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Abstract
Multi-view clustering has played a vital role in real-
world applications. It aims to cluster the data points
into different groups by exploring complementary
information of multi-view. A major challenge of
this problem is how to learn the explicit cluster
structure with multiple views when there is con-
siderable noise. To solve this challenging problem,
we propose a novel Robust Auto-weighted Multi-
view Clustering (RAMC), which aims to learn an
optimal graph with exactly k connected compo-
nents, where k is the number of clusters. `1-norm
is employed for robustness of the proposed algo-
rithm. We have validated this in the later exper-
iment. The new graph learned by the proposed
model approximates the original graphs of each
individual view but maintains an explicit cluster
structure. With this optimal graph, we can imme-
diately achieve the clustering results without any
further post-processing. We conduct extensive ex-
periments to confirm the superiority and robustness
of the proposed algorithm.

1 Introduction
With the advent of the Internet and big data era, it is very
common for many real-world applications to deal with multi-
view data. The existence of such multi-view data raised the
interest of multi-view learning [Xu et al., 2013; Sun, 2013;
Tao et al., 2018]. To make full use of the information of
multi-view data to improve clustering accuracy, multi-view
clustering (MVC) has become an important research topic in
the past two decades [Chao et al., 2017]. MVC is a machine
learning paradigm to classify the similar subjects into the
same group and dissimilar subjects into different groups by
combining the available multi-view information, which indi-
cates that MVC searches for the consistent clusterings across
different view [Chao et al., 2017].

In the traditional multi-view data research [Hagen and
Kahng, 1992; Blum and Mitchell, 1998], clustering is per-
formed by building a weighted graph in which nodes corre-
spond to data points and weights are related to the similarity
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between the points. The higher the similarity is, the greater
the weight is, and vice versa. Each graph represents a view of
the research object. Using the weighted graph, MVC can be
solved with spectral clustering method [von Luxburg, 2007].

There is a straightforward way to convert multi-view into
a single view so that the spectral clustering method can be
used for multi-view clustering. However, this simple method
ignores the connection between each view and lacks corre-
sponding theoretical support.

Some researchers also seek breakthroughs in other direc-
tions of clustering [Chang et al., 2016; Kang et al., 2017a;
2017b]. [Cai et al., 2011] proposed a multi-view spectral
clustering model and [Kumar et al., 2011] introduced the co-
regularization technique into the spectral clustering model to
perform clustering tasks. However, these methods are eas-
ily affected by the poor quality view. [Kumar et al., 2011;
Li et al., 2015] approximated the weight of data nodes by
combining prior knowledge. But this approach, due to the
introduction of human intervention, is difficult to ensure that
it still works when faced with big data tasks. In addition,
in the face of specific clustering tasks, most researchers fo-
cus on spectral clustering to deal with it [Kumar et al., 2011;
Xia et al., 2014; Li et al., 2015; Chang et al., 2015; Xue et al.,
2017]. They tried to optimize and improved on the basis of
spectral clustering in order to obtain better clustering perfor-
mance. However, there is an obvious uncertainty in these im-
proved methods based on spectral clustering, which requires
post-processing (e.g., K-means) to eventually generate a la-
beling matrix.

Recently, [Nie et al., 2016] proposed a Constrained Lapla-
cian Rank (CLR) method based on Laplacian matrix rank
constraints. Combining two measurements, Frobenius norm
and `1-norm, this method solves MVC problem by minimiz-
ing the distance between the eventually learned similarity ma-
trix and the similarity matrix of the various view. The adja-
cency matrix with just connected components is obtained by
the minimum distance, and the number of connected compo-
nents is exactly equal to the number of clustering in the orig-
inal multi-view data. The adjacency matrix can be used di-
rectly to complete the clustering task. It can avoid the uncer-
tainty caused by the post-processing of the traditional spec-
tral clustering algorithm. However, the CLR method is only
applicable to a single view clustering. How to obtain the ex-
plicit cluster structure with multiple noisy views has not been
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solved yet.
In this paper, we propose a novel Robust Auto-weighted

Multi-view Clustering (RAMC) that aims to learn a consen-
sus graph with exactly k connected components, where k is
the number of clusters. In this way, the obtained graph can be
directly used for clustering without the need of further post-
processing. To make sure the graph has exactly k connected
components, we explicitly impose a low-rank constraint on
the objective function. `l-norm has been employed in this pa-
per for robustness. In addition, by solving each subproblem
with an optimal solution through the alternating optimiza-
tion steps, the proposed RAMC gives the concrete steps to
solve the multi-view clustering. Furthermore, experiments
are conducted on two synthetic datasets containing noise and
three actual datasets, and the experimental results confirm the
superiority of the proposed algorithm. The robustness per-
formance of the proposed RAMC shows that as the ratio of
random noise increases, although the performance of all the
compared algorithms decreases, the performance gain of the
proposed algorithm becomes more significant.

The contribution of this paper briefly summarized as fol-
lows:

• The proposed algorithm is able to learn a consensus
graph with exactly k connected components (k is the
number of clusters) by exploring the mutual informa-
tion among multiple views. The obtained graph can
be directly used for clustering without any further post-
processing.

• The proposed algorithm is robust to the outliers since we
employ the `1-norm. We have validated this in the later
experiment.

• Since the algorithm is non-smooth and difficult to solve,
we propose an efficient iterative method with guaranteed
convergence to optimize it.

• We conduct extensive experiments to verify the perfor-
mance of the proposed algorithm. The experimental re-
sults confirm its superiority compared to state-of-the-art
alternatives.

Notation. In the whole article, every matrix is written in
capital letters. In a matrix A, ai represents the i-th row, and
aij represents the element corresponding to the i-th row and
the j-th column. The trajectory is expressed as Tr(A). The
matrix representation corresponding to the v-th view is writ-
ten as A(v). The `1-norm of the matrix is expressed as ‖A‖1.
Especially, 1n is used to represent a n dimensional column
vector, each of which is 1.

2 The Proposed Methodology
2.1 Graph-based Clustering Description
Suppose there are n samples which belong to c clusters,
a Similarity Matrix (SM) is firstly constructed to represent
the affinities of all the samples in the graph-based clustering
methods. Many previous works have studied to design an SM
with high quality, such as [Cai et al., 2005]. Later, [Nie et al.,
2014; Chen and Dy, 2016; Nie et al., 2016] proposed an ideal
SM S ∈ Rn×n, and introduced the CLR method [Nie et al.,

2016; 2017]. which is supposed to exactly have c connected
components. So S can be directly used for the clustering task.

Based on the `2-norm and the `1-norm, between the given
affinity matrix A and the learned similarity matrix S , Nie et
al. defined the CLR for graph-based clustering [Nie et al.,
2016]. Then they applied Frobenius norm and proposed the
Parameter-weighted Multi-view Clustering (PwMC) [Nie et
al., 2017]. However, Frobenius norm is sensitive to outliers
and noise which exist in many real situations [Pang et al.,
2010]. In order to reduce the negative effect of outliers and
noise in graph-based clustering, Frobenius norm is replaced
by `1-norm. Then the target function can be written as

min
si1n=1,sij≥0,S∈C

‖S −A‖1 , (1)

where S is a nonnegative matrix, and each row in S sums up
to 1. C stands for the set of n by n square matrices with c
connected components. Then based on `1-norm and graph
theory in [Fan, 1997], the connectivity constraint can be re-
placed with a rank constraint, problem (1) becomes

min
si1n=1,sij≥0,rank(LS)=n−c

‖S −A‖1 , (2)

where LS is a Laplacian matrix, and LS = DS − (ST+S)
2 .

rank(LS) is the rank of LS . The degree matrix DS ∈ Rn×n
is defined as a diagonal matrix with i-th diagonal element∑

j(sij+sji)

2 . Now the target SM can be solved and be directly
used for clustering.

2.2 Robust Auto-Weighted Multi-view Clustering
(RAMC)

In this paper, a Robust Auto-weighted Multi-view Cluster-
ing (RAMC) is proposed to deal with the multi-view clus-
tering problem. For multi-view data, m denotes the number
of view and A(1), A(2), ..., A(m) denotes the corresponding
input SMs, where A(v) ∈ Rn×n(1 ≤ v ≤ m). Assigning
the same weight to each graph and calculating an average SM
is a simple way to deal this problem. However, this method
has an obvious disadvantage that it ignores the differences be-
tween different view and is easily disturbed by poor quality
views, which ultimately leads to the insufficient precision of
clustering. Co-training methods also have the similar disad-
vantage [Blum and Mitchell, 1998]. So an effective strategy
to solve this problem is to use a group of meaningful weight
to measure the importance of each view. Thus, the formulated
objective becomes

min
α(v),S

m∑
v=1

α(v)
∥∥∥S −A(v)

∥∥∥
1
,

s.t. αT1n = 1,sij ≥ 0, si1n= 1, rank(LS) = n− c.
(3)

To facilitate parameter adjustment, a regularization item is
added to the problem (3). Thus, solving the problem (3)
is equivalent to finding out the target SM S, which is con-
strained as in Eq. (3) but can approximate each original input
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SM A(v). Then, the formulated objective becomes

min
α(v),S

m∑
v=1

α(v)
∥∥∥S −A(v)

∥∥∥
1
+ γ ‖α‖22 ,

s.t. αT1n = 1, sij ≥ 0, si1n = 1, rank(LS) = n− c.
(4)

where α = [α(1), α(2), ..., α(m)]T and γ > 0. γ ‖α‖22 is used
to smoothen the weight distribution. Obviously, If γ → 0,
then the weight of best view will be 1 and other weights will
be 0, so the trivial solution will be obtained. Conversely,
if γ → ∞, then the equal weights will be obtained. Since
solving the problem is based on the parameter γ and robust
`1-norm, so this method is named as Robust Auto-Weighted
Multi-view Clustering (RAMC).

2.3 Optimization of RAMC
When the parameter γ is set to a proper value, the alternating
iterative strategy is used to optimize the problem (4).

When α is fixed, the following subproblem needs to be
solved

min
sij≥0,si1n=1,rank(LS)=n−c

m∑
v=1

α(v)
∥∥∥S −A(v)

∥∥∥
1
. (5)

σi (LS) means the i-th smallest eigenvalue of LS . Because
LS is a positive semidefinite matrix, so σi (LS) ≥ 0 . Given
a λ which is large enough, so the rank constraint in Eq. (5)
can be removed. Thus the problem (5) can be changed into
the following form

min
sij≥0,si1n=1

m∑
v=1

α(v)
∥∥∥S −A(v)

∥∥∥
1
+ 2λ

c∑
i=1

σi(LS). (6)

Because λ is large enough, and σi (LS) > 0 for each i, so
for the problem (6), the optimal solution S will let the second

term
c∑
i=1

σi(LS) equal to 0 and the constraint rank(LS) =

n − c will be satisfied. Furthermore, according to Ky Fan’s
Theory [Fan, 1949], the following equation can be written

c∑
i=1

σi (LS) = min
F∈Rn×c,FTF=I

Tr(FTLSF ). (7)

Then, utilizing Eq. (7), the problem (6) is changed into the
following problem

min
S,F

m∑
v=1

α(v)
∥∥∥S −A(v)

∥∥∥
1
+ 2λTr(FTLSF ),

s.t. sij ≥ 0, si1n = 1, F ∈ Rn×c, FTF = I.

(8)

This problem can be solved iteratively by optimizing vari-
ables F and S.

i. Solving F When S is fixed, the problem (8) can be writ-
ten

min
F∈Rn×c,FTF=I

Tr(FTLSF ). (9)

Algorithm 1 The algorithm of Robust Auto-Weighted multi-
view Clustering (RAMC) in Eq. (4)

Input:
SMs for m views A(1), A(2), ..., A(m) and A(v) ∈ Rn×n,
number of clusters c, parameter γ. Initialize the weight

for each view (e.g.,α(v) = 1
m ). Let A =

m∑
v=1

α(v)A(v), and

compute F ∈ Rn×c, which is formed by the c eigenvectors
of LA = DA − AT+A

2 corresponding to the c smallest
eigenvalues.
repeat

repeat
i. For each i , update the i-th row of S by solving
the problem (15). where U (v) is a diagonal matrix
with the j-th diagonal element as 1

2|s̃ij−aij |and pi =
m∑
v=1

α(v)U (v)a
(v)
i − λ

2 vi, the j-th element of vi is vij =

‖fi − fj‖22 .
ii. Update F , which is formed by the c eigenvectors
of LS = DS − ST+S

2 corresponding to the c smallest
eigenvalues.

until converge
Update the weight α(v) by solving the problem (23).

until converge
Output: S ∈ Rn×n with exactly c connected components

and the view weight α.

By the c eigenvectors ofLS corresponding to the c smallest
eigenvalues, the optimal solution of F is well composed in
this method.

ii. Solving S When F is fixed. For fixed F , the problem
(8) is as follows

min∑
j
sij>0

m∑
v=1

α(v)
∑
i,j

|sij−a(v)ij |+λ
∑
i,j

||fi−fj ||22sij . (10)

Since for different i, the problem (10) is independent, then
the following problem can be solved separately

min
si1n=1,si≥0

m∑
v=1

α(v)
∑
j

∣∣∣sij − a(v)ij ∣∣∣+ λ
∑
j

||fi − fj ||22sij .

(11)
The problem (11) can be changed into vector form as

min
si1n=1,si≥0

m∑
v=1

α(v)
∥∥∥si − a(v)i ∥∥∥

1
+ λsiv

T
i , (12)

where vi is a vector with the j-th element vij =

‖fi − fj‖22. With the iterative reweighted way, the problem
(12) can be solved by iteratively solving the following prob-
lem

min
si1n=1,si≥0

m∑
v=1

α(v)Tr(si−a(v)i )U (v)(si−a(v)i )T +λsiv
T
i ,

(13)
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(a) View 1, e=0.6 (b) View 2, e=1.0 (c) RAMC Result

Figure 1: Toy-1’s original dataset and the clustering result with RAMC.

(a) View 1, e=0.6,0.8 (b) View 2, e=0.7,1.0 (c) RAMC Result

Figure 2: Toy-2’s original dataset and the clustering result with RAMC.

where U (v) is a diagonal matrix with the j-th diagonal el-
ement u(v)jj = 1

2
∣∣∣s̃ij−a(v)

ij

∣∣∣ , and s̃ij is the current solution. Nie

et al have been proved that the iterative method decreases the
objective of the problem (12) in each iteration and will con-
verge to the optimal solution to the problem (12) .

The problem (13) becomes

min
si1n=1,si≥0

m∑
v=1

1

2
α(v)siU

(v)sTi +si(

m∑
v=1

α(v)U (v)a
(v)
i −

λ

2
vi)

T .

(14)

For each i, let pi =
m∑
v=1

α(v)U (v)a
(v)
i − λ

2 vi, the following

problem can be written

min
si1n=1,si≥0

1

2

m∑
v=1

α(v)siU
(v)sTi − sipTi . (15)

The Lagrangian function of problem (15) is

L (si, η, βi) =
1

2

m∑
v=1

α(v)siU
(v)sTi −sipTi −η (si1− 1)−siβTi ,

(16)
where η and βi are the Lagrangian multipliers, η 6= 0 and

βi ≥ 0. Let the derivative of Eq. (16) w.r.t. be zero, that is
m∑
v=1

α(v)U (v)si − pi − η1− βi = 0. (17)

For the j-th element of si, it then becomes
m∑
v=1

α(v)u
(v)
ii sij − pij − η − βij = 0. (18)

According to the KKT condition, then sijβij = 0. So from
Eq. (18) there is

sij =
1

m∑
v=1

α(v)

(
1

u
(v)
ii

η +
1

u
(v)
ii

pij)+, (19)

where (v)+ = max(0, v). The following function w.r.t. η is
defined as

gi(η) =
1

m∑
v=1

α(v)

[
∑
v

(
1

u
(v)
ii

η +
1

u
(v)
ii

pij)+ − 1]. (20)

Based on Eqs. (19)-(20), and the constraint, si1n = 1, there
is

gi(η) = 0. (21)
Obviously, the root of a function gi(x) is the value of η.
Because gi(x) is a piecewise linear and monotonically in-
creasing function, so η can be easily calculated by Newton’s
method. After calculating η, the optimal solution to the prob-
lem (15) can be obtained by Eq. (19).

When S is fixed, the problem (4) is equivalent to mini-
mization to the following problem:

min
αv≥0,αT 1m=1

m∑
v=1

α(v)e(v) + γ ‖α‖22 , (22)

where e(v) =
∥∥S −A(v)

∥∥
1
. Then the problem (22) becomes

min
α≥0Tm,αT 1m=1

∥∥∥∥ e2γ + α

∥∥∥∥2
2

. (23)

The problem can be solved by a valid iterative algorithm
which is put forward by [Duchi et al., 2008]. By solving
the problem (23), α can be updated. Therefore, the solving
process of the problem (4) can be summarized in Algorithm
1. According to [Nie et al., 2017], Algorithm 1 will converge,
because each subproblem is obtained a optimal solution with
the alternating optimization steps.

3 Experiments
In this section, some experiments are designed to verify the
effectiveness of the proposed algorithm. Following the CLR
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Figure 3: The clustering performance of the RAMC algorithm on on MSRCv1, Caltech101-7, Caltech101-20 and Digits datasets. The
clustering Purity and NMI are shown in solid line and dotted line with step size 0.5 and 0.1 respectively.

method, a graph is constructed for each view of the multi-
view datasets as the initial input matrix A(v) with k-nearest
neighbor method. Only one parameter κ needs to be set in
this method, here the κ represents the number of neighbor
nodes. Too large and too small values of κ can lead to poor
clustering results. Take the MSRCv1 data set as an example,
when κ is set between 5 and 25, it is found that the purity
and NMI increase as κ increases. When κ = 12, the Purity
and NMI start to oscillate and don’t obviously be improved
with increasing the κ value and the Purity and NMI reach
the optimal values when κ = 16. The κ values setting are
similar on other data sets. In this paper, κ is fixed to 16.
Two metrics are used to evaluate the clustering results, one
is the standard clustering Purity, and the other is Normalized
Mutual Information (NMI).

3.1 Toy Example
In this part, two toy experiments on the Toy-1 dataset and
Toy-2 dataset are conducted to verify the effectiveness of
RAMC algorithm. Toy-1 and Toy-2 datasets include two
views respectively. Each view is made up of 90× 90 matrix.
There are three diagonally arranged block matrices in each
view of the Toy-1 dataset and the Toy-2 dataset. The elements
in the three-block matrices of each view are randomly set
from 0 to 1. For the Toy-1 dataset, other data in each matrix
are noise data, which is randomly set from 0 to ewith e = 0.6
in the first view and e = 1 in the second view. For the Toy-
2 dataset, it has the same scale with the Toy-1 dataset while
with different noise settings. With the initial noise e = 0.6
and e = 0.7 in view 1 and view 2, the input matrix for view
1 is obtained with e = 0.8 for the first and second block data,
while the input matrix for view 2 is obtained with e = 1.0 for
the second block and third data. Figure 1 and Figure 2 show
the normalized original input graphs and the gray-scales of
clustering results processed by the RAMC algorithm. Exper-
imental results show that the RAMC algorithm can remove

View MSRCv1 Caltech101-7(20) Digits
1 CM(24) Gabor(48) FOU(76)
2 HOG(576) WM(40) FAC(216)
3 GIST(512) CENT(254) KAR(64)
4 LBP(256) HOG(1984) PIX(240)
5 CENT(254) GIST(512) ZER(47)
6 - LBP(928) MOR(6)

#Size 210 1474(2386) 2000
#Class 7 7(20) 10

Table 1: Statistics of four datasets

the noise successfully and get the pure block matrices. That
is, the proposed algorithm shows the optimal clustering per-
formance on multi-view data with noise.

3.2 Clustering Effects on Different Real Datasets
Following [Li et al., 2015], three widely used real-world
multi-view datasets, MSRCv1 [Winn and Jojic, 2005], Cal-
tech101 [Li et al., 2007] (following [Nie et al., 2017], two
regular subsets Caltech101-7 and Caltech101-20 are used in
our experiments) and Digits [Asuncion and Newman, 2007]
are considered in the experiments. The summarization of
these datasets is shown in Table 1. The proposed RAMC
is compared with the methods: Co-regularized spectral clus-
tering [Kumar et al., 2011] (Co-reg), Multi-View Spectral
Clustering [Cai et al., 2011] (MVSC), Robust Multi-view
Spectral Clustering [Xia et al., 2014] (RMSC), Parameter-
weighted Multi-view Clustering (PwMC) [Nie et al., 2017],
Self-weighted Multi-view Clustering (SwMC) [Nie et al.,
2017]. The result of CLR is also compared as a baseline in
the experiment. The parameter in each compared method is
set as optimum. In order to increase the generality of the pro-
posed algorithm, α(v) for each view, is initialized to a random
weight between 0 and 1, and all weights are normalized. For
each compared method, we repeat the experiment 20 times
on each dataset and report the average performance with the
standard deviation (std).
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MSRCv1 Caltech 101-7 Caltech101-20 Digits
Purity NMI Purity NMI Purity NMI Purity NMI

CLR 0.6133±0.0163 0.6005±0.0165 0.8429±0.0209 0.5221±0.0126 0.6099±0.0150 0.3761±0.0184 0.8719±0.0201 0.8759±0.0185
Co-reg 0.6227±0.0154 0.5924±0.0174 0.6671±0.0203 0.3227±0.0198 0.5598±0.0154 0.4879±0.0264 0.8198±0.0198 0.8068±0.0184
MVSC 0.7304±0.0252 0.6152±0.0178 0.8449±0.0149 0.5972±0.0127 0.7105±0.0159 0.5025±0.0184 0.8609±0.0163 0.8532±0.0125
RMSC 0.7369±0.0203 0.6243±0.0348 0.8021±0.0010 0.4790±0.0103 0.7318±0.0158 0.4923±0.0146 0.8001±0.0490 0.7431±0.0257
PwMC 0.8798±0.0346 0.8015±0.0094 0.8549±0.0013 0.5684±0.0009 0.7137±0.0165 0.5119±0.0184 0.8789±0.0135 0.8889±0.0176
SwMC 0.8714±0.0179 0.7894±0.0142 0.8367±0.0157 0.5310±0.0137 0.7137±0.0184 0.5122±0.0194 0.8820±0.0123 0.8935±0.0190
RAMC 0.8840±0.0087 0.8145±0.0241 0.8839±0.0033 0.6378±0.0052 0.7368±0.0105 0.6180±0.0169 0.8950±0.0324 0.8960±0.0297

Table 2: Performance comparison (with std) of all the compared algorithms on MSRCv1, Caltech101-7, Caltech101-20 and Digits datasets.
Purity and NMI are used as evaluation metrics. The best performance is marked in bold. From the experimental results, we observe that the
proposed algorithm generally performs better than the other compared algorithms.

Following [Nie et al., 2017], the clustering results of all the
methods are shown in Table 2, and the best results are marked
in boldface. According to the Table 2, the proposed RAMC
achieves the best clustering purity and NMI on the three real-
world datasets compared with other six methods.

It can also be seen that the standard deviation of clustering
performance obtained by the RAMC method is quite small,
which means that the proposed RAMC method has stable
clustering performance. It’s worth mentioning that the av-
erage clustering NMI of the proposed RAMC on the dataset
Caltech101-20 is even 10 percentage points higher than the
best performance on other approaches. And the clustering
NMI is also improved on the Caltech 101-7 dataset.

For space limitation, only one random running result is
shown in Figure 3. It can be seen that the solid lines show
the clustering results with parameter γ searched in logarith-
mic form (logγ10) from 0 to 5 with step size 0.5. In theory,
the best clustering results would be obtained if all possible γ
is searched. With an acceptable way, the step size is reduced
from 0.5 to 0.1, thus the more accurate clustering results can
be obtained. For clarity, the dotted line exhibits some cluster-
ing results near the optimal value with step size 0.1.

3.3 Robustness Performance Evaluation
To prove the robustness of the proposed algorithm, the fol-
lowing experiments are designed. First, a set of noisy dataset
needs to be constructed based on an original dataset. Sup-
pose r is the ratio of random noise, and n is the number of
the original datasets, we randomly pick out n× r data points
from the original dataset.The selected data is added to a nor-
mal distribution with an average of 300 and a standard devi-
ation of 30, thus a set of the noisy dataset are formed with
different r from 0 to 0.5 with a step size 0.05. For space lim-
itation, we only take the MSRCv1 dataset as an example. To
make the comparison more clear, we only compare with the
second best and the third best algorithms. We use the cluster-
ing purity and NMI as evaluation metrics in this section. The
experimental results are reported in Figure 4. From the exper-
imental results, we have the following observation. Although
as the ratio of random noise increases, the performance of all
the compared algorithms decreases, the performance gain of
the proposed algorithm becomes more significant. For exam-
ple, compared with PwMC, the performance gain of RAMC
on Purity increases from 0.59% to 67.00% when the ratio
of random noise increases from 0 to 0.5. Meanwhile, com-
pared with PwMC, the performance gain of RAMC on NMI
increases from 1.22% to 498.55% when the ratio of random
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Figure 4: We conduct experiments to test the robustness of the pro-
posed algorithm. From the experimental results, we can see that as
the noisy percentage increases, the performance gain of the proposed
algorithm becomes more significant.

noise increases from 0 to 0.5. This phenomenon confirms the
robustness of the proposed algorithm.

4 Conclusion and Future Work
In this paper, we have proposed a novel Robust Auto-
Weighted multi-view Clustering (RAMC) that aims to learn
a consensus graph with exactly k connected components,
where k is the number of clusters. The structure of the ob-
tained graph makes it suitable to be directly used for clus-
tering without any further post-processing. To make sure the
graph has exactly k connected components, we explicitly im-
pose a low-rank constraint on the objective function and `l-
norm has been employed in this paper for robustness. With
the extensive experiments, the proposed method shows the
superiority and robustness on two synthetic datasets and three
real-world datasets. In future work, this framework will be
extended to semi-supervised context.
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