
A Local Algorithm for Product Return Prediction in E-Commerce

Yada Zhu1, Jianbo Li2, Jingrui He3, Brian L. Quanz1, Ajay A. Deshpande1
1 IBM Research, Yorktown Heights, NY
2 Three Bridges Capital, New York, NY
3 Arizona State University, Tempe, AZ

{yzhu, blquanz, ajayd }@us.ibm.com, jianboliru@gmail.com, jingrui.he@asu.edu

Abstract

With the rapid growth of e-tail, the cost to han-
dle returned online orders also increases signifi-
cantly and has become a major challenge in the e-
commerce industry. Accurate prediction of prod-
uct returns allows e-tailers to prevent problematic
transactions in advance. However, the limited ex-
isting work for modeling customer online shop-
ping behaviors and predicting their return actions
fail to integrate the rich information in the prod-
uct purchase and return history (e.g., return history,
purchase-no-return behavior, and customer/product
similarity). Furthermore, the large-scale data sets
involved in this problem, typically consisting of
millions of customers and tens of thousands of
products, also render existing methods inefficient
and ineffective at predicting the product returns.
To address these problems, in this paper, we pro-
pose to use a weighted hybrid graph to represent
the rich information in the product purchase and re-
turn history, in order to predict product returns. The
proposed graph consists of both customer nodes
and product nodes, undirected edges reflecting cus-
tomer return history and customer/product similar-
ity based on their attributes, as well as directed
edges discriminating purchase-no-return and no-
purchase actions. Based on this representation,
we study a random-walk-based local algorithm for
predicting product return propensity for each cus-
tomer, whose computational complexity depends
only on the size of the output cluster rather than the
entire graph. Such a property makes the proposed
local algorithm particularly suitable for processing
the large-scale data sets to predict product returns.
To test the performance of the proposed techniques,
we evaluate the graph model and algorithm on mul-
tiple e-commerce data sets, showing improved per-
formance over state-of-the-art methods.

1 Introduction
Recent years have seen explosive growth of e-tails (e-
commerce retailers and retailing), which are expected to

reach $4 trillion by 20201. Meanwhile, numerous studies
have shown that about one-third of all e-commerce orders
incur returns every year3. In today’s competitive environ-
ment, more and more retailers deploy hassle-free-return poli-
cies which improve customer engagement, overall spending
amount, purchase rate, customer satisfaction and future buy-
ing behavior [Cassill, 1998; Wood, 2001; Petersen and Ku-
mar, 2009]. However, a generous return policy is associated
with reduced profit margin induced by high return rate [Pur et
al., 2013]. Direct return costs, such as shipping, re-stocking
and re-furbishing, and indirect costs, such as call center de-
mand and customer satisfaction, have become a major chal-
lenge for the e-commerce industry and have even caused
many online retailers to fail to achieve probability2. There-
fore, it is of significant economic impact to predict customers’
return actions while they are searching/browsing products or
putting together their shopping cart, and prevent problematic
transactions from taking place. However, historical product
purchase and return records contain rich information, and can
be challenging to integrate in a principled way for the purpose
of predicting future returns. To the best of our knowledge, the
limited existing work for modeling customer online shopping
behaviors and predicting their return actions typically focus
on a single type of information. Furthermore, when applied
on large-scale data sets consisting of millions of customers
and tens of thousands of products, existing work often turns
out to be both inefficient and ineffective.

To address these problems, in this paper we propose to
use a weighted hybrid graph named HyGraph to represent
the rich information in historical records (e.g., return history,
purchase-no-return behavior, and customer/product similar-
ity), in order to predict customer return actions with respect
to a specific product. The proposed graph consists of both
customer nodes and product nodes, as well as directed and
undirected edges. The existence of an undirected edge be-
tween a pair of customer node and product node indicates
that the customer has returned the product before; whereas
the existence of a directed edge indicates that the customer
has purchased the product without return. In this way, both

1http://www.huffingtonpost.com/michael-lazar/retailers-people-
want-eas b 12759542.html

2https://hbr.org/2014/08/online-shopping-isnt-as-profitable-as-
you-think

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3718



types of information between customers and products will
be taken into consideration when we evaluate customer re-
turn propensity towards a product, and similar customers with
similar (directed and undirected) connections with the prod-
uct nodes are expected to have similar return behaviors to-
wards future products. In addition, customers with similar at-
tributes (e.g., age, gender and income) are expected to behave
similarly with respect to their return behaviors, and products
with similar properties (e.g., style and color) are likely to be
returned by the same customer. Hence, there is an undirected
edge between a pair of customers (products) if their similar-
ity exceeds a certain threshold. Based on such a hybrid graph,
our goal is to build predictive models for identifying top cus-
tomers who are likely to return a specific product on the cata-
log in the future. To this end, we propose a random-walk-
based local algorithm named LoGraph, to find the cluster
consisting of ranked customers centered around the seed node
corresponding to the target product. The computational com-
plexity of LoGraph depends on the size of the output cluster,
rather than the entire graph, making it particularly suitable for
learning from the large-scale data set consisting of historical
purchase and return records. The performance of LoGraph is
evaluated on multiple e-commerce data sets, showing that it
outperforms state-of-the-art techniques.

The main contributions of this paper can be summarized as
follows.

• We propose HyGraph, a novel weighted hybrid graph to
represent the rich information in historical records for
modeling customer purchase and return behaviors in e-
commerce.

• We propose LoGraph algorithm tailored for HyGraph in
order to identify customers who are most likely to return
with respect to a specific product.

• We use multiple real-world data sets from leading omni-
channel retailers to validate the performance of the pro-
posed graph model and local algorithm, which demon-
strate their effectiveness and efficiency as compared to
state-of-the-art.

The rest of the paper is organized as follows. In Section 2,
we review the related work on predicting product returns and
graph partitioning. In Section 3, we introduce the proposed
hybrid graph HyGraph followed by the local algorithm Lo-
Graph. Then we present experimental results on real-world
data sets in Section 4 and conclude the paper in Section 5.

2 Related Work
In this section, we briefly review the existing work on pre-
dicting product returns and graph partitioning.

2.1 Prediction of Product Returns
Existing work on return prediction focuses on end-of-life re-
turns that have already been sold for profit and now have the
potential of generating additional benefits through remanu-
facturing or reducing environmental hazards, e.g. electronic
products [Toktay et al., 2003]. Simple and naive approaches
include either using the proportion of returns to sales with a
known life cycle length [Toktay, 2004] or autoregressive-type

statistical models to forecast return quantity and time [Ma
and Kim, 2016]. These methods are designed to estimate the
total return quantity within a time period which cannot pre-
dict individual customers’ return actions. [Urbanke et al.,
2015] investigate Mahalanobis feature extraction for return
rate prediction based on product features (e.g., brand, color,
size), customer attributes (e.g., past return rate), and basket
information, such as the platform from which the basket is
ordered, payment method, and total number of products in
the basket. This method is not designed for customer-product
level prediction and the required information is usually avail-
able only when customers have finished their online shopping
journey. This could limit the capability for e-tailers to take
preventive actions in advance for reducing return rates. The
challenges for such applications lie in the large problem scale
as well as the sparse history for continuously introduced new
products and customers. To address these issues, in this pa-
per, we propose a local algorithm LoGraph and hybrid graph
HyGraph for modeling customer return behaviors.

2.2 Graph Partitioning

Today data from many different domains, such as social and
information networks, biology, and neuroscience, can be nat-
urally mapped to large graphs (networks). However, mining
large graphs to detect optimal clusters of vertices is a NP-
complete problem. Recent years local algorithms for graph
partitioning have achieved a time complexity that is close to
linear in the number of edges. The first of such methods is
NIBBLE [Spielman and Teng, 2013] that attempts to mini-
mize the clustering quality metric cut conductance for undi-
rected binary graphs. Given a starting vertex, it provably finds
a cluster near that vertex in time (O(2b log6m)/φ4)) that is
proportional to the size of the output cluster. Finding a clus-
ter in time proportional to its size is an extremely valuable
routine in itself, and the authors show how NIBBLE can be
used as a subroutine to repeatedly remove small clusters from
a large graph in order to obtain a nearly-linear time graph
partitioning algorithm. Later [Andersen et al., 2006] extends
NIBBLE using PageRank vectors and develops an algorithm
for local unweighted binary graph partitioning that can find a
cut with conductance at most φ. [Andersen et al., 2007] fur-
ther generalize their work to directed binary graph by defin-
ing conductance in terms of the stationary distribution of a
random walk. More recently [Yang et al., 2017] adapts NIB-
BLE to undirected and weighted bipartite graphs whose com-
putational complexity is the same as NIBBLE. None of these
local algorithms for graph partitioning directly fits our needs
where the large massive graphs are weighted and contain both
directed and undirected edges.

3 The Proposed Framework

In this section, we introduce the proposed hybrid graph repre-
sentation (HyGraph) of the rich information in historical cus-
tomer records, and the local algorithm (LoGraph) for finding
customers highly likely to return a given product based on the
graph.
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Figure 1: HyGraph Illustration.

3.1 Weighted Hybrid Graph

In order to predict customers’ return actions with respect to
a specific product, we propose to use weighted hybrid graphs
(HyGraph) to represent historical customer purchase/return
behaviors and customer/product similarity, as shown in Fig-
ure 1. The graph consists of two types of nodes, a customer
node set (Vc) and a product node set (Vp), as well as three
types of edges, directed edges (

−→
Ep) from customer nodes to

product nodes reflecting historical purchases without returns,
undirected edges (Er) between pairs of customer and product
nodes representing historical returns, and undirected edges
(Es) showing customer-customer similarity and/or product-
product similarity. Such a design is based on the follow-
ing key observation: customers with historical returns (undi-
rected edges) are more likely to return a similar product as
compared to customers with historical purchases but no re-
turns (directed edges). Furthermore, the presence of a di-
rected edge distinguishes the actions of purchase-without-
return and never-purchase. The hybrid graph designed in this
way enables us to find more promising results compared to
a simple undirected graph, as it contains richer information
with the use of both directed and undirected edges.

Given a product node, our goal is to find a local cluster
in the HyGraph near this seed node with a low conductance,
such that the customers within this cluster are highly likely to
return the product. Formally, we have following definitions.

Definition 1. In a HyGraph G = (V,E) with node set V =

Vc∪Vp and edge setE =
−→
Ep∪Er∪Es; every edge (i, j) ∈

−→
Ep

links node i ∈ Vc to node j ∈ Vp (ordered pair of nodes);
if an edge (i, j) ∈ Er for i ∈ Vc and j ∈ Vp, then edge
(j, i) ∈ Er; if an edge (i, j) ∈ Es for i, j ∈ Vc or i, j ∈ Vp,
then edge (j, i) ∈ Es.

In the HyGraph G = (V,E) defined above, the number of
nodes equals to n = |V | and the number of edges is given by
m = |E|. The HyGraph can be represented by its adjacency
matrix A ∈ Rn×n, where the rows and columns represent the
nodes of the graph and the entries indicate the edge weight.

Definition 2. The adjacency matrix A of a HyGraph G =

(V,E) is an n× n asymmetric matrix, such that

Aij =



|Er|ij i ∈ Vc, j ∈ Vp,
wp|
−→
Ep|ij + |Er|ij i ∈ Vc, j ∈ Vp, wp ∈ [0, 1],

wcsij i, j ∈ Vc, wcsij ∈ [0, 1],

wpsij i, j ∈ Vp, wpsij ∈ [0, 1],

0 otherwise.
(1)

In the above definition, |Er|ij = |Er|ji = 1 if there is
an undirected edges between nodes i and j; and |Er|ij =
|Er|ji = 0, otherwise. wp ∈ [0, 1] is a scale factor represent-
ing the impact of purchase-without-return actions. In other
words, wp > 0 indicates that a customer who has purchased a
product without returning it is less likely to return that prod-
uct upon future purchases. The larger the value of wp, the
higher the probability that a customer will keep the product.
When there are multiple purchases or multiple purchases with
at least one return between a pair of customer-product nodes,
the edge weights are combined in the adjacency matrix using
wp|
−→
Ep|ij + |Er|ij for i ∈ Vc, j ∈ Vp, w

p ∈ [0, 1]. Usu-
ally customers with similar attributes are expected to behave
similarly towards product returns, and products with similar
attributes are likely to be returned by similar customers. Thus
we introduce weights wcsij (wpsij ) in the graph representing the
similarity between customers (products) i and j calculated as
follows.

wcsij = wcsJij , i, j ∈ Vc, wcs ∈ [0, 1], Ji,j ∈ [0, 1], (2)

where wcs is a scale factor reflecting the impact of customer
similarity and Jij is the normalized similarity score. Jij can
be obtained based on customer attributes using the Pearson
coefficient, Jaccard coefficient, and cosine similarity, etc. The
weight wpsij is defined in the same way as Eq. (2). Note Hy-
Graph can accommodate more sophisticated similarity mea-
sures, however evaluating product similarity is beyond the
scope of this paper.

Furthermore, we define the out degree and outgoing edge
border on the HyGraph as follows.
Definition 3. The out degree of a node v ∈ V in a HyGraph
is defined as

douti =
∑
iAij , i = 1, 2, · · · , n. (3)

Definition 4. The outgoing edge border of a node set S ⊂ V
is defined as the set of outgoing edges from S

∂(S) = {(u, v)|u ∈ S and v ∈ S̄}, (4)

where S̄ is the compliment of S.

3.2 LoGraph Algorithm
In this subsection, we introduce the proposed LoGraph algo-
rithm for finding potential customers that are highly likely to
return a specific product. LoGraph is a random-walk-based
local algorithm on HyGraph. The random walk starts from a
seed node v ∈ Vp. It corresponds to the product node which
we would like to predict the set of users who are likely to
purchase and return. Let p(u), u ∈ V denote the probabil-
ity distribution of the random particle over n nodes such that
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∑
u p(u) = 1. The change in this distribution after one step

of the random walk is a linear operator that is realized by
multiplying p(u) with the matrix M ∈ Rn×n defined as

M = (AD−1 + I)/2, (5)

where A is the adjacency matrix of the graph defined in
Eq. (1), D is the diagonal matrix with diagonal entries
(dout1 , · · · , doutn ) defined in Eq. (3), and I is the identity ma-
trix. According to M , the random walk at each time step
stays at the current node with probability 1/2, and otherwise
moves to the endpoint of a random edge out of the current
node. Under certain conditions [Andersen et al., 2007], the
random walk converges to a unique stationary distribution
π(u), u ∈ V .

Based on the random walk defined above, using the defi-
nition of cut conductance for directed binary graphs in [An-
dersen et al., 2007], we formulate our problem of product
return prediction as finding a local cluster S near seed node
v (product node) that minimizes the cut conductance on Hy-
Graph, which is defined based on the stationary distribution
as follows.

Φc(S) =

∑
(u,v)∈∂(S) π(u)M(u, v)

min
{∑

v∈S π(v),
∑
v∈S̄ π(v)

} , (6)

where the numerator is the stationary out flow across the bor-
der of S defined in Eq. (4), and the denominator is the mea-
sure of the smaller side of the partition induced by S.

Following [Spielman and Teng, 2013], we define

I(p, x) = max
w∈[0,1]n

w(u)
π(u)∑
π

=x

∑
u∈V

w(u)p(u). (7)

One can easily check that I(p, 0) = 0 and I(p, 1) = 1. As
the distribution p approaches the stationary distribution, the
curve I(p, ·) approaches the straight line. Let Sj(p) be the
set of j nodes u maximizing p(u)/π(u) and denote Ix(p, x)
as the partial derivate of I(p, x) with respect to x, we have

Ix(p, x) = lim
δ→0

Ix(p, x− δ) =
p(σ(j))

π(σ(j))
, (8)

where σ(j) = Sj(p) − Sj−1(p) is the permutation function,
such that

p(σ(i))

π(σ(i))
≥ p(σ(i+ 1))

π(σ(i+ 1))
. (9)

for all i. As p(σ(i))/π(σ(i)) is non-increasing, Ix(p, x) is a
non-increasing function in x and I(p, x) is a concave function
in x. I(p, x) is used as one convergence measure and Ix(p, x)
characterizes the normalized probability mass.

Next we introduce our proposed LoGraph in Algorithm 1.
It improves over NIBBLE [Spielman and Teng, 2013] in such
a way that it is tailored for weighted hybrid graphs and the cut
conductance is based on the stationary distribution of random
walks instead of node degrees. LoGraph works as follows. It
takes as input the hybrid graph G, the product node v ∈ Vp,
the upper bound k on the number of customers within the lo-
cal cluster, the upper bound φ on the conductance of the local
cluster, the positive integer b governing the size of the cluster

returned and the running time, as well as the stationary distri-
bution π. π is computed offline once the graph is constructed.
The output is a set of customer nodes within the identified lo-
cal cluster. In Steps 1 and 2, we initialize the parameters as
tlast = (l+ 1)t1 and ε = 1/(c3(l+ 2)tlast2

b), where tlast =⌈
2
φ2 ln(c1(l + 2)

√
(µ(V )/2))

⌉
, l = dlog2(µ(V )/2)e, and

c1 and c3 are constants. Following the original NIBBLE in
[Spielman and Teng, 2013], c1 = 200 and c3 = 1800. Notice
that in the HyGraph G with n nodes, for an n × 1 vector p
and a positive constant ε, define [p]ε to be an n × 1 vector
such that [p]ε(v) = p(v) if and only if p(v) ≥ π(v)ε, where
π(v) is the stationary distribution at node v, and 0 otherwise.
In other words, [p]ε is a truncated version of p. Let r0 be an
n × 1 indicator vector where the element corresponding to
the seed node is one. Steps 4 and 5 generate a sequence of
vectors starting at r0 by the following rule

qt =

{
r0, if t = 0,
Mrt−1, otherwise,

where rt = [qt]ε, t > 0. That is, at each time stamp, we let
the random walk proceed by one step from the current distri-
bution and then round every qt(u) that is less than π(u)ε to 0.
Notice that qt and rt are not necessarily probability vectors,
as their components may sum to less than 1. Then Step 7 finds
the set Sj(qt) consisting of j nodes whose corresponding el-
ements in qt are the largest, and Step 8 determines if this set
contains the desired user nodes that correspond to customers
with potential returns. In particular, it first checks whether
the number of customer nodes exceeds k in Step 9, and then
checks the following 3 conditions: C.1 in Step 10 guarantees
that the output set has at least cut conductance φ; C.2 in Step
11 ensures that it contains a good amount of volume (e.g., not
too much and not too little); C.3 in Step 12 guarantees that
the output user nodes have a large probability mass, where
c4 = 140, a constant parameter as given in [Spielman and
Teng, 2013].

One major benefit of the proposed LoGraph algorithm is
its time complexity, which is bounded by O(2b log6m/φ4).
In other words, its running time depends only on the size of
the output cluster, rather than the entire graph, which makes
it particularly suitable for processing large-scale data sets.
The detailed proof follows [Spielman and Teng, 2013], and
is skipped for brevity.

Compared with the original NIBBLE algorithm [Spielman
and Teng, 2013], there are three major differences of the pro-
posed LoGraph algorithm. First, LoGraph is designed for
weighted hybrid graphs that include both directed and undi-
rected edges, while NIBBLE is for binary undirected graphs.
Second, the cut conductance of LoGraph and NIBBLE is de-
fined differently, where the former is based on the stationary
distribution and the latter depends on the node degree. Third,
in addition to using b as the input to control the local clus-
ter size, LoGraph uses k, the maximum number of customer
nodes in the local cluster. This upper bound is added for prac-
tical consideration as retailers need limit their preventive ac-
tions to balance benefits and costs.
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Algorithm 1 LoGraph Algorithm

Input: G, vp, k, φ, b, π
Output: The set of user nodes within the local cluster of a

given product.
1: Compute tlast and initialize ε using φ and constants
c1, c3.

2: Initialize r0 to be an n × 1 all zero vector except for the
element that corresponds to vp.

3: for t = 1:tlast do
4: Set qt = Mrt−1

5: Set rt = [qt]ε.
6: for j = 1 : n do
7: Let Sj(qt) denote the set of j nodes whose corre-

sponding elements in qt/π are the largest.
8: Return the user nodes in Sj(qt) as the ranked list if

the following conditions are satisfied.
9: – C.0 the user nodes in Sj(qt) ≥ k.

or
10: – C.1: Φ(Sj(qt)) ≤ φ.
11: – C.2: 2b ≤ λj(qt) < 5

6 vol(G).
12: – C.3 Ix(qt, 2

b) ≥ 1
c4

(l + 2)2b.
13: end for
14: end for
15: Return an empty set.

4 Experimental Results
In this section, we evaluate LoGraph on e-tail data collected
from a leading fashion retailer in Europe. Product returns
are a major challenge for online retailers specializing in fash-
ion, where the return rate is often higher than 50% of all pur-
chase3. There is great potential and benefit to reduce return
rate via modeling customer online shopping and return ac-
tions.

4.1 Data Sets and Benchmark Methods
In this study, we obtain three data sets associated with three
different fashion brands. Table 1 summarizes the basic data
information. The retailer has a 30 days return policy, thus we
discard the last 30 days data to avoid truncation. To mimic
online experiments, for each data set, we split it into train-
ing, validation, and test sets based on transaction time. To be
specific, the transactions in the last month and the month be-
fore last month are used as the test set and the validation set,
respectively, and the rest as the training set to construct the
graph. We choose parameters for each algorithm using the
validation set. k the maximum number of customer nodes in
the local cluster is set to 1000 for practical consideration. If
a product in the test has no transaction records in the training
set, we exclude that product from the test set.

We benchmark the performance of LoGraph over two
approaches. The first one (Baseline) is a similarity-based
method. That is, customers who have returned products sim-
ilar to the given one in the training set are predicted to re-
turn the given product. In this study, the similar products
include all those in the same subclass (e.g., jeans) based on

3http://www.retourenforschung.de/

Metrics Brand C Brand E Brand G

Num. Transactions 4.9M 9.2M 642K
Num. Products 161K 364K 33K
Num. Customers 490K 672K 146K
Ave. Return Rate 51.5% 52.8% 37.4%
Time period (month) 12 15 5

Table 1: Summary of the customer return data sets.

product hierarchies. The second approach is ADNI [Yang et
al., 2017], which adapts NIBBLE to bipartite graphs for user
recommendation in display advertisement. We construct the
bipartite graph using customer nodes and product nodes, and
define edges based on customer return history with respect to
each pair of customer and product nodes. The algorithm is
proven to achieve better performance than NIBBLE on undi-
rected graphs [Yang et al., 2017].

4.2 Evaluation Metrics
Among the customers who have purchased a given product
during the test period, we label those belonging to the lo-
cal cluster obtained from the seed product as positive, i.e.,
highly likely to return the product, and the rest as negative.
We compare these labeled customers with those in the test
set who have actually returned the product and count cases
of true positive (TP), false positive (FP), and false negative
(FN). Across all the products in the test data, we calculate the
overall Precision and Recall based on Eq. (10). In our sce-
nario, precision is the return rate of the predicted customers
while recall is the fraction of returners that are included in our
prediction out of the total returners. We also report F0.5 that
weights precision higher than recall. Precision is the most im-
portant criterion in our problem as it reflects the confidence
for retailers to take preventive actions on target customers.

Prec. =

∑
TP∑

TP +
∑

FP
, Rec. =

∑
TP∑

TP +
∑

FN
. (10)

4.3 Customer and Product Similarity
We add product similarity edge to LoGraph based on prod-
uct hierarchies. To be specific, there is an edge between two
products if they belong to the same subclass (e.g., jeans),
class (e.g., bottom) and division (e.g., children). The corre-
sponding weight is given by wps. As the collected data does
not include any customer attributes, such as age and income,
we leave the customer similarity for future exploration.

4.4 Comparison Results
Table 2 summarizes the performance metrics obtained from
all the approaches and data sets. The bold numbers highlight
the best performers. LoGraph consistently outperforms Base-
line and ADNI regarding all three measures and ADNI out-
performs Baseline in two out of three data sets. The Base-
line makes prediction purely based on product similarity.
ADNI leverages customer return affinity via bipartite graphs.
LoGraph further improves the prediction performance by ef-
fectively leveraging both product similarity and the rich in-
formation in the customer purchase and return history. This
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(a) b (b) φ

(c) wp (d) wps

Figure 2: Parameter sensitivity analysis: b controls the size of the output cluster and running time; φ determines the cut conductance of the
returned cluster; wp and wps set the weight of customer purchase history and product similarity, respectively.

Brand Metrics LoGraph ADNI Baseline

C
Precision 0.820 0.756 0.729
Recall 0.388 0.223 0.194
F0.5 0.671 0.512 0.470

E
Precision 0.868 0.733 0.700
Recall 0.285 0.162 0.212
F0.5 0.616 0.430 0.479

G
Precision 0.759 0.697 0.648
Recall 0.735 0.697 0.516
F0.5 0.891 0.820 0.751

Table 2: Comparison results for three competitors: the bold numbers
highlight the best performers.

demonstrates the effectiveness of modeling various informa-
tion using HyGraph and making prediction via local algo-
rithm LoGraph.

4.5 Parameter Analysis
In this section, we evaluate the impact of input parameters on
LoGraph. We sample 0.1% transaction data from Brand E

as the evaluation set and the rest for building the HyGraph.
We change the input parameters of LoGraph in a range of
values and calculate the corresponding precision, recall and
F0.5 scores. We repeat the sampling process 10 times and
report the mean and standard deviation of above scores as
error-bar plots in Figure 2. In all the experiments, we set the
maximum number of customer nodes in the local cluster as
k = 1000 for practical consideration.

Figure 2(a) shows that as b increases, all the scores increase
but recall and F0.5 increase quicker than precision. This is
because b controls the size of the output cluster. A larger b
leads to a larger cluster, i.e., more customers are predicted
to return, thus higher recall and F0.5 scores. Since we set
k = 1000, all the scores will approach to constants as b con-
tinues to increase. φ determines the cut conductance of the
output cluster. Figure 2(b) shows that as φ increases, all the
scores increase slightly and then become constants. Similarly,
due to the upper limit of the maximum number of customers
in the local cluster, the performance metrics is not sensitive
to the change of φ. Figure 2(c) and (d) show similar trend
that as wp (wps) increases from 0, all the scores increase sig-
nificantly. This demonstrates the effectiveness of introducing
directed (undirected) edges for modeling purchase-no-return
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behaviors (product similarity). With wp (wps) further in-
creases, all the scores decrease. This implies that when the
impact of purchase-no-return behaviors (product similarity)
in HyGraph is forced to dominate historical return actions, it
brings noise to the graph model.

5 Conclusion
Motivated by e-tail applications where a high return rate di-
rectly causes increased costs, we propose HyGraph, a novel
hybrid graph representation to tackle the customer-product
return prediction problem. Compared with the limited ex-
isting work, HyGraph is able to effectively model the rich in-
formation in historical purchase and return records. Based on
this representation, we propose LoGraph, which is a random-
walk-based local algorithm whose running time depends on
the size of the output cluster instead of the size of the en-
tire graph. Unlike traditional approaches for graph clustering,
the proposed LoGraph algorithm finds a cluster near an input
node by only looking at a small neighborhood of this node
within the graph. Experimental results on multiple real-world
data sets show that the proposed algorithm significantly im-
proves the prediction performance over state-of-the-art tech-
niques.
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