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Abstract
Distributed representation plays an important role
in deep learning based natural language processing.
However, the representation of a sentence often
varies in different tasks, which is usually learned
from scratch and suffers from the limited amounts
of training data. In this paper, we claim that a good
sentence representation should be invariant and can
benefit the various subsequent tasks. To achieve
this purpose, we propose a new scheme of informa-
tion sharing for multi-task learning. More specif-
ically, all tasks share the same sentence represen-
tation and each task can select the task-specific in-
formation from the shared sentence representation
with attention mechanisms. The query vector of
each task’s attention could be either static param-
eters or generated dynamically. We conduct exten-
sive experiments on 16 different text classification
tasks, which demonstrate the benefits of our archi-
tecture. Source codes of this paper are available on
Github1.

1 Introduction
The distributed representation plays an important role in deep
learning based natural language processing (NLP). On the
word level, many successful methods have been proposed to
learn a good representation for single word, which are also
called word embeddings, such as skip-gram [Mikolov et al.,
2013], GloVe [Pennington et al., 2014], etc. There are also
pre-trained word embeddings, which can easily be used in
downstream tasks. However, on the sentence level, there is
still no generic sentence representation which is suitable for
various NLP tasks.
Currently, most sentence encoding models are trained

specifically for a certain task in a supervised way, which re-
sults to different representations for the same sentence in dif-
ferent tasks. Taking the following sentence as an example for
domain classification task and sentiment classification task,

The infantile cart is easy to use,
⇤Current address: Oregon State University, Corvallis, OR, USA
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1 https://github.com/renj/attentive-representation
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Figure 1: Three schemes of information sharing in multi-task lean-
ing. (a) stacked shared-private scheme, (b) parallel shared-private
scheme, (c) our proposed attentive sharing scheme.

general text classification models always learn two represen-
tations separately. For domain classification, the model can
learn a better representation of “infantile cart” while for sen-
timent classification, the model is able to learn a better repre-
sentation of “easy to use”.
However, to train a good task-specific sentence representa-

tion from scratch, we always need to prepare a large dataset
which is always unavailable or costly. To alleviate this prob-
lem, one approach is pre-training the model on large unla-
beled corpora by unsupervised learning tasks, such as lan-
guage modeling. This unsupervised pre-training may be help-
ful to improve the final performance, but the improvement is
not guaranteed since it does not directly optimize the desired
task.
Another approach is multi-task learning [Caruana, 1997],

which is an effective approach to improve the performance
of a single task with the help of other related tasks. How-
ever, most existing models in multi-task learning attempt to
divide the representation of a sentence into private and shared
spaces. The shared representation is used in all tasks, and the
private one is different for each task. The two typical informa-
tion sharing schemes are stacked shared-private scheme and
parallel shared-private scheme (as shown in Figure 1(a) and
1(b) respectively). However, we cannot guarantee that a good
sentence encoding model is learned by the shared layer.
To learn a better shareable sentence representation, we pro-

pose a new information-sharing scheme for multi-task learn-
ing in this paper. In our proposed scheme, the representation
of every sentence is fully shared among all different tasks.
To extract the task-specific feature, we utilize the attention
mechanism and introduce a task-dependent query vector to
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select the task-specific information from the shared sentence
representation. The query vector of each task can be regarded
as learnable parameters (static) or be generated dynamically.
If we take the former example, in our proposed model these
two classification tasks share the same representation which
includes both domain information and sentiment information.
On top of this shared representation, a task-specific query
vector will be used to focus “infantile cart” for domain clas-
sification and “easy to use” for sentiment classification.
The contributions of this papers can be summarized as fol-

lows.

• We propose a new information sharing scheme for multi-
task learning. As a side effect, the model can be easily
visualized and shows what specific parts of the sentence
are focused in different tasks.

• In our proposed scheme, we can learn a shareable
generic sentence representation, which can be easily
transferred to other tasks. The shareable sentence rep-
resentation can also be improved by the auxiliary tasks,
such as POS Tagging and Chunking.

• We conduct extensive experiments on 16 sentiment clas-
sification tasks. Experiments show that our proposed
model is space efficient and converges quickly.

2 Sentence Encoding in Multi-task Learning
2.1 Neural Sentence Encoding Model
The primary role of sentence encoding models is to rep-
resent the variable-length sentence or paragraphs as fixed-
length dense vector (distributed representation). Currently,
the effective neural sentence encoding models include neu-
ral Bag-of-words (NBOW), recurrent neural networks (RNN)
[Sutskever et al., 2014; Chung et al., 2014], convolutional
neural networks (CNN) [Collobert et al., 2011; Kim, 2014],
and syntactic-based compositional model [Socher et al.,
2013; Tai et al., 2015; Zhu et al., 2015; Ma et al., 2015].
Given a text sequence x = {x1, x2, · · · , xT }, we first use

a lookup layer to get the vector representation (word embed-
ding) xi of each word xi. Then we can use CNN or RNN to
calculate the hidden state hi of each position i. The final rep-
resentation of a sentence could be either the final hidden state
of the RNN or the max (or average) pooling from all hidden
states of RNN (or CNN).
We use bidirectional LSTM (BiLSTM) to gain some de-

pendency between adjacent words. The update rule of each
LSTM unit can be written as follows:

�!
ht = LSTM(

�!
h t�1,xt, ✓p), (1)

 �
ht = LSTM(

 �
h t+1,xt, , ✓p), (2)

h =
1

T

TX

t=1

�!
ht �

 �
ht, (3)

where ✓p represents all the parameters of BiLSTM. The rep-
resentation of the whole sequence is the average of the hidden
states of all the positions, where � denotes the concatenation
operation.

2.2 Shared-Private Scheme in Multi-task Learning
Multi-task Learning [Caruana, 1997] utilizes the correlation
between related tasks to improve classification by learning
tasks in parallel, which has been widely used in various natu-
ral language processing tasks.
To facilitate this, we give some explanation for notations

used in this paper. Formally, we refer to Dk as a dataset with
Nk samples for task k. Specifically,

Dk = {(x(k)
i , y(k)i )}Nk

i=1 (4)

where x(k)
i and y(k)i denote a sentence and corresponding la-

bel for task k.

Shared-Private Scheme
A common information sharing scheme is to divide the fea-
ture spaces into two parts: one is used to store task-specific
features, the other is used to capture task-invariant features.
As shown in Figure 1(a) and 1(b), there are two schemes:
stacked shared-private (SSP) scheme and parallel shared-
private (PSP) scheme.
In stacked scheme, the output of the shared LSTM layer

is fed into the private LSTM layer, whose output is the final
task-specific sentence representation. In parallel scheme, the
final task-specific sentence representation is the concatena-
tion of outputs from the shared LSTM layer and the private
LSTM layer.

Task-Specific Output Layer
For a sentence x(k) and its label y(k) in task k, its final
representation is ultimately fed into the corresponding task-
specific softmax layer for classification or other tasks.

ŷ(k) = softmax(W (k)h(k) + b(k)) (5)

where ŷ(k) is prediction probabilities; h(k) is the final
task-specific representation; W (k) and b(k) are task-specific
weight matrix and bias vector respectively.
The total loss Ltask can be computed as:

LAll =
KX

k=1

↵kLTask(ŷ
(k), y(k)) (6)

where ↵k (usually set to 1) is the weights for each task k
respectively; LTask(ŷ, y) is the cross-entropy of the predicted
and true distributions.

3 A New Information-Sharing Scheme for
Multi-task Learning

The key factor of multi-task learning is the information shar-
ing scheme in latent representation space. Different from
the traditional shared-private scheme, we introduce a new
scheme for multi-task learning on NLP tasks, in which the
sentence representation is shared among all the tasks, the
task-specific information is selected by attention mechanism.
In a certain task, not all information of a sentence is useful

for the task, therefore we just need to select the key informa-
tion from the sentence. Attention mechanism [Bahdanau et

al., 2014; Mnih et al., 2014] is an effective method to select
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Figure 2: Static Task-Attentive Sentence Encoding

related information from a set of candidates. The attention
mechanism can effectively solve the capacity problem of se-
quence models, thereby is widely used in many NLP tasks,
such as machine translation [Luong et al., 2015], textual en-
tailment [Zhao et al., 2016] and summarization [Rush et al.,
2015].

3.1 Static Task-Attentive Sentence Encoding
We first introduce the static task-attentive sentence encod-
ing model, in which the task query vector is a static learn-
able parameter. As shown in Figure 2, our model consists of
one shared BiLSTM layer and an attention layer. Formally,
for a sentence in task k, we first use BiLSTM to calculate
the shared representation [h1, · · · ,hT ]. Then we use atten-
tion mechanism to select the task-specific information from a
generic task-independent sentence representation. Following
[Luong et al., 2015], we use the dot-product attention to com-
pute the attention distribution. We introduce a task-specific
query vector q(k) to calculate the attention distribution ↵(k)

over all positions.

↵(k)
t = softmax(q(k)Tht), (7)

where the task-specific query vector q(k) is a learned param-
eter. The final task-specific representation c(k) is

c(k) =
TX

t=1

↵(k)
t ht. (8)

At last, a task-specific fully connected layer followed by a
softmax non-linear layer processes the task-specific context
c(k) and predicts the probability distribution over classes.

3.2 Dynamic Task-Attentive Sentence Encoding
Different from the static task-attentive sentence encoding
model, the query vectors of the dynamic task-attentive sen-
tence encoding model are generated dynamically. When each
task belongs to a different domain, we can introduce an aux-
iliary domain classifier to predict the domain (or task) of the
specific sentence. Thus, the domain information is also in-
cluded in the shared sentence representation, which can be
used to generate the task-specific query vector of attention.

BiLSTM

Domain 
Attention

Task 
Attention

x

ŷ(DC ) ŷ(k )

Domain 
Classifier

Task 
Classifier

Figure 3: Dynamic Task-Attentive Sentence Encoding

The original tasks and the auxiliary task of domain classifi-
cation (DC) are joint learned in our multi-task learning frame-
work.
The query vector q(DC) of DC task is static and needs be

learned in training phrase. The domain information is also
selected with attention mechanisms.

↵(DC)
t = softmax(q(DC)Tht), (9)

c(DC) =
TX

t=1

↵(DC)
t ht. (10)

ŷ(DC) = softmax(W(DC)c(DC) + b(DC)), (11)

where ↵(DC) is attention distribution of auxiliary DC task,
and c(DC) is the attentive information for DC task, which is
fed into the final classifier to predict its domain ŷ(DC).
Since c(DC) contains the domain information, we can use

it to generate a more flexible query vector

q(k) = Uc(DC) + b(k), (12)

where U is a shared learnable weight matrix and b(k) is a
task-specific bias vector. When we set U = 0, the dynamic
query is equivalent to the static one.

4 Experiment
In this section, we investigate the empirical performances of
our proposed architectures on three experiments.

4.1 Exp I: Sentiment Classification
We first conduct a multi-task experiment on sentiment classi-
fication.

Dataset
We use 16 different datasets from several popular review cor-
pora used in [Liu et al., 2017]. These datasets consist of 14
product review datasets and two movie review datasets.
All the datasets in each task are partitioned randomly into

training, development and testing sets with the proportion of
70%, 10% and 20% respectively. The detailed statistics about
all the datasets are listed in Table 1.

Competitor Methods
We compare our proposed two information sharing schemes,
static attentive sentence encoding (SA-MTL) and dynamic
attentive sentence encoding (DA-MTL), with the following
multi-task learning frameworks.
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Dataset Train Dev. Test Avg. L Vocab.
Books 1400 200 400 159 62K
Elec. 1398 200 400 101 30K
DVD 1400 200 400 173 69K
Kitchen 1400 200 400 89 28K
Apparel 1400 200 400 57 21K
Camera 1397 200 400 130 26K
Health 1400 200 400 81 26K
Music 1400 200 400 136 60K
Toys 1400 200 400 90 28K
Video 1400 200 400 156 57K
Baby 1300 200 400 104 26K
Mag. 1370 200 400 117 30K
Soft. 1315 200 400 129 26K
Sports 1400 200 400 94 30K
IMDB 1400 200 400 269 44K
MR 1400 200 400 21 12K

Table 1: Statistics of the 16 datasets. The columns 2-5 denote the
number of samples in training, development and test sets. The last
two columns represent the average length and vocabulary size of the
corresponding dataset.

• FS-MTL: This model is a combination of a fully shared
BiLSTM and a classifier.

• SSP-MTL: This is the stacked shared-private model as
shown in Figure 1(a) whose output of the shared BiL-
STM layer is fed into the private BiLSTM layer.

• PSP-MTL: This is the parallel shared-private model as
shown in Figure 1(b). The final sentence representation
is the concatenation of both private and shared BiLSTM.

• ASP-MTL: This model is proposed by [Liu et al., 2017]
based on PSP-MTL with uni-directional LSTM. The
model uses adversarial training to separate task-invariant
and task-specific features from different tasks.

Hyperparameters
We initialize word embeddings with the 200d GloVe vectors
(840B token version, [Pennington et al., 2014]). The other
parameters are initialized by randomly sampling from uni-
form distribution in [-0.1, 0.1]. The mini-batch size is set to
32. For each task, we take hyperparameters which achieve
the best performance on the development set via a small grid
search. We use ADAM optimizer [Kingma and Ba, 2014]
with the learning rate of 0.001. The BiLSTM models have
200 dimensions in each direction, and dropout with probabil-
ity of 0.5. During the training step of multi-task models, we
select different tasks randomly. After the training, we fix the
parameters of the shared BiLSTM and fine tune every task.

Results
Table 2 shows the performances of the different methods.
From the table, we can see that the performances of most
tasks can be improved with the help of multi-task learning.
FS-MTL shows the minimum performance gain from multi-
task learning since it puts all private and shared information
into a unified space. SSP-MTL and PSP-MTL achieve similar
performance and are outperformed by ASP-MTL which can
better separate the task-specific and task-invariant features by
using adversarial training. Our proposed models (SA-MTL
and DA-MTL) outperform ASP-MTL because we model a
richer representation from these 16 tasks. Compared to SA-
MTL, DA-MTL achieves a further improvement of +0.6 ac-

Figure 4: Convergence on the development datasets.

curacy with the help of the dynamic and flexible query vec-
tor. It is noteworthy that our models are also space efficient
since the task-specific information is extracted by using only
a query vector, instead of a BiLSTM layer in the shared-
private models.
We also present the convergence properties of our mod-

els on the development datasets compared to other multi-task
models in Figure 4. We can see that PSP-MTL converges
much more slowly than the rest four models because each
task-specific classifier should consider the output of shared
layer which is quite unstable during the beginning of train-
ing phrase. Moreover, benefit from the attention mechanism
which is useful in feature extraction, SA-TML and DA-MTL
are converged much more quickly than the rest of models.

Visualization
Since all the tasks share the same sentence encoding layer, the
query vector q of each task determines which part of the sen-
tence to attend. Thus, similar tasks should have similar query
vectors. Here we simply calculate the Frobenius norm of each
pair of tasks’ q as the similarity. Figure 5 shows the similar-
ity matrix of different task’s query vector q in static attentive
model. A darker cell means the higher similarity of the two
task’s q. Since the cells in the diagonal of the matrix denotes
the similarity of one task, we leave them blank because they
are meaningless. It’s easy to find that q of “DVD”, “Video”
and “IMDB” have very high similarity. It makes sense be-
cause they are all reviews related to movies. However, an-
other movie review “MR” has very low similarity to these
three tasks. It’s likely because the text in “MR” is very short
which makes it different from these tasks. The similarity of
q from “Books” and “Video” is also very high because these
two datasets share a lot of similar sentiment expressions.
As shown in Figure 6, we also show the attention distribu-

tions on a real example selected from the book review dataset.
This piece of text involves two domains. The review is nega-
tive in the book domain while it is positive from the perspec-
tive of movie review. In our SA-MTL model, the “Books”
review classifier from SA-MTL focus on the negative aspect
of the book and evaluate the text as negative. In contrast, the
“DVD” review classifier focuses on the positive part of the
movie and produces a positive result. In case of DA-MTL,
the model first focuses on the two domain words “book” and
“movie” and judge the text is a book review because “book”
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Task Single Task Multiple Tasks

BiLSTM att-BiLSTM Avg. FS-MTL SSP-MTL PSP-MTL ASP-MTL* SA-MTL DA-MTL
Books 81.0 82.0 81.5 84.0 85.5 85.5 87.0 86.8 88.5
Electronics 81.8 83.0 82.4 84.8 86.8 87.3 89.0 87.5 89.0
DVD 83.3 83.0 83.1 85.0 85.3 84.5 87.4 87.3 88.0
Kitchen 80.8 80.3 80.5 87.0 86.5 87.5 87.2 89.3 89.0
Apparel 87.5 86.5 87.0 86.8 85.3 85.8 88.7 87.3 88.8
Camera 87.0 89.5 88.3 89.0 90.5 90.3 91.3 90.3 91.8
Health 87.0 84.3 83.0 88.5 88.3 87.5 88.1 88.3 90.3
Music 81.8 82.0 81.8 81.0 84.5 83.0 82.6 84.0 85.0
Toys 81.5 85.0 85.4 88.3 87.0 87.8 88.8 89.3 89.5
Video 83.0 83.5 83.3 85.0 87.3 88.0 85.5 88.5 89.5
Baby 86.3 86.0 86.1 89.0 88.3 90.0 89.8 88.8 90.5
Magazine 92.0 92.0 92.0 92.0 92.3 92.8 92.4 92.0 92.0
Software 84.5 83.0 83.8 86.3 88.5 90.3 87.3 89.3 90.8
Sports 86.0 84.8 85.4 88.3 88.8 86.8 86.7 89.8 89.8
IMDB 82.5 83.5 83.0 82.3 84.0 84.5 85.8 87.5 89.8
MR 74.8 76.0 75.4 71.3 70.8 69.0 77.3 73.0 75.5
AVG. 83.7 84.0 83.9 85.5(+1.6) 86.2(2.3) 86.2 (+2.3) 87.2(+3.3) 87.6 (+3.7) 88.2 (+4.3)
# Param. 644 K ⇥ 16 645 K ⇥ 16 – 644 K 16,074 K 10,972 K 5,490K 668 K 818 K

Table 2: Performances on 16 tasks. The column of “Single Task” includes bidirectional LSTM (BiLSTM), bidirectional LSTM with attention
(att-BiLSTM) and the average accuracy of the two models. The column of “Multiple Tasks” shows several multi-task models. * is from [Liu
et al., 2017] .

Figure 5: Similarity Matrix of Different Task’s query vector qk

has a higher weight. Then, the model dynamically generates
a query q and focuses on the part of the book review in this
text, thereby finally predicting a negative sentiment.

4.2 Exp II: Transferability of Shared Sentence
Representation

With attention mechanisms, the shared sentence encoder
in our proposed models can generate more generic task-
invariant representations, which can be considered as off-the-
shelf knowledge and then be used for unseen new tasks.
To test the transferability of our learned shared represen-

tation, we also design an experiment shown in Table 3. The
multi-task learning results are derived by training the first 6
tasks in general multi-task learning. For transfer learning, we
choose the last 10 tasks to train our model with multi-task
learning, and then the learned shared sentence encoding lay-
ers are kept frozen and transferred to train the first 6 tasks.

SSP-MTL PSP-MTL SA-MTL DA-MTL
Multi-task 83.12 83.25 84.38 86.96
Transfer 82.54 82.58 86.50 87.67

Table 3: Results of first 6 tasks with multi-task learning and transfer
learning

Results and Analysis
As shown in Table 3, we can see that SA-MTL and DA-MTL
achieves better transfer learning performances compared to
SSP-MTL and PSP-MTL. The reason is that by using atten-
tion mechanism, richer information can be captured into the
shared representation layer, thereby benefiting the other task.

4.3 Exp III: Introducing Sequence Labeling as
Auxiliary Task

A good sentence representation should include its linguis-
tic information. Therefore, we incorporate sequence label-
ing task (such as POS Tagging and Chunking) as an auxiliary
task into the multi-task learning framework, which is trained
jointly with the primary tasks (the above 16 tasks of sentiment
classification). The auxiliary task shares the sentence encod-
ing layer with the primary tasks and is connected to a private
fully connected layer followed by a softmax non-linear layer
to process every hidden state ht and predicts the labels.

Dataset
We use CoNLL 2000 [Sang and Buchholz, 2000] sequence
labeling dataset for both POS Tagging and Chunking tasks.
There are 8774 sentences in training data, 500 sentences in
development data and 1512 sentences in test data. The aver-
age sentence length is 24 and has 17k vocabularies.

Results
The experiment results are shown in Table 4. We use the
same hyperparameters and training procedure as the former
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(a) Attention of task “Books” in SA-MTL, Output: Negative

(b) Attention of task “DVD” in SA-MTL, Output: Positive

(c) Attention of auxiliary Task (Domain Classification) in DA-MTL, Ouptut:
Books

(d) Attention of Task “Books” in DA-MTL, Ouptut: Negative

Figure 6: Attention Distributions of four classifiers from two models
on the same text

SSP-MTL PSP-MTL SA-MTL DA-MTL
Origin 86.2 86.2 87.59 88.22
+ Chunking 86.94 86.29 88.62 88.85
+ POS Tagging 86.83 86.16 88.52 89.04

Table 4: Average precision of multi-task models with auxiliary tasks.

experiments. The result shows that by leveraging auxiliary
tasks, the performances of SA-MTL and DA-MTL achieve
more improvement than PSP-MTL and SSP-MTL.

Visualization
For further analysis, Figure 7 shows the attention distribution
produced by models trained with and without the Chunking
task on two pieces of texts. In the first piece of text, both of
the models attend to the first “like” because it represents pos-
itive sentiment on the book. The model trained with Chunk-
ing also labels the three “like” as ’B-VP’ (beginning of verb
phrase) correctly. However, in the second piece of text, the
same work “like” denotes a preposition and has no sentiment
meaning. The model trained without Chunking fails to tell
the difference with the former text and focuses on it and pro-
duces the result as positive. Meanwhile, the model trained
with Chunking successfully labels the “like” as ’B-PP’ (be-
ginning of prepositional phrase) and pays little attention to
it and produces the right answer as negative. This example
shows how training the model with auxiliary tasks helps the

(a) Model trained without Chunking task, Output: Positive

(b) Model trained with Chunking task, Output: Positive

(c) Model trained without Chunking task, Output: Positive

(d) Model trained with Chunking task, Output: Negative

Figure 7: Attention distributions of two example texts from models
trained with and without Chunking task
primary tasks.

5 Related Work
Neural networks based multi-task learning has been proven
effective in many NLP problems [Collobert and Weston,
2008; Glorot et al., 2011; Liu et al., 2016; Liu et al., 2017;
Ruder, 2017] In most of these models, there exists a task-
dependent private layer, which plays more important role in
these models, separated from the shared layer. Different from
them, our model encodes all information into a shared rep-
resentation layer, and uses attention mechanisms to select
the task-specific information from the shared representation
layer. Thus, our model can learn a better generic sentence
representation, which also has a strong transferability.
Some recent work have also proposed sentence represen-

tation using attention mechanisms. [Lin et al., 2017] uses a
2-D matrix, whose each row attending on a different part of
the sentence, to represent the embedding. [Vaswani et al.,
2017] introduces multi-head attention to jointly attend to in-
formation from different representation subspaces at different
positions. [Wang et al., 2017] introduces human reading time
as attention weights to improve sentence representation. Dif-
ferent from these work, we use attention vector to select the
task-specific information from a shared sentence representa-
tion. Thus the learned sentence representation is much more
generic and easy to transfer information to new tasks.

6 Conclusion
In this paper, we propose a new information-sharing scheme
for multi-task learning, which uses attention mechanism to
select the task-specific information from a shared sentence
encoding layer. We conduct extensive experiments on 16 dif-
ferent sentiment classification tasks, which demonstrates the
benefits of our models. Moreover, the shared sentence en-
coding model can be transferred to other tasks, which can be
further boosted by introducing auxiliary tasks.
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