability.

Proposition 2. Borda-BSG is NP-hard both in the syn-
chronous and in the asynchronous case.

Proof. We provide a reduction from the problem Borda-SB
(SB stands for Shift Bribery) in which, given an election with
voters v1, . . . , vn and candidates c1, . . . , cm, a distinguished
candidate p, and a budget b, the task is to decide whether b
unit-cost shift bribery actions suffices to cause p to be a Borda
winner. It is NP-hard [Bredereck et al., 2016a, Proposition 3].

Given an instance of Borda-SB, we create an instance of
Borda-BSG. The idea is to alter the instance so that, even af-
ter any set of bribery actions, any two voters would have swap
distance at least 2. This would prevent any diffusion from
happening, and, as Borda-BSG is in essence Borda-SB with
diffusion, the result would follow. To this end, we introduce
2n additional dummy candidates d1, . . . , dn, e1, . . . , en. We
set the preference orders of the voters such that all voters pre-
fer any of cj to any of dj and any of dj to any of ej , j ∈ [n].
Moreover, voter vi prefers di to any dj , j 6= i, and prefers ei
to any ej , j 6= i. This finishes the description of the reduction.
Correctness follows by the discussion above.

The above proof works for every voting rule for which (i)
Shift Bribery with unit costs is NP-hard; and (ii) whose re-
sults do not change after we add some candidates which vot-
ers rank last. Such rules include, e.g., Copeland and Max-
imin [Bredereck et al., 2016a] and, indeed, both conditions
seem to be commonly satisfied (yet, Plurality is an example
of a rule that fails the first criterion, and Veto is an example
of a rule that fails the second one).
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3.2 Voting Rules and Integer Linear Programs
In the next section we show that the BSG problem is fixed-
parameter tractable for the parametrization by the number of
candidates. Our algorithm is based on solving an integer lin-
ear program (ILP), and we use the next definition to capture
the class of rules for which the algorithm is applicable.
Definition 1 (ILP-τ -expressible voting rule). Let w ∈ Nτ be
a society representing an election E (where the jth element
of w represents the number of voters of type j) and p ∈ C
be a candidate. A voting rule R is ILP-τ -expressible if there
exists a computable function f and integers τ ′, r ≤ f(τ), a
matrix W ∈ Zr×(τ+τ ′), and a vector b ∈ Zr such that:

∃x ∈ Zτ
′
:W (w,x) ≤ b ⇔ p ∈ R(E) ,

where (w,x) ∈ Zτ+τ ′
is the concatenation of w and x.

Example 2 (Borda is ILP-τ -expressible). For a candidate c ∈
C, i ∈ [m] and j ∈ [τ ], by rank(c, j) we mean the position on
which c is ranked by the type-j voters. To show that Borda is
ILP-τ -expressible, we give a collection of linear inequalities
(defining the matrix W ), satisfied exactly if the Borda score
of p ∈ C is not smaller than that of any other candidate:∑
i∈[m],j∈[τ ]
rank(c,j)=i

(m−i)wj ≤
∑

i∈[m],j∈[τ ]
rank(p,j)=i

(m−i)wj ∀c ∈ C, c 6= p .

Definition 1 is a bit stronger than analogous definitions of
Dorn and Schlotter [2012] and Faliszewski et al. [2011].

3.3 Fixed-Parameter Tractability of BSG
We prove that R-BSG is FPT wrt. the number m of candi-
dates for any ILP-m-expressible rule. We mention that, e.g.,
all scoring rules, all C1 rules (these are rules depending only
on the majority graph), Bucklin, STV, and Kemeny, are ILP-
m-expressible. The result follows by formulating R-BSG as
an integer linear program and invoking Lenstra’s famous re-
sult [Lenstra Jr, 1983] (which implies that ILP is FPT wrt.
number of integer variables); it is arguably quite surprising,
since, as it turns out, it is possible to encode the complete dif-
fusion process using integer variables and linear constraints.
Theorem 2. Synchronous R-BSG is fixed-parameter
tractable with respect to the number m of candidates for any
ILP-m-expressible voting ruleR.

Proof. As a preprocessing phase, we augment the given so-
ciety graph to have exactly m! vertices, one vertex for each
possible preference order; to this end, we might create some
vertices of weight zero. Thus, the number of types in the in-
put is τ = m!, and the number of voters of type i, i ∈ [τ ],
is wi. Let k be the number of steps of the diffusion process;
Proposition 1 says that k ≤ τ . For i ∈ [τ ], denote by N [i]
the closed neighborhood of i and by N(i) = N [i] \ {i} its
open neighborhood. For an expression exp, denote by [exp]
its binary value (e.g., [2 > 1] = 1 and [1 > 2] = 0).

We construct an ILP with the following variables. For each
type i ∈ [τ ] and diffusion step ` ∈ [k] we define an integer
variable x`i representing the number of voters of type i after
` diffusion steps. For types i, j ∈ [τ ] we define variables βij

∑τ
j=1 βij = wi ∀i ∈ [τ ] (1)∑τ
i=1 βij = x0j ∀j ∈ [τ ] (2)

z`ij =
[∑

a∈N [i] x
`−1
a

1
2 < x`−1j

]
∀j ∈ N(i), ` ∈ [k] (3)∑

j∈N [i] z
`
ij = 1 ∀i ∈ [τ ] (4)

t`ij = z`ijx
`−1
i ∀i, j ∈ [τ ], ` ∈ [k] (5)

x`j =
∑
i∈N [j] t

`
ij ∀j ∈ [τ ], ` ∈ [k] (6)

W (y,xk) ≤ w (7)

Figure 3: Constraints used in the proof of Theorem 2. For complete-
ness, one shall make sure that the variables are in the right domains.

describing the bribery, where βij corresponds to the number
of voters bribed from being of type i to being of type j; note
that we also consider βii, the number of voters of type iwhich
are not bribed. For every i, j ∈ [τ ] and ` ∈ [k], we define
a binary variable z`ij indicating whether in the `-th step the
voters of type i are being assimilated into type j (for technical
reasons, we also use variables t`ij ; see explanations below).

Let cij be the cost of bribing one voter of type i to become
a voter of type j (we set cij to be∞ if j is not reachable from
i). As our aim is to minimize the cost of bribery, the objective
of our ILP is to minimize

∑
i,j cijβij .

Our ILP contains the constraints presented in Figure 3.
Constraints (1) and (2) are standard and express that the vec-
tor x0 describes the society after the bribery (recall that βii
corresponds to non-bribed voters of type i).

Constraint (3) assigns 1 to z`ij if the weight in type j ex-
ceeds half of the total weight of N [i] and 0 otherwise. While
linear in this form, it can be made linear using standard
tricks, which introduce only constantly-many auxiliary vari-
ables [Bisschop, 2006, Section 7.4]. Note that we do not af-
fect z`ii here as the constraint goes only over j in the open
neighborhood N(i). Constraint (4) enforces that at least one
of z`ij is 1, and this includes z`ii; thus, if there is no j ∈ N(i)

with weight more than half of the weight ofN [i], then z`ii = 1
shall hold, which corresponds to i keeping its weight (i.e.,
voters of type i are not being assimilated into some other
type). Constraints (5) and (6) define the weights for step `,
given the weights of step `−1. Precisely, x`j takes the weight
of all its neighbors (including itself) who specify by z`ij = 1

that they shift their weight to j. We use the t`ij variables as
temporary variables that are non-zero for those i and j for
which z`ij = 1. Notice that Constraint (5) is non-linear but
again can be handled using standard tricks [Bisschop, 2006,
Section 7.7]; it essentially implements the following:[
(z`ij = 1) =⇒ (tlij = x`−1i

)
]∧
[
(z`ij = 0) =⇒ (tlij = 0)

]
.

Finally, Constraint (7) corresponds to the specific vot-
ing rule being considered, with y as the auxiliary variables
(called x in Definition 1); it is satisfied if and only if the given,
preferred candidate p wins the election specified by xk (i.e.,
the election after the bribery and at the end of the diffusion
process), and is expressible asR is ILP-τ -expressible.
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Corollary 1. Asynchronous R-BSG is FPT wrt. the number
m of candidates for any ILP-m-expressible voting ruleR, for
both the optimistic and the pessimistic variants.

Proof. For the optimistic variant, we modify the ILP de-
scribed above, as follows. We add variables y`i , represent-
ing whether type i is updated in the `th step, thus require∑
i y
`
i = 1 to enforce that exactly one vertex is updated.

We add variables ẑ`ij and enforce that ẑ`ij = z`ij ∧ y`i (ex-
pressing this is folklore, and can be done, e.g., by requiring
ẑ`ij ≤ z`ij , ẑ

`
ij ≤ y`i ); the interpretation is that i might be

assimilated only if y`i = 1. Then, it suffices to replace z`ij
with ẑ`ij in constraint (6). For the pessimistic variant, notice
that any sequence which converges contains a maximal irre-
dundant sequence, each of which is of length at most τ (this
follows from Proposition 1). It thus suffices to consider the
set of permutations of [τ ], and expressing that in none of them
p is losing can be done by a long conjunction of ILPs given
by constraints (3)-(7), with a clause for each sequence.

4 Model Generalizations
Here We generalize the simple model described above and
demonstrate far broader scenarios for whichR-BSG remains
fixed-parameter tractable (e.g., models with arbitrary connec-
tions between voter types and models for which not all voters
of a single type are assimilated in another).
Various voter types. Instead of partitioning the voters by
preference orders, which might be too crude, we can consider
arbitrary partitions. As the number of variables in the ILP de-
scribed in the proof of Theorem 2 depends only on the num-
ber of types, if follows that R-BSG remains fixed-parameter
tractable with respect to the number τ of types.2 Taken to
the extreme, namely if we set each voter in a given election
to constitute her own voter type, we arrive at the model of
diffusion studied, e.g., by Bredereck and Elkind [2017].
Arbitrary bribery operations and manipulative actions.
Our model can incorporate, e.g., all bribery operations men-
tioned by Faliszewski and Rothe [2015]. Indeed, the con-
stants cij used in the proof of Theorem 2 encode the cost of
transforming a voter of type i into a voter of type j and can be
redefined for other bribery operations. Further, following the
discussion of Knop et al. [2018, Section 3.2], this approach
can be extended to other types of manipulative operations,
such as to voter control [Faliszewski and Rothe, 2015], at no
asymptotical cost in terms of computational complexity.
General diffusion processes. Our model can incorporate
directed arcs, where a vertex would be influenced by those
vertices for which it has an outgoing arc to and, in particu-
lar, we do not have to be confined to connections between
types associated with preferences that differ in the rank-
ing of a single pair of candidates. Further, those arcs can
be weighted, representing different influence strengths (e.g.,
consider damping the influence of voters which are, swap

2There is a technicality here as the number of variables depends
both on the number of types in the input and on the number of pref-
erence orders that bribery operations may introduce.

distance-wise, farther). Adding weights can be done by mod-
ifying Equation (3) in a straightforward way. Moreover, and
most importantly, we can express in our model a large class
of diffusion processes. The following definition is inspired by
viewing the diffusion of preferences as an abstract process, in
which each voter holds a local election to decide which pref-
erence order to assume. E.g., the diffusion process described
in Section 2 corresponds to holding an election containing
the voters of swap distance at most one, and changing to the
preference order of the majority, if such exists.
Definition 2 (ILP-τ -expressible diffusion process). Let k be
an upper bound on the number of diffusion steps, recall that
for diffusion step ` ∈ [k], the variables x`−1i , i ∈ [τ ] ex-
press the current society, and let f be a computable func-
tion. Then, an ILP-τ -expressible diffusion process is a pro-
cess such that for each i, j ∈ [τ ] and ` ∈ [k], there
are integers r(i, j, `), τ(i, j, `) ≤ f(τ), a matrix Di,j,` ∈
Zr(i,j,`)×τ+τ(i,j,`), and a vector bi,j,` ∈ Zr(i,j,`) such that,
in the `-th diffusion step, voters of type i are assimilated into
type j if and only if the following formula is satisfied:

∃x′ ∈ Zτ(i,j,`) Di,j,`(x
′,x`−1i ) ≤ bi,j,` .

Our basic diffusion process corresponds to Equation (3).
Another ILP-τ -expressible diffusion process is that each
voter replaces her preference order by the Kemeny ranking
computed for the voters in her neighborhood.
Remark 2. Proposition 1 does not hold for all generalized
diffusion processes, as the number of diffusion steps might
not be bounded by the society graph’s size. (Also, new voter
types might sometimes appear as a result of diffusion steps.)
Thus, the corresponding ILP to solve R-BSG would have to
be supplied with the number k of diffusion steps to simulate.
Sometimes it indeed is plausible that an agent can estimate
the number of diffusion steps to occur after the manipulative
actions, e.g., when he knows the time of the election.
Theorem 3. R-BSG is fixed-parameter tractable with respect
to the number τ of types and the number k of diffusion steps
if bothR and the diffusion process are ILP-τ -expressible.

We conclude this section with an example of a scenario
which is captured by such generalized diffusion processes.
Example 3 (Multidimensional Societies). Consider voters of
different age groups. It is plausible that the tendency to be in-
fluenced by other voters depends on age, and so we might
have a voter type for each tuple of (preference order, age
group), with different outgoing arcs and different diffusion
conditions. This way we can express, e.g., that voters may
be strongly influenced by some voter groups, yet cannot be
assimilated into them (e.g., a junior person can be influenced
by a senior one, but this does not make him or her senior).

5 Outlook
We described a powerful model capturing various scenarios
of opinion diffusion in networks, under various manipulative
actions. By considering voter types and society graphs, we
were able to provide practically useful tractability results.

We hope this paper to have the side-effect of popularizing
the ILP-techniques within in the COMSOC community.
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Directions for future research include further studies of our
generalized diffusion processes (including, e.g., finding suffi-
cient conditions for convergence) and establishing the range
of problems that our models can capture (including, e.g.,
analysis of probabilistic behavior of voters).
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