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Abstract
Reasoning with existential rules typically consists
of checking whether a Boolean conjunctive query is
satisfied by all models of a first-order sentence hav-
ing the form of a conjunction of Datalog rules ex-
tended with existential quantifiers in rule-heads. To
guarantee decidability, five basic decidable classes
–linear, weakly-acyclic, guarded, sticky, and shy–
have been singled out, together with several gener-
alizations and combinations. For all basic classes,
except shy, the important property of finite control-
lability has been proved, ensuring that a query is
satisfied by all models of the sentence if, and only
if, it is satisfied by all of its finite models. This pa-
per takes two steps forward: (i) devise a general
technique to facilitate the process of (dis)proving
finite controllability of an arbitrary class of existen-
tial rules; and (ii) specialize the technique to com-
plete the picture for the five mentioned classes, by
showing that also shy is finitely controllable.

1 Introduction
The problem of answering a Boolean query q against a logi-
cal theory consisting of an extensional database D and an on-
tology Σ is attracting the attention of various fields of Com-
puter Science, from Artificial Intelligence [Baget et al., 2011;
Calvanese et al., 2013; Gottlob et al., 2014; Amendola
et al., 2018] to Database Theory [Bienvenu et al., 2014;
Alviano and Pieris, 2015] and Logic [Pérez-Urbina et al.,
2010]. This problem, known as ontology-based query an-
swering (OBQA), is usually stated as D ∪ Σ |=a q, and it is
equivalent to checking whether q is satisfied by all models of
D∪Σ according to the “open-world” semantics of first-order
logic (where |=a is the entailment under arbitrary models).

Both Description Logics [Baader et al., 2002] and
Datalog± [Calı̀ et al., 2009a] have been recognized as effec-
tive families of formal knowledge representation languages
to specify Σ, while union of (Boolean) conjunctive queries,
U(B)CQs for short, is the most common and studied for-
malism to express q. Unfortunately, for both these families,
OBQA is generally undecidable [Johnson and Klug, 1984;
Rosati, 2007; Calı̀ et al., 2013]. Hence, a number of syntactic

decidable classes of the above languages have been singled
out. But decidability alone is not the only desideratum. For
example, a good balance between computational complex-
ity and expressiveness is of high importance too. But there
is another property that is turning out to be as interesting as
challenging to prove: finite controllability [Johnson and Klug,
1984]. A class C of ontologies is finitely controllable if, for
each triple 〈D,Σ, q〉 with Σ ∈ C, it holds that D ∪Σ |=a q if,
and only if, D ∪ Σ |=f q, where |=f is the entailment under
finite models only. Note that this is equivalent to D∪Σ 6|=a q
implies there is a finite model M of D ∪Σ such that M 6|= q,
as the “only if” direction is trivially true. And there are
applications, both in Databases [Johnson and Klug, 1984;
Rosati, 2006] and Knowledge Representation [Rosati, 2008;
Ibáñez-Garcı́a et al., 2014], where reasoning over finite mod-
els is preferred.

In this paper we focus on the Datalog± family, and
consider for Σ a set of existential rules of the form
∀X∀Y(φ(X,Y) → ∃Zp(X,Z)), where the body φ(X,Y)
is a conjunction of atoms, and the head p(X,Z) is a single
atom. The main decidable classes rely on the following basic
five syntactic properties: weak-acyclicity [Fagin et al., 2005],
linearity [Calı̀ et al., 2009b], guardedness [Calı̀ et al., 2013],
stickiness [Calı̀ et al., 2010], and shyness [Leone et al., 2012],
which underlie the basic classes called weakly-acyclic, linear,
guarded, sticky, and shy, respectively. Several variants and
combinations of these classes have been defined and studied
too [Baget et al., 2010; Krötzsch and Rudolph, 2011; Calı̀
et al., 2012; Gottlob et al., 2013; 2018], as well as semantic
properties subsuming the syntactic ones [Baget et al., 2011;
Leone et al., 2012].

The above basic classes are pairwise uncomparable, except
for linear which is strictly contained in guarded and shy, as re-
ported in Figure 1. Interestingly, both weakly-acyclic and shy
strictly contain datalog —the well-known class of existential-
free rules of the form ∀X∀Y(φ(X,Y)→ p(X)). Moreover,
sticky strictly contains joinless —the class collecting sets of
rules where each body contains no repeated variable. The
latter, introduced by [Gogacz and Marcinkowski, 2017] to
prove that sticky is finitely controllable, is also exploited in
this paper. Finally, both linear and joinless strictly contain
inclusion-dependencies —the well-known class of relational
database dependencies collecting sets of rules with one single
body atom and no repeated variable.
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Figure 1: Taxonomy of the basic Datalog± classes.

Under arbitrary models, OBQA can be reduced to answer-
ing q over a universal model U that can be homomorphically
embedded into every other arbitrary (finite or infinite) model
of D ∪Σ. Hence, D ∪ Σ |=a q if, and only if, U |= q. A way
to compute such a U is to employ the chase procedure [Beeri
and Vardi, 1984]. Intuitively, starting from D, the chase “re-
pairs” violations of rules by repeatedly adding new atoms —
introducing fresh values, called nulls, whenever required by
an existential variable— until all rules are satisfied. In the
classical setting, the chase is sound and complete. But when
finite model reasoning is required, then the chase is generally
uncomplete, unless ontologies are finitely controllable.

Finite controllability of weakly-acyclic comes for free as
every ontology here admits a finite universal model [Fagin
et al., 2005]. Conversely, the proof of this property for the
subsequent three classes has been a very different matter.
Complex, yet intriguing, constructions have been devised for
linear [Rosati, 2006; Bárány et al., 2014], guarded [Bárány
et al., 2014], and more recently for sticky [Gogacz and
Marcinkowski, 2017]. To complete the picture, we address
the same problem for shy, while taking two steps forward:1
I We devise a general technique, called canonical rewriting,
to facilitate the process of (dis)proving finite controllability of
any class of existential rules. Indeed, via this technique, we
can immediately (re)confirm that linear is finitely controllable
since inclusion-dependencies is. Additionally, we can prove
that sticky-join [Calı̀ et al., 2012] —generalizing both sticky
and linear— is finitely controllable since sticky is.
I We specialize the canonical rewriting to complete the pic-
ture for the aforementioned five basic classes, and show that
also shy is finitely controllable since joinless is.

2 Basics: Ontology-Based Query Answering
Basics. Let C, N and V denote pairwise disjoint discrete sets
of constants, nulls and variables, respectively. A term t is an
element of T = C ∪N ∪V. An atom α is a labeled tuple
p(t1, ..., tm), where p is a predicate symbol, m is the arity of
both p anf α, and t1, ..., tm are terms. An atom is simple if
it contains no repeated term, and it is propositional if it has
arity 0. Given two sets A and B of atoms, a homomorphism
from A to B is a mapping h : T → T such that c ∈ C
implies h(c) = c, and h(A) ⊆ B with h(A) obtained from A
by replacing each term t by h(t). An instance I is a discrete
set of atoms where each term is either a constant or a null.

Syntax. A database D is a finite null-free instance. An
(existential) rule ρ is a logical implication of the form
∀X∀Y (φ(X,Y)→ ∃Z p(X,Z)), with X ∪ Y ∪ Z ⊆
V, whose body (resp., head) body(ρ) = φ(X,Y) (resp.,

1This paper is an abridged version of [Amendola et al., 2017].

head(ρ) = {p(X,Z)}) is a conjunction (or set) of atoms,
possibly with constants. The set X is called the frontier of ρ.
An ontology Σ is a set of rules. A union of Boolean conjunc-
tive query, UBCQ for short, q is a first-order expression of the
form ∃Y1ψ1(Y1) ∨ . . . ∨ ∃Ykψk(Yk), where each ψj(Yj)
is a conjunction of atoms. Constants may occur also in q.

Semantics. Consider a triple 〈D,Σ, q〉 as above. An in-
stance I satisfies a rule ρ ∈ Σ, written I |= ρ, if whenever
there is a homomorphism h from body(ρ) to I , then there
is a homomorphism h′ ⊇ h|X from head(ρ) to I . Also, I
satisfies Σ, written I |= Σ, if I satisfies each rule of Σ. The
(arbitrary) models ofD∪Σ, written amods(D,Σ), are the set
{I : I ⊇ D and I |= Σ}. A model U is universal if, for each
M ∈ amods(D,Σ), there is a homomorphism from U to M .
An instance I satisfies q, written I |= q, if there is a homo-
morphism from some ψj(Yj) to I . Also, q is true overD∪Σ,
written D ∪ Σ |=a q, if each model of D ∪ Σ satisfies q.

Finite controllability. A class C of ontologies is finitely
controllable if, for each triple 〈D,Σ, q〉 with Σ ∈ C,
D ∪ Σ 6|=a q implies there is M ∈ fmods(D,Σ) s.t. M 6|= q,
where fmods(D,Σ) denotes the finite models of D ∪Σ. This
is usually stated as D ∪ Σ |=a q if, and only if, D ∪ Σ |=f q.

3 Step 1: Canonical Rewriting
We design a general technique (see Figure 2) to facilitate the
process of (dis)proving finite controllability of an arbitrary
class of existential rules. Specifically, any triple 〈D,Σ, q〉
is rewritten in the semantically equivalent (canonical) triple
〈Dc,Σc, qc〉 that has the advantage of being structurally sim-
pler than the original one. Indeed, Dc is a propositional
database, while Σc and qc are constant-free structures con-
taining simple atoms only. Rather than giving boring formal
details, we prefer to shed some light on our construction via
a simple example. Let D = {p(a), p(b), r(a, b)}, and Σ
consist of the following rules:

(ρ0) p(X) → ∃Y r(Y,X)
(ρ1) r(X,Y ) → p(X)
(ρ2) r(X,X) → s(X)

We now constructDc = {p[a], p[b], r[a,b]} as the propositional
database obtained by encoding each atom of D in a different
fresh predicate. Then, from Σ we build Σc as follows:

(ρ0,0) p[a] → ∃Y r[1,a](Y )
(ρ0,1) p[b] → ∃Y r[1,b](Y )
(ρ0,2) p[1](X) → ∃Y r[1,2](Y,X)

(ρ1,0) r[a,a] → p[a]
(ρ1,1) r[a,b] → p[a]
(ρ1,2) r[b,a] → p[b]
(ρ1,3) r[b,b] → p[b]
(ρ1,4) r[a,1](Y ) → p[a]
(ρ1,5) r[b,1](Y ) → p[b]
(ρ1,6) r[1,a](X) → p[1](X)
(ρ1,7) r[1,b](X) → p[1](X)
(ρ1,8) r[1,1](X) → p[1](X)
(ρ1,9) r[1,2](X,Y ) → p[1](X)

(ρ2,0) r[a,a] → s[a]
(ρ2,1) r[b,b] → s[b]
(ρ2,2) r[1,1](X) → s[1](X)
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D ∪ Σ |=a q D ∪ Σ |=f q

Dc ∪ Σc |=f q
cDc ∪ Σc |=a q

c

D ∪ Σ |=a q D ∪ Σ |=f q

Dc ∪ Σc |=f q
cDc ∪ Σc |=a q

c

to prove this...

Th. 1.bTh. 1.a

...show this is true

to disprove this...

Th. 1.bTh. 1.a

...show this is false

Figure 2: Application of the canonical rewriting.

Intuitively, new predicates encode tuples of terms consisting
of constants (a and b) from D ∪ Σ, and placeholders (1 and
2, where the latter is the maximum arity among predicates
occurring in Σ) of arbitrary terms of C ∪ N. Any rule ρi,j
of Σc is called child of ρi, while the latter is the parent of
ρi,j . Finally, by following the same intuition, we apply the
canonical rewriting to a set A of atoms over C ∪V w.r.t. the
constants ofD∪Σ. E.g., givenA = {r(a,X), p(X)}, we ob-
tain the following family of sets Ac = {{r[a,a], p[a]}, {r[a,b],
p[b]}, {r[a,1](X), p[1](X)}}. Thus, given the UBCQ q =
∃X{r(a,X), p(X)} ∨ ∃Y {r(Y, Y )}, its canonical rewriting
will be qc = {r[a,a], p[a]} ∨ {r[a,b], p[b]} ∨ ∃X{r[a,1](X),
p[1](X)} ∨ {r[a,a]} ∨ {r[b,b]} ∨ ∃Y {r[1,1](Y )}.

Accordingly, let us define the unpacking function R from
atoms over the set of canonical predicates to atoms over the
set of original ones. The function generalizes in the obvious
way to set of atoms, rules, and queries. For instance, if A′ =
{r[1,2](X,Y ), r[1,a](η), r[1,1](η)}with η ∈ N, then R(A′) =
{r(X,Y ), r(η, a), r(η, η)}. Informally, the unpacking func-
tion acts like an “inverse” operator of the canonical rewriting.

Consider now the model M = D ∪ {p(η), r(η, a), r(η, b),
r(η, η), s(η)} of D ∪ Σ. Also, let M ′ = Dc ∪ {p[1](η),
r[1,a](η), r[1,b](η), r[1,2](η, η)} be a model of Dc ∪ Σc. Note
that, whenever there is a homomorphism h from the body of
some rule ρi,j to M ′, then h also maps the body of the parent
ρi to M . Indeed, this is true as R(M ′) ⊆ M . However,
although M ′ is a model of Dc ∪ Σc, R(M ′) is not a model
of D ∪ Σ, as α′ = r[1,2](η, η) does not trigger any rule of
Σc, while R(α′) triggers ρ2. In fact, this happens because:
there is no bijection between the placeholders {1, 2} and {η},
and also M ′ contains no atom of the form r[1,1](η), where a
bijection between {1} and {η} exists. To overcome such a
mismatch, we focus on a suitable subset of amods(Dc ∪Σc).
Definition 1. A model N ′ of Dc ∪Σc is canonical if: (i) it is
constant-free; and (ii) for each non-simple atoms α′ of N ′,
there is a simple atom β′ of N ′ such that R(α′) = R(β′).

From any M ′ it is possible to build a canonical model N ′
that can be homomorphically mapped to M ′: (1) set N ′ to
M ′; (2) replace each constant c of N ′ by a fresh null ηc; (3)
let E be the set of nulls occurring in atoms of N ′ that vio-
late condition (ii); (4) for each null η of E, let pad(η) =
{η1, ..., ηk}, where k is the maximum number of times that
η occurs in an atom of N ′; (5) for each η of E, replace each
atom α′ of N ′ containing η with new atoms obtained from α′

by arranging the elements of pad(η) in the positions where η
occurs, while avoiding repetitions; and (6) remove all atoms
of N ′ violating condition (ii). Hence, in our running ex-
ample, N ′ = Dc ∪ {p[1](η1), p[1](η2), r[1,a](η1), r[1,a](η2),
r[1,b](η1), r[1,b](η2), r[1,2](η1, η2), r[1,2](η2, η1)}. Now, from

the above intuitions, we collect some relevant properties.
Proposition 1. Let A be a set of atoms over C ∪V w.r.t. the
constants of D ∪ Σ, M ′ be a model of Dc ∪ Σc, and N ′ be a
canonical model of Dc ∪ Σc. It holds that:

a. If, for some A′ ∈ Ac, M ′ |= A′, then R(M ′) |= A;
b. If R(N ′) |= A, then N ′ |= A′, for some A′ ∈ Ac;
c. There is N ′0 ∈ camods(Dc,Σc) that can be homomor-

phically mapped to M ′. Also, if M ′ is finite, then N ′0 is.
d. R(N ′) is a model of D ∪ Σ;
e. amods(D,Σ) ⊆ R(amods(Dc,Σc)).
With these properties in hand we are able to provide a for-

mal argument for the implications depicted in Figure 2.
Theorem 1. It holds that:

a. D ∪ Σ |=a q if, and only if, Dc ∪ Σc |=a q
c; and

b. D ∪ Σ |=f q if, and only if, Dc ∪ Σc |=f q
c.

Proof sketch. We now describe the proof sketch for finite
model reasoning (b). We start with the “only-if” direction.

Dc ∪ Σc 6|=f q
c (by contradiction)

⇒ ∃N ′ ∈ cfmods(Dc,Σc) s.t. N ′ 6|= qc (by Prop. 1.c)
⇒ ∀q′ ∈ qc it holds that N ′ 6|= q′ (by definition)
⇒ R(N ′) 6|= q (by Prop. 1.b)
⇒ D ∪ Σ 6|=f q (by Prop. 1.d)

Now, we sketch the proof for the “if” direction.
D ∪ Σ 6|=f q (by contradiction)

⇒ ∃M ∈ fmods(D,Σ) s.t. M 6|= q (by definition)
⇒ ∃M ′∈ fmods(Dc,Σc) s.t.R(M ′)=M (by Prop. 1.e)
⇒ ∀q′ ∈ qc it holds that M ′ 6|= q′ (by Prop. 1.a)
⇒ Dc ∪ Σc 6|=f q

c (by definition)
The implication chains hold also for arbitrary model reason-
ing (a), by replacing |=f by |=a, and cfmods by camods .

By exploiting our tool, we can reprove that linear is finitely
controllable. In fact, the canonical rewriting of a linear ontol-
ogy belongs to inclusion-dependencies. Moreover, since the
canonical rewriting of a sticky-join [Calı̀ et al., 2012] ontol-
ogy belongs to sticky, we prove (for the first time) that:
Theorem 2. sticky-join is finitely controllable.

Note that the definitions of linear and sticky-join in
[Gogacz and Marcinkowski, 2017] are not standard (actually
stricter): there, in linear repeated variables are admitted only
in rule heads, and the difference between sticky and sticky-
join “can only be seen if repeated variables in the heads of
the rules are allowed”. Hence, the finite controllability of
sticky-join was unknown before our work. One can verify
that the proof of their Lemma 4 breaks when moving to the
linear (hence sticky-join) ontology Σ = {p(X,X) → r(X);
r(X)→ ∃Y r(Y )} paired with the database D = {p(c, c)}.
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4 Step 2: Finite Controllability of Shy
Differently from linear and sticky-join, the canonical rewrit-
ing of a shy ontology —although it is still a shy ontology—
falls in none of the known finitely controllable classes.
Hence, to prove the finite controllability of shy, we are go-
ing to specialize the canonical rewriting. But before, let us
recall the key properties of this class. Fix a triple 〈D,Σ, q〉:
Proposition 2 ([Leone et al., 2012]). Assume Σ ∈ shy. Given
a universal model U ofD∪Σ, a rule ρ of Σ, and a homomor-
phism h from the atoms of ρ to U , it holds that:

a. if a variable X of ρ occurs in two different atoms of
body(ρ), then h(X) ∈ C; and

b. if two frontier variables X , Y of ρ occur in two different
atoms of body(ρ) and h(X) = h(Y ), then h(X) ∈ C.

Consider now the canonical rewriting 〈Dc,Σc, qc〉 of
〈D,Σ, q〉. Inspired by well-supported interpretations [Fages,
1991], we define a suitable subset of all finite models:
Definition 2. A finite modelM ′ ofDc∪Σc is well-supported
if there is an ordering α1, ..., αm of its atoms s.t., for each
j ∈ {1, ...,m}, it holds that: (i) αj ∈ Dc, or (ii) there is ρ ∈
Σc and a homomorphism from the atoms of ρ to {α1, ..., αj}
mapping body(ρ) to {α1, ..., αj−1} and head(ρ) to {αj}.

Subsequently, we define Σc
� as the set of all joinless rules

of Σc. For instance, consider the ontology Σ = {ρ0 = p(X)
→ r(X,Y ); ρ1 = p(X)→ s(X,Y ); ρ2 = r(X,Y ), s(X,Y )
→ t(X)} and the database D = {p(a)}. According to the
canonical rewriting, Σc = {ρ0,0 = p[a] → r[a,1](Y ); ρ0,1
= p[1](X) → r[1,2](X,Y ); ρ1,0 = p[a] → s[a,1](Y ); ρ1,1
= p[1](X) → s[1,2](X,Y ); ρ2,0 = r[a,a], s[a,a] → t[a]; ρ2,1
= r[a,1](Y ), s[a,1](Y )→ t[a]; ρ2,2 = r[1,a](X), s[1,a](X)→
t[1](X); ρ2,3 = r[1,2](X,Y ), s[1,2](X,Y ) → t[1](X)}, and
Dc = {p[a]}. Hence, Σc

� = {ρ0,0, ρ0,1, ρ1,0, ρ1,1, ρ2,0}. Let
M ′ = {p[a], r[a,1](η), s[a,1](η), t[1](η)} be a finite model of
Dc ∪ Σc

� (and not of Dc ∪ Σc). It can be checked that M ′
is not well-supported. Intuitively, there is no support for the
atom t[1](η). However, we can find a subset of M ′ that is a
well-supported model of Dc ∪ Σc

�. In this case, N ′ = M ′

\ {t[1](η)} is the right one, and p[a], r[a,1](η), s[a,1](η) is an
ordering satisfying Definition 2.

Note that N ′ is not a model of Dc ∪ Σc, as ρ2,1 is not sat-
isfied. Now, starting from N ′ we can build a well-supported
finite model ofDc∪Σc that can be homomorphically embed-
ded into N ′. To this end, we have developed a technique
called propagation ordering. Intuitively, as r[a,1](η) and
s[a,1](η) can be generated only by rules ρ0,0 and ρ1,0, respec-
tively, there is no “real necessity” to consider the same null
to satisfy both rules. Hence, by exploiting the given ordering
of N ′, we rename and propagate some of the terms of N ′ to
construct a well-supported finite model of Dc ∪ Σc. More
precisely, we define 〈r[a,1](η)〉 = r[a,1](〈η, 2, 1〉), as r[a,1](η)
is the second atom in the ordering given above, and η oc-
curs in the first position of r[a,1]. Similarly, we set 〈s[a,1](η)〉
= s[a,1](〈η, 3, 1〉). That is, 〈η, 2, 1〉 and 〈η, 3, 1〉 are distinct
fresh nulls corresponding to η. In this example, we can stop
here, as no other propagation appears. It is clear that the new
instance N ′0 = {p[a], r[a,1](〈η, 2, 1〉), s[a,1](〈η, 3, 1〉)} is a

well-supported model ofDc∪Σc. Note that here is where the
shyness of Σc is crucial. Also, N ′0 can be homomorphically
embedded into N ′ by mapping 〈η, 2, 1〉 to η, and 〈η, 3, 1〉 to
η. These insights are the basis of the following properties.
Proposition 3. It holds that:

a. The ontology Σc
� is finitely controllable [Gogacz and

Marcinkowski, 2017];
b. For each M ′ ∈ fmods(Dc ∪ Σc) there exists a well-

supported finite model N ′ of Dc ∪ Σc s.t. N ′ ⊆M ′;
c. Whenever Σ is shy, for each M ′ ∈ wsfmods(Dc,Σc

�),
there is a model N ′ ∈ wsfmods(Dc,Σc) that can be
homomorphically embedded into M ′.

With these properties in hand, we can now provide a formal
argument to show the main result of the section.
Theorem 3. Under shy ontologies, it holds that:

Dc ∪ Σc |=a q
c if, and only if, Dc ∪ Σc |=f q

c.

Proof sketch. We prove the “if” direction.

Dc ∪ Σc 6|=a q
c (by contradiction)

⇒ ∃M ′1 ∈ amods(Dc,Σc) s.t. M ′1 6|= qc (by definition)
⇒ M ′1 ∈ amods(Dc,Σc

�) (by Σc
� ⊆ Σc)

⇒ ∃M ′2 ∈ fmods(Dc,Σc
�) s.t. M ′2 6|= qc (by Prop. 3.a)

⇒ ∃M ′3 ∈ wsfmods(Dc,Σc
�) s.t. M ′3 6|= qc (by Prop. 3.b)

⇒ ∃M ′4 ∈ wsfmods(Dc,Σc) s.t. M ′4 6|= qc (by Prop. 3.c)
⇒ M ′4 ∈ fmods(Dc,Σc) (by definition)
⇒ Dc ∪ Σc 6|=f q

c (by definition)

Therefore, we can conclude that the statement is true since
the “only if” direction trivially holds.

Finally, the finite controllability of shy follows by combin-
ing Theorem 3 with Theorem 1.
Theorem 4. shy is finitely controllable.

5 Conclusion
To complete the related works started with the Introduction,
we recall that finite controllability in OBQA was formalized
for the first time by [Rosati, 2006] while he was working on a
question left open two decades before by [Johnson and Klug,
1984] about containment of conjunctive queries in case of
both arbitrary and finite databases. Basically, using our ter-
minology, they proved that ontologies mixing both inclusion-
dependencies and functional-dependencies are not finitely
controllable, by leaving open the case in which ontologies
contain inclusion-dependencies only. Rosati then answered
positively this question. And a decade later, by demonstrating
that shy is finitely controllable (Step 2), we complete an im-
portant picture around the basic decidable Datalog± classes.
But we believe that the techniques developed here could have
future further applications. For example, it would be inter-
esting to extend the canonical rewriting (Step 1) by encoding
in the predicates also a bounded number of nulls (apart from
constants and placeholders of nulls). This requires more com-
plex techniques, which however would apply to both glut-
guarded [Krötzsch and Rudolph, 2011] (extending guarded
and weakly-acyclic), and weakly-sticky-join [Calı̀ et al., 2012]
(extending sticky-join and weakly-acyclic).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5192



Acknowledgments
The paper was partially supported by MISE under project
“S2BDW” (F/050389/01-03/X32)-“Horizon2020” PON I&C
2014-20, and by Regione Calabria under project “DLV Large
Scale” (CUP J28C17000220006)-POR Calabria 2014-20.

References
[Alviano and Pieris, 2015] Mario Alviano and Andreas

Pieris. Default negation for non-guarded existential rules.
In Proc. of PODS, pages 91–103, 2015.

[Amendola et al., 2017] Giovanni Amendola, Nicola Leone,
and Marco Manna. Finite model reasoning over existential
rules. TPLP, 17(5-6):726–743, 2017.

[Amendola et al., 2018] Giovanni Amendola, Nicola Leone,
Marco Manna, and Pierfrancesco Veltri. Enhancing exis-
tential rules by closed-world variables. In Proc. of IJCAI,
2018.

[Baader et al., 2002] Franz Baader, Ian Horrocks, and Ul-
rike Sattler. Description logics for the semantic web. KI,
16(4):57–59, 2002.

[Baget et al., 2010] Jean-François Baget, Michel Leclère,
and Marie-Laure Mugnier. Walking the decidability line
for rules with existential variables. In Proc. of KR, 2010.

[Baget et al., 2011] Jean-François Baget, Michel Leclère,
Marie-Laure Mugnier, and Eric Salvat. On rules with exis-
tential variables: Walking the decidability line. AIJ, 175(9-
10):1620–1654, 2011.
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