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Abstract
A continuous-time tensor factorization method is
developed for event sequences containing multiple
“modalities.” Each data element is a point in a
tensor, whose dimensions are associated with the
discrete alphabet of the modalities. Each tensor
data element has an associated time of occurence
and a feature vector. We model such data based
on pairwise interactive point processes, and the
proposed framework connects pairwise tensor fac-
torization with a feature-embedded point process.
The model accounts for interactions within each
modality, interactions across different modalities,
and continuous-time dynamics of the interactions.
Model learning is formulated as a convex optimiza-
tion problem, based on online alternating direction
method of multipliers. Compared to existing state-
of-the-art methods, our approach captures the latent
structure of the tensor and its evolution over time,
obtaining superior results on real-world datasets.

1 Introduction
Exploring latent structure in real-world multimodal data (i.e.,
tensors) is a significant problem for analysis of underlying
generative mechanisms and for predicting unobserved in-
stances. Tensor factorization (TF) provides a flexible and
effective way to learn such latent structure, decomposing
the data into latent factors. Tensor factorization has been
widely used in many applications and has achieved encourag-
ing performance, e.g., for recommendation systems [Rendle
and Schmidt-Thieme, 2010], signal processing [Ozerov et al.,
2011], and computer vision [Shashua and Hazan, 2005].

Such data are often observed sequentially, and may be ana-
lyzed as multimodal event sequences in continuous time. For
example, user behavior in a social network can be treated as a
multimodal event (i.e., message sender × message receiver
× message type) with a time stamp, and the collection of
such events can be formulated as a tensor whose elements
contain the counts of the events up to a certain time. This ten-
sor is time-varying, and the relationships between its modal-
ities can change. Accordingly, its latent factors are likely to
evolve over time. Therefore, we seek the development of i) a
continuous-time tensor factorization (CTTF) for multimodal
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Figure 1: Illustration of our scheme. The feature processes repre-
sent the temporal processes of the event-associated features, and the
{Ak}Kk=1 are embedding matrices of the feature processes.

event sequences; and ii) a method for updating the model on-
line, capturing the evolution of the latent factors over time.

To address these desiderata, we present an online
continuous-time tensor factorization method, based on a
novel model called pairwise interactive point process. As
shown in Fig. 1, the target continuous-time tensor is repre-
sented as a set of counting processes, corresponding to multi-
modal events. The intensity functions of these counting pro-
cesses are factorized in a pairwise manner, simultaneously
representing interactions within each factorization modality
and across different modalities, by the inner products of latent
factors. Each latent factor is a function of time and embedded
features, capturing influences of historical events on current
and future ones. Based on the model, we can predict the ex-
pected number (i.e., counting processes) of future events.

The model is learned by fitting the expected counting pro-
cess with the observed one, formulated here as a convex opti-
mization problem, solved effectively by online alternating di-
rection method of multipliers (ADMM). We analyze the con-
vergence and the computational complexity of our method,
and compare it with the state-of-the-art methods on two real-
world datasets. Experiments show that the proposed method
achieves superior performance on predicting future events.
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2 Related Work
2.1 Tensor Factorization
The Tucker decomposition [Tucker, 1966] factorizes a ten-
sor into a smaller core tensor and a latent factor matrix for
each modality; this approach may suffer from high compu-
tational complexity. To reduce complexity, the canonical de-
composition [Kolda and Bader, 2009] assumes the core ten-
sor is diagonal. A pairwise decomposition method is pro-
posed in [Rendle and Schmidt-Thieme, 2010], which further
reduces the computational complexity of tensor factorization,
and achieves encouraging results in recommendation sys-
tems. The tensor factorization methods in [Rai et al., 2015]
leverage side information, to improve the learning results.
Bayesian tensor factorization methods [Acharya et al., 2015;
Charlin et al., 2015] are also used widely, with scalabil-
ity improved in [Hu et al., 2015] for count data. However,
analysis of the continuous-time evolution of tensor factoriza-
tion, while an important practical problem, is still relatively
under-studied. Existing temporal tensor factorization meth-
ods mainly combine tensor factorization with time series-
based models [Xiong et al., 2010; Dunlavy et al., 2011;
Rafailidis and Nanopoulos, 2014; Acharya et al., 2015;
Charlin et al., 2015], which only address data with discrete
time steps or predefined decays [Koren, 2010], rather than
continuous-time event sequences. Additionally, few of them
consider online learning for tensor factorization.

2.2 Point Processes
Point processes have been considered in many fields, e.g., for
analyzing financial [Bacry et al., 2015] and social network
[Blundell et al., 2012] data, and in healthcare [Xu and Zha,
2017; Xu et al., 2017a] and recommendation [Wang et al.,
2016] systems. To describe the influences of historical events
on current and future ones, a series of complicated models
(e.g., the Hawkes process [Hawkes, 1971] and the correct-
ing process [Xu et al., 2015; 2017b]) have been proposed.
These early works aimed to capture the dynamics of event
sequences associated with a single data modality. Based on
these models, many extensions have been proposed, to an-
alyze multimodal (tensor) event sequences, e.g., the multi-
task multi-dimensional Hawkes process [Luo et al., 2015].
Recently, point processes parameterized by embedded fea-
tures have been proposed [Wang et al., 2016], which model
the events associated with features. However, extension of
these methods to continuous-time tensor factorization is still
an open problem.

Additionally, although methods have been proposed in
[Hall and Willett, 2016; Yang et al., 2017] to explore on-
line learning of point processes, these methods only deal with
Hawkes processes in a nonparametric manner. The online
learning of parametric point processes, with more general for-
mulations, has not been investigated deeply.

3 Proposed Model
3.1 Notations and Problem Statement
Many real-world data are generated sequentially, and can be
formulated as a continuous-time event sequence with multi-
ple data modalities (i.e., data may be mapped to a tensor). A

typical example is online shopping records, in which pairs of
users and items are listed along with a time stamp. Such data
contain two “modalities,” corresponding to users and items,
and features may be available to describe each transaction.

We describe event sequences with K modalities as a set of
triads, denoted {(tn, ζn,fn)}Nn=1. The time stamp for event
n is denoted tn ∈ [0, T ]; ζn = [c1n, ..., c

K
n ] ∈ C1 × ... × CK

represents the multimodal event type, where Ck is the cate-
gorical set of the k-th modality and ckn is the index of the
event corresponding to the k-th modality; and fn ∈ RD is an
event-dependent feature vector.

We represent the event sequence as a continuous-time ten-
sor, i.e., N(t) = [Nζ(t)] ∈ Z|C1|×...×|CK |+ , where ζ =

[c1, ..., cK ] represents a particular multimodal event type, |Ck|
represents the cardinality of Ck, and Z+ represents nonneg-
ative integers. Each element Nζ(t) is a counting process,
recording the number of type-ζ events that have occurred up
to time t. For each ζ, the counting processNζ(t) can be char-
acterized by the expected instantaneous occurrence rate of the
event, conditioned on history, called the intensity function:

λζ(t) =
E[dNζ(t)|Ht]

dt
, ζ ∈ C1 × ...× CK , t ∈ [0, T ], (1)

where Ht = {(tn, ζn,fn)|tn < t} contains historical
events before time t. The intensity functions of all types of
events formulate a continuous-time intensity tensor Λ(t) =

[λζ(t)] ∈ R|C1|×...×|CK |+ . In this setup we do not explicitly
model feature vectors fn, which are assumed as observed co-
variates associated with events; however, the intensity func-
tion is dependent on prior feature vectors and other character-
istics of previous events.

Problem statement: Given observed counting processes
N(t), we aim to explore the latent structures of its intensity
tensor Λ(t), capture the evolution of the latent structures over
time, and predict the number of events in the future.

3.2 Pairwise Interactive Point Processes
The simplest approach for modeling the intensity tensor Λ(t)
is to learn each λζ(t) independently [Du et al., 2015]. Such
a strategy may be questionable because the modalities of
real-world data often have interactions, and hence there is
likely statistical dependencies between the set of {λζ(t)}.
To overcome this problem, many existing factorization meth-
ods, especially those applied in recommendation systems,
consider the pairwise interactions between different modal-
ities in an inner product manner. In particular, for a ten-
sor Λ, those methods represent its element λζ as the sum
of the inner products of different latent factors, i.e., λζ =∑
k 6=k′ u

>
k,ckuk′,ck′ . For the well-known collaborative filter-

ing problem for a 2D matrix (K = 2) [Koren et al., 2009;
Park and Chu, 2009], ζ = [c1, c2], with c1 ∈ C1 and
c2 ∈ C2. For any λ[c1,c2] associated with the |C1| × |C2|
matrix, the construction λζ =

∑
k 6=k′ u

>
k,ckuk′,ck′ yields

λ[c1,c2] = u>1,c1u2,c2 , where the set of vectors {u1,c1}c1∈C1
represent the entities along axis one, and {u2,c2}c2∈C2 repre-
sent the entities along axis two. For 3D tensors this approach
generalizes to pairwise factorization [Rendle and Schmidt-
Thieme, 2010].
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In the above model, λζ(t) only depends on the cross-
modality inner products between the elements of ζ. A natural
extension is to also include intra-modality terms, as

λζ(t) = ηζ(t) +
∑K

k=2

∑k−1

k′=1
u>k,ck(t)uk′,ck′ (t)︸ ︷︷ ︸

Interactions across different modalities

,
(2)

ηζ(t) =
∑K

k=1
ηck(t) =

∑K

k=1
u>k,ck(t)uk,ck(t)︸ ︷︷ ︸

Self-interactions within each modality

,
(3)

where the L-dimensional vector uk,ck(t) with ck ∈ Ck is
the time-dependent latent factor corresponding to the in-
dex ck of the k-th modality. For k = 1, ...,K , Uk(t) =
[uk,1(t), ...,uk,|Ck|(t)] ∈ RL×|Ck| is the latent factor matrix
corresponding to the k-th modality.

The work in [Wang et al., 2016] also considered a base
intensity ηζ(t), like in (2), but in that prior work the base in-
tensity was time-independent. Similar to the work in [Koren,
2010], we represent the base intensity as the sum of the ba-
sis corresponding to different modalities (the ηck(t) in (3)).
Moreover, to avoid additional parameters, we reuse the latent
factors to parameterize the basis (ηck(t) = u>k,ck(t)uk,ck(t)).
Such a strategy implies that the base intensity reflects the self-
interactions within each modality.

In summary, (2) means that event type ζ = [c1, ..., cK ] has
an expected occurrence rate at time t controlled simultane-
ously by the interactions within each modality and the inter-
actions across different modalities. Combining (2) with (3),
we rewrite (2) as

λζ(t) =
∑K

k=1

∑k

k′=1
u>k,ck(t)uk′,ck′ (t). (4)

Like the work in [Du et al., 2015; Xu et al., 2015; Wang et
al., 2016], we represent each latent factor uk,ck(t) as a time-
dependent embedding of observed features:

uk,ck(t) = Ak

[
1∑

ckn=ck,tn<t
fnκ(t−tn)

]
= Akf̂ck(t), (5)

where Ak ∈ RL×(D+1) is the k-th embedding matrix, the
f̂ck(t) is the weighted sum of the historical feature vectors up
to time t, and κ(t) ≥ 0 is a predefined kernel function decid-
ing the weights. We can find that the latent factor uk,ck is the
sum of two components: i) a time-invariant component cor-
responding to the first column of Ak, and ii) a time-varying
component corresponding to the multiplication between the
remaining D columns of Ak, denoted as A2:D+1

k and the ac-
cumulated features, i.e.A2:D+1

k (
∑
ckn=c

k,tn<t
fnκ(t− tn)).

To ensure that the intensity function is physically-meaningful,
here we require that the elements of all embedding matrices
Ak’s and features fn’s are nonnegative, such that the inten-
sity function is nonnegative as well.

4 Online Continuous-Time Tensor
Factorization

4.1 Reformulation of The Problem
Given observed counting process N(t), we aim to learn the
intensity tensor Λ(t) and the parameters {Ak}Kk=1 in the

model defined by (4)-(5). Unlike maximum likelihood esti-
mation (MLE) proposed in most existing works [Lewis and
Mohler, 2011; Luo et al., 2015; Wang et al., 2016], we learn
our pairwise interactive point process model as a regularized
linear predictor, for efficient online learning. Specifically, in-
stead of maximizing the likelihood of the observed event se-
quence, we aim to fit the observed counting process N(t)
with their expectation E[N(t)], which is estimated by the in-
tegration of the intensity tensor, i.e.,

∫ T
0

Λ(s)ds. Given the
event sequence {(tn, ζn,fn)}Nn=1, we present the following
squared loss function as the objective function:

R({Ak}Kk=1) =
N∑
n=1

∣∣∣ 1
tn

(
Nζn(tn)−

∫ tn

0

λζn(s)ds
)∣∣∣2. (6)

We use the factor 1
tn

to rescale the weight of the n-th estima-
tion error, because the variance of the averaged intensity, i.e.,
E[N(t)−E[N(t)]

t ]2 is generally bounded.
Minimizing (6) directly is non-convex because it involves

the terms like A>kAk′ , k 6= k′. Fortunately, we can reformu-
late the problem as a convex optimization problem by rewrit-
ing the intensity function as

λζ(t) =
∑K

k=1

∑k

k′=1
f̂>ck(t)A

>
kAk′ f̂ck′ (t)

=
∑K

k=1

∑k

k′=1
f̂>ck(t)Xkk′ f̂ck′ (t)

=
∑K

k=1

∑k

k′=1
tr(F>

ckck′
(t)Xkk′) = f̃

>
ζ (t)x.

(7)

Here, Xkk′ = A>kAk′ , Fckck′ (t) = f̂ck(t)f̂
>
ck(t) is the

outer product of the accumulated feature and its transpose,
and tr(·) calculates the trace of matrix. The parameter, de-
noted as x ∈ RD′ , D′ = K(K+1)(D+1)2

2 , is a vectorization of
all matrices Xkk′ ’s, i.e., x = vec({Xkk′}k≥k′). Similarly,
f̃ζ(t) = vec({Fckck′}k≥k′) is the vectorized representation
of the Fckck′ (t)’s.

Based on (7), we rewrite the loss function in (6) as

R(x) = ‖N tN
0 − F

tN
0 x‖22, (8)

where the vector N tN
0 = [ 1

tn
Nζn(tn)] ∈ RN , and the matrix

F tN0 = [ 1
tn

∫ tn
0
f̃>ζn(s)ds] ∈ RN×D′ . Moreover, the param-

eter vector x has structure. In particular, we can construct a
symmetric rank-L matrixX from the parameter vector x as

X =

[
X11, ··· , X1K

...,
. . .,

...
XK1, ··· , XKK

]
=

[
A>1

...
A>K

]
[A1, ...,AK ], (9)

where x vectorizes the lower triangular submatrices of X .
For convenience, we denote the operator that constructs X
from x as X = map(x). Considering the nonnegative and
low-rank properties ofX , the final optimization problem is

minx≥0R(x) + α‖map(x)‖∗, (10)

where ‖ · ‖∗ calculates the nuclear norm of the matrix. This
regularizer imposes a low-rank constraint on X and its sig-
nificance is controlled by α. By solving (10), we learn the
parameters of our point process model as a regularized linear
predictor.
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4.2 Online Learning Strategy
To track the evolution of the model with new data, we
solve the optimization problem in (10) in the framework of
online learning. In particular, we can develop an online
learning algorithm based on the stochastic alternating direc-
tion method of multipliers (ADMM) [Ouyang et al., 2013;
Zhong and Kwok, 2014]. In the initial phase, we first estimate
the parameters from the observations till time T , denoted as
xT . When new events occur in [T, Tnew], we can calculate
the new counting processes and the new embedded features
quickly, denoted as NTnew

T and F TnewT . We can then update
the parameters by solving

minx≥0,y,z ‖NTnew
T − F TnewT x‖22 + ρ‖x− y‖22

+ α‖map(y)‖∗ + 2ρ(z>(x− y)) + β‖x− xT ‖22,
(11)

where y is an auxiliary variable and z is a dual variable.
The first term corresponds to the squared loss function for
the new data, and the subsequent three terms are argumented
Lagrangian terms of ordinary ADMM. Additionally, we add
‖x − xT ‖22 to ensure that the new estimation should not be
too far from the previous one. The weight of this term is con-
trolled by a parameter β. We can minimize (11) by alternating
optimization. In the i-th step, we obtain xi by updating xi−1
based on new observations, and the optimization problem is

xi =arg minx≥0 ‖NTi
Ti−1
− F TiTi−1

x‖22
+ ρ‖x− yi−1 + zi−1‖22 + β‖x− xi−1‖22.

(12)

This problem can be solved efficiently by projected gradient
descent. Given xi, we update yi by solving a low-rank ap-
proximation problem, and soft-thresholding is applied.

yi =arg miny ρ‖y − xi − zi−1‖2F + α‖map(y)‖∗
=vec(Sα

ρ
(map(xi + zi−1))),

(13)

where the operator Sδ(·) shrinks the singular values of the
matrix with a threshold δ, and the operators map(·) and vec(·)
are defined as previously. Finally, we obtain the new dual
variable zi by zi = zi−1 + (xi − yi). The scheme of our
algorithm is shown in Algorithm 1, where the operator (·)+
keeps all nonnegative values from changing and sets all neg-
ative values to zeros.

It should be noted that for each time Ti we can construct
the low-rank symmetric matrixXi from the estimated param-
eters, i.e., Xi = map(xi). When the embedding matrices
{Ak}Kk=1 in the interval [Ti−1, Ti] are required, according to
(9) we can apply the symmetric nonnegative matrix factoriza-
tion [Kuang et al., 2012] toXi and obtain them accordingly.

4.3 Prediction of Future Events
After learning the pairwise interactive point process model,
we can predict future events. In particular, given the model
trained till time T , we can simulate a set of events happening
in the following time interval [T + dT ] by Ogata’s thinning
method [Ogata, 1981]. The expected number of the events
with a specific type in this target interval is estimated by av-
eraging the increments of the counting processes in different
simulation trials.

Algorithm 1 Online CFFT

Input: An initial sequence in [0, T0], parameters α, β, ρ, τ .
Output: A set of xi’s for different time intervals.

1: Initialize x0 = (((F T0
0 )>F T0

0 )−1(F T0
0 )>NT0

0 )+,
2: y0 = x0, z0 = 0.
3: for i = 1, 2, 3, ... do
4: CalculateNTi

Ti−1
and F TiTi−1

. Set xi = xi−1.
5: Φ = (F TiTi−1

)>F TiTi−1
+ (ρ+ β)I .

6: b = (F TiTi−1
)>NTi

Ti−1
+ ρ(yi−1 − zi−1) + βxi−1.

7: Projected gradient descent (Inner iterations):
8: while not converge do
9: Update x by xi = (xi − 2τ(Φxi − b))+.

10: Update y by (13).
11: Update z by zi = zi−1 + (xi − yi).

5 Further Analysis
5.1 Convexity and Convergence
Instead of learning the matrices {Ak}Kk=1 directly, our
method reformulates the parameters as a vector x and learns
by convex optimization. In the case that the observed event
sequences are generated by a stationary point process, the pa-
rameters converge to a global optimal solution of (10) with
the increase of data. Via the analysis in [Ouyang et al., 2013],
the convergence rate of x is guaranteed to be O( log tt ), where
t is the number of iterations. Furthermore, even if the target
point process is not temporal stationary, our online learning
method can still ensure that we can obtain a global optimal
solution in each step (i.e., for the data in specific time inter-
vals). In such a situation, the sequence of optimums {xi}
reflects the evolution of the target point process. The perfor-
mance of our method on convergence is shown in Fig. 2(a)
for further verification.

5.2 Sample Complexity
Equation (8) measures the empirical risk between the normal-
ized counting processes and their expectations estimated by a
linear predictor. According to Theorem 1 in [Shamir, 2015],
we have the following proposition:

Proposition 5.1. Suppose N events are observed for a point
process with K event types, i.e., ζ ∈ C1 × ... × CK . If its
counting process satisfies 1

tNζ(t) < Y for all t and ζ, and
its intensity function can be decomposed as in (4), which con-
tains K latent processes with D+1 dimensions, then we can
construct a linear predictor with a D′-dimensional parame-
ter vector x, whereD′ = K(K+1)(D+1)2

2 and ‖x‖2 ≤ B, and
the bound on the excess risk E[R(x̂)−R(x∗)] satisfies

E[R(x̂)−R(x∗)]

≤ O

(
min

{
Y 2,

B2 +D′Y 2 log(1 + N
D′ )

N
,
BY√
N

})
,

(14)

where x̂ is the optimum learned from observed events and x∗
is the ground truth of the model.
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According to (14) we can find that i) when data is insuf-
ficient (i.e., N < min{D′, B

2

Y 2 }), the learning results suffers
from over-fitting and the excess risk and 1

t2N
2
ζ (t) have the

same order of magnitude; ii) when considering many modal-
ities (i.e., large K) or high-dimensional features (i.e., large
D), the bound of excess risk is likely to beO(BY√

N
) even if we

have a large amount of samples. Fortunately, in many practi-
cal applications the number of modalities is limited (K = 2
or 3 commonly) and the low-rank assumption of latent pro-

cesses is applied, so that the boundO(B
2+D′Y 2 log(1+ N

D′ )

N ) is
achievable when sufficient events are observed.

5.3 Computational Complexity
The bottleneck of our method is calculating the matrix F TiTi−1

in each step. Each row of F TiTi−1
involves the integration of

intensity function, which considers all events happening be-
fore a specific time t. The computation becomes intractable
with the increase of historical events. This problem can be
solved when defining the kernel function κ(t) in (5) as a
monotonically-decreasing function, e.g., exponential func-
tion. In particular, we set κ(t) = w exp(−wt), t ≥ 0. As
a result, when we calculate the rows of F TiTi−1

, the historical
events whose timestamps thistory � Ti−1 can be ignored
because κ(Ti−1 − thistory) ≈ 0. Suppose that there are N
events in [Ti−1, Ti] and for each event we consider at most
M historical events to calculate the corresponding row of
F TiTi−1

, then the computation ofF TiTi−1
involvesO(MN) oper-

ations. As a result, suppose that the dimension of the param-
eter x is D′, then the per-iteration complexity of our method
is O(D′2MN). Note that although D′ = O(K2D2), it is
generally ignorable compared with MN because the number
of modalities K and the dimension of feature D are always
limited in practice. A typical runtime curve in the case with
K = 2 andD = 20 is shown in Fig. 2(b), verifying the above
analysis. The proposed method is implemented in MATLAB.

6 Experimental Results
6.1 Competitors and Evaluations
We evaluate our method (CTTF) on two real-world datasets,
and we segment each into several subsets. For each subset, we
use all the events up to a predefined timestamp as the train-
ing data, and the remaining events as the testing data. The
hyper-parameters, including {ρ, α, β} in our method and the
w in kernel κ(t) are selected using 10-fold cross validation
with grid search. Using the prediction method mentioned
in Sec. 4.3, we predict the number of events happening in
the testing time interval and report the Mean Absolute Error
(MAE) between the predicted and true number. The mean
and the standard deviation of the MAEs obtained in different
subsets are shown as errorbars in Fig. 3(a) and 3(b).

We consider the following methods as baselines, for com-
parison. In the case of 2D tensor (matrix) data, we implement
four methods: classical matrix factorization TimeSVD++
[Koren, 2010], dynamic Poisson factorization [Charlin et al.,
2015], low-rank regularized Hawkes process (LR-Hawkes)
[Du et al., 2015], and the co-evolutionary feature process
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Figure 2: Illustrations of the convergence and the complexity of our
method. The testing sequence is from the IPTV dataset. The dataset
contains two modalities (7, 100 users and 436 drama programs) and
each event is associated with a 20-dimensional feature vector de-
scribing the attributes of the corresponding drama. In (a), the loga-
rithm of loss function obtained in 10 steps is shown. In each step,
we import a batch of events to update x by our method. The x-axis
represents the total number of projected gradient descent for all the
steps and the colors of curves correspond to different steps.

(CoevolveFP) [Wang et al., 2016]. In the case of 3D ten-
sor data, besides the Poisson and the CoevolveFP, we com-
pare with Bayesian probabilistic tensor factorization (BPTF)
[Xiong et al., 2010], and the scalable Bayesian nonnegative
tensor factorization method (SBTF) [Hu et al., 2015].

Similar to our work, the LR-Hawkes and the CoevolveFP
are point process-based methods, which estimate the number
of future events by the simulation method in Sec. 4.3. The
TimeSVD++ can also describe event sequences in continu-
ous time. It estimates the number of future events directly
by learned latent factors and a predefined decay function of
time. For the other methods, which cannot factorize tensors
in the continuous-time domain, we first reformulate original
data as time series: the event sequence is discretized into sev-
eral bins and the numbers of the events with different types in
each bin are recorded. The training count tensor is fitted by
these methods and the testing count tensor is estimated by the
learned latent factors.

Additionally, in both these two cases, we implement our
CTTF method by batch optimization and online optimization,
respectively (CTTF-Batch and CTTF-Online). The CTTF-
Batch assumes that the whole training sequence obeys to a
stationary point process, and we learn a single pairwise inter-
active point process model. The CTTF-Online relaxes the sta-
tionary assumption and updates the model online by import-
ing small batches of training events sequentially. The testing
sequence is then estimated by the model in last updating.

6.2 IPTV Dataset
The IPTV dataset [Wang et al., 2016; Luo et al., 2014] con-
tains the watching history of 7, 100 users, of 436 drama pro-
grams in 11 months, with 2, 392, 010 events, and 1, 420 bi-
nary movie features, including 1, 073 actors, 312 directors,
22 genres, 8 countries and 5 years. There are two modal-
ities corresponding to “user” and “TV program”, and each
counting process N(t) counts how many viewing behaviors
of a specific user-program pair happen till time t. We re-
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Figure 3: Experimental results and comparisons.

duce the dimension of these features to 20 (= D) by nonneg-
ative sparse principal component analysis [Zass and Shashua,
2007]. We can treat the counting processes as a continuous-
time 2D tensor, whose elements record the numbers of modal-
ity pairs (i.e., user ID and drama ID). We segment the dataset
into 47 subsets, each of which corresponds to user watching
records over a contiguous span of 192 hours (8 days). For
each method, the data in the first 168 hours is used to train
the model and the remaining data is used to test.

Figure 3(a) visualizes the comparisons for various meth-
ods on the average and the standard deviation of MAEs. We
find that the our CTTF-Online method obtains smaller MAE
with smaller standard deviation, outperforming the compar-
ison methods. In particular, the TimeSVD++ considers the
influence of historical observations on current interactions
among different modalities but it does not take advantages
of features of events in its framework. The dynamic Pois-
son method only considers the transition probability between
adjacent events, which cannot capture more complicated trig-
gering patterns. The LR-Hawkes method does not consider
the interactions across different modalities, considering the
event sequences corresponding to different multimodal event
types independently. The CoevolveFP method does not con-
sider the interaction with each modality. The LR-Hawkes and
CoevolveFP methods are inferior to the proposed CTTF be-
cause they only model one-side interactions. Moreover, the
CTTF-Online is slightly better than the CTTF-Batch. In prac-
tice, the target model often may be locally-stationary rather
than globally-stationary, and the testing data is likely to have
more similar dynamics to its adjacent training data. The
CTTF-Online updates the model online and captures its evo-
lution over time.

6.3 Political Science Dataset
We next consider a dataset from the Global Database of
Events, Location, and Tone (GDELT) [Leetaru and Schrodt,
2013]. It records the dyadic interactions between countries
in the form of Country A did something to Country B at a
certain time. Here, we consider 88 countries, 16 types of
actions, and a time period of 2, 395 days (from years 2007
to 2013), containing 9, 825, 248 events. In particular, each
event is associated with two attributes called “QuadClass”
and “Coldstein”, respectively. The “QuadClass” indicates
that the action in the event belongs to one of the following

four classes: Verbal Cooperation, Material Cooperation, Ver-
bal Conflict, and Material Conflict. The “Coldstein” is in the
range of [−10, 10]. It represents positive (negative) events
by positive (negative) values, and its amplitude indicates the
infectivity of the event. Therefore, we represent these two
attributes as a 25-dimensional binary feature vector for each
event. There are three modalities corresponding to “political
action type”, “the country applying action” and “the coun-
try suffering action”, and each N(t) records the number of
“country-country-action type” triples up to time t. The count-
ing processes of the interactions among the countries is for-
mulated as a continuous-time 3D tensor. In this experiment,
we segment the GDELT dataset into 39 subsets, each of which
corresponds to the political events in 9 weeks (63 days). For
each method, the data in the first 8 weeks is used to train the
model and the remaining data is used to test.

Figure 3(b) visualizes the comparisons for the different
methods, on the average and the standard deviation of MAEs.
Similar to the experiments on the IPTV dataset, our CTTF-
Online method is superior to the alternative approaches. In
this experiment, the TimeSVD++ and the CoevolveFP are de-
signed for the 2D case, which are unsuitable for 3D tensor
data. The LR-Hawkes method treats the sequences with spe-
cific multimodal event types independently, and suffers from
over-fitting, yielding an MAE that is larger than the methods.
The BPTF is originally designed for the 2D case as well, but
it can be easily extended to the 3D case. Similar to the Pois-
son method, it only considers the transitions between adjacent
events, and thus cannot capture high-order relationships. The
most competitive baseline of our method in this experiment is
the SBFT method, which achieves comparable performance
to the CTTF-Batch method. However, it is still inferior to the
CTTF-Online method because it ignores the evolution of the
model over time.

7 Conclusions
We propose a pairwise interactive point process model to
achieve online continuous-time tensor factorization for mul-
timodal event sequences. The learning task of the proposed
model can be reformulated as a convex optimization prob-
lem, which can be solved by an online ADMM. We ana-
lyze the convergence and the computational complexity of
our method, and demonstrate its feasibility and superiority
on two real-world datasets. In the future, we plan to intro-
duce the online learning strategy into the framework of max-
imum likelihood estimation, with the goal of achieving a bet-
ter convergence rate. Additionally, the neural network-based
embedding methods will be considered for the latent factors.
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