
On Succinct Encodings for the Tournament Fixing Problem
Sushmita Gupta1 , Saket Saurabh2,3 , Ramanujan Sridharan4 and Meirav Zehavi5

1National Institute of Science Education and Research (NISER), India
2The Institute of Mathematical Sciences, HBNI, Chennai, India

3University of Bergen, Norway
4University of Warwick, UK

5Ben Gurion University of the Negev, Israel
sushmitagupta@niser.res.in, r.maadapuzhi-sridharan@warwick.ac.uk, saket@imsc.res.in,

zehavimeirav@gmail.com

Abstract
Single-elimination tournaments are a popular for-
mat in competitive environments. The Tournament
Fixing Problem (TFP), which is the problem of
finding a seeding of the players such that a cer-
tain player wins the resulting tournament, is known
to be NP-hard in general and fixed-parameter
tractable when parameterized by the feedback arc
set number of the input tournament (an oriented
complete graph) of expected wins/loses. However,
the existence of polynomial kernelizations (effi-
cient preprocessing) for TFP has remained open. In
this paper, we present the first polynomial kernel-
ization for TFP parameterized by the feedback arc
set number of the input tournament. We achieve
this by providing a polynomial-time routine that
computes a SAT encoding where the number of
clauses is bounded polynomially in the feedback
arc set number.

1 Introduction
Single-elimination (or knockout) tournaments are natural
models of competitive environments such as sports com-
petitions, decision making and elections. Consequently,
they have attracted a great deal of attention in Artificial In-
telligence, especially within social choice theory [Laffond
et al., 1993; Fisher and Ryan, 1995; Brandt et al., 2016;
Williams, 2016; Brandt et al., 2018].

Formally, the execution of a knockout tournament with a
set N of n players is described by a complete (unordered) bi-
nary tree T with n leaves and a mapping ϕ : N → leaves(T ),
called a seeding. In the first round, pairs of players mapped to
leaves with the same parent compete against each other, and
the winner is mapped to the common parent. The leaves are
then deleted from the tree, and the next round is conducted
similarly. The execution stops when the tree contains a single
vertex, mapped to a player who is then declared the winner.

More recent years have seen an increased interest in the
structure of knockout tournaments which might be amenable
to manipulation by an external agent who may, either bribe
certain participants to throw games ([Russell and Walsh,

2009; Kim and Vassilevska Williams, 2015; Mattei et al.,
2015; Gupta et al., 2018b]) or rearrange the initial seed-
ing (rigging) [Vu et al., 2009; Vassilevska Williams, 2010;
Stanton and Vassilevska Williams, 2011; Aziz et al., 2014;
Kim and Vassilevska Williams, 2015; Kim et al., 2016] in or-
der to ensure that a certain player wins the tournament. In
this paper, we focus on the latter.

The most natural computational problem associated with
rigging tournaments is the TOURNAMENT FIXING PROBLEM
(TFP) where, we are given a tournament (an oriented com-
plete graph)D = (N,A). For every u, v ∈ N , we assume (or
predict) that in a match between u and v, uwould beat v if and
only if (u, v) ∈ A. For a given player v? ∈ N , the objective
is to decide whether there is a seeding of the n players such
that v? is the winner of the resulting knockout tournament,
given the match outcomes encoded by D. [Aziz et al., 2014]
showed that TFP is NP-hard in general. Moreover, motivated
by the fact that TFP is easily solved on acyclic tournaments,
they initiated the study of the complexity of TFP parameter-
ized by the feedback arc set number of the tournament, which
is the least number of arcs in the given tournament that need
to be flipped to obtain an acyclic (or transitive) tournament.

[Aziz et al., 2014] gave a clever nf(k)-time dynamic pro-
gramming algorithm (for some function f ) for this problem,
where k is the feedback arc set number of the tournament.
Their algorithm clearly runs in polynomial time for every
fixed value of k. Subsequently, [Ramanujan and Szeider,
2017] gave a 2O(k2 log k)nO(1)-time algorithm for this prob-
lem, which implies polynomial-time solvability as long as
k2 log k = O(log n). This bound was recently improved by
[Gupta et al., 2018a], who gave a 2O(k log k)nO(1)-time algo-
rithm for this problem.

However, in spite of these recent developments on solving
TFP, the feasibility of efficient preprocessing for this problem
remained an intriguing open question. The framework of ker-
nelization [Downey and Fellows, 2013; Cygan et al., 2015]
offers a mathematically rigorous way of designing, analysing
and comparing preprocessing algorithms for numerous prob-
lems and has been a resounding success over the last two
decades. The notion of efficient preprocessing is captured
in this framework by the idea of a polynomial kernelization,
which is a polynomial-time algorithm that returns an instance

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

322



1

23

4

5

7

8

6

9

10
11

12

13

14
15

16

Figure 1: A binomial arborescence resulting from a tournament
played by 16 players where the initial seeding pairs Player 2i + 1
against Player 2i+ 2 for each i ∈ {0, . . . , 7}.

equivalent to the input such that the size of the output is
bounded by a polynomial function of some parameter of the
input instance.

Our Contribution. In this paper, we present the first poly-
nomial kernelization for TFP parameterized by the feedback
arc set number of the input tournament. At the heart of our
result is a complex polynomial-time routine that outputs an
equivalent SAT encoding of a given input instance of TFP,
such that the number of clauses and variables are bounded
polynomially in the feedback arc set number and therefore in-
dependent of the size of the original tournament. Pipelining
our SAT encoding with a chain of known polynomial-time-
mapping reductions from SAT to TFP, we obtain our polyno-
mial kernel for TFP.

2 Preliminaries
For a digraph D, a feedback arc set is a set of arcs whose
reversal in D results in a directed acyclic graph (DAG). An
arborescence is a rooted directed tree such that all arcs are
directed away from the root.
Definition 1 ([Vassilevska Williams, 2010]). The set of bino-
mial arborescences over a tournament D is recursively de-
fined as follows. (i) Each a ∈ V (D) is a binomial arbores-
cence rooted at a. (ii) If, for some i > 0, Ta and Tb are
2i−1-node binomial arborescences rooted at a and b, respec-
tively, then the tree T resulting from adding an arc from a to
b is the 2i-node binomial arborescence (b.a) rooted at a. If a
binomial arborescence T is such that V (T ) = V (D), then T
is a spanning binomial arborescence (s.b.a.) of D.

We will often refer to a binomial arborescence simply as a
b.a and spanning binomial arborescence as an s.b.a.
Proposition 1 ([Vassilevska Williams, 2010]). Let D be a
tournament and let v? ∈ V (D). Then, there is a seeding of
V (D) such that the resulting knockout tournament is won by
v? if and only if D has an s.b.a rooted at v?.

Note that if T is an s.b.a of D, then ∀v ∈ V (T ), ∃i ∈
[log n] ∪ {0} such that v has 2i descendants in T and v is the
winner of a subtournament played by the descendants of v in
T . We use the terms vertex and player interchangeably.
Definition 2. LetD be a tournament with a special player v?.
Let F ⊆ A(D) be a feedback arc set of D, and let D†

the DAG obtained by reversing the arcs of F in D. Let
π : V (D) → [n] be the linear ordering of the players in de-
creasing order of strength: a player u appears before player
v if and only if (u, v) ∈ A(D†). Then, we say that π witnesses
F . We call the vertices in {v?} ∪ V (F ) affected vertices and
denote this set by AF .

We say that a permutation γ of X ⊆ V (D) respects the
permutation π witnessing F if the vertices of X appear in the
same order (relative to each other) in γ as they do in π.

We now consider the ‘type’ function that partitions the ver-
tices in V (D) \AF into at most |AF |+ 1 partitions. We first
define the set Types = [|AF |+ 1] ∪ {AF }.
Definition 3. LetD be a tournament with a special player v?.
Let F ⊆ A(D) be a feedback arc set of D, let π be the or-
dering witnessing F , and let γ be the ordering of AF that
respects π. Define the type function τπγ : V (D)→ Types as
follows. For any v∈AF , τπγ (v)=v. For any v∈V (D)\AF ,
τπγ (v) = i where i is the smallest index in [|AF |] such that
π(v) < π(γ(i)). If no such index exists, that is, π(v) >
π(γ(|AF |)), then τπγ (v)= |AF |+1. For any i∈Types, denote
the set of vertices in the pre-image of i under τπγ by Pi(τπγ ).

Observe that vertices of the same type have the same be-
haviour with respect to every vertex of a different type in the
graph. Henceforth, we assume without loss of generality that
instances of TFP are of the form (D, k, v?, F, π), where F
is a given feedback arc set of D of size O(k) and π is the
ordering witnessing F .

In a parameterized problem, inputs are tuples (I, k) where
I ∈ Σ∗ is the problem instance and k ∈ N is called the
parameter. Let Π ⊆ Σ∗ × N be a parameterized problem
and g be a computable function. We say that Π admits a
kernel of size g if there exists an algorithm referred to as a
kernelization (or a kernel) that, given (x, k) ∈ Σ∗ × N, out-
puts in time polynomial in |x| + k, a pair (x′, k′) ∈ Σ∗ × N
such that (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π, and (b)
max{|x′|, k′} ≤ g(k). If g(k) = kO(1), then we say that Π
admits a polynomial kernel.

A polynomial compression of a parameterized language
Q ⊆ Σ∗×N into an unparameterized language R ⊆ Σ∗ is an
algorithm that takes as input an instance (x, k) ∈ Σ∗ × N,
works in time polynomial in |x| + k, and returns a string
y ∈ Σ∗ such that: (a) |y| ≤ p(k) for some polynomial p(·),
and (b) y ∈ R if and only if (x, k) ∈ Q.

3 Polynomial Compressions
Due to the 2O(k log k)nO(1) algorithm of Gupta et al. [2018a],
we may assume henceforth that k log k ≥ log n. Indeed, if
this were not the case, then their algorithm would already be
a polynomial-time algorithm for TFP.

Let D̂F denote the subtournament induced on AF . More-
over, for each i ∈ Types, we denote by µ(i) the num-
ber of vertices of type i. Given D, k, v?, F, π, we denote
by ω(D, k, v?, F, π) the combined bit-string encoding of
D̂F , k, v

?, γ (the relative ordering of AF in π), and µ(i) for
every i ∈ Types. Since D̂F hasO(k) vertices and the bit-size
of µ(i) is bounded by log n ≤ k log k for every i ∈ Types,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

323



it follows that ω(D,F, π) = O(k2 log k). Moreover, observe
that given D, k, v?, F, π and F , the string ω(D, k, v?, F, π)
can be computed in polynomial time.

Define the language Q ⊆ {0, 1}∗ to be the set
{ω(D, k, v?, F, π) | (D, k, v?, F ) is a yes-instance of TFP}.
Since given ω(D, k, v?, F, π), the tournament D is uniquely
defined, we have obtained a polynomial compression of TFP
into the language Q. However, note that the most natural
certificate of membership in Q is a seeding of the players re-
sulting in a knockout tournament won by v? (equivalently, an
s.b.a contained in D and rooted at v?) and has size (|V (D)|)
that, in general, could be superpolynomial in the length of
the input (O(k2 log k)). Hence, it is not clear that we have
a polynomial test for membership of Q. We now proceed to
build on techniques from [Ramanujan and Szeider, 2017] and
[Gupta et al., 2018a] to obtain a different compression for this
problem, which forms the crux of our SAT encoding.

3.1 Packing-Based Variant
In this subsection, we interpret the work of Gupta et
al. [2018a] in terms of a packing variant.

For an arborescence T and vertex set M ⊆ V (T ), the
least common ancestor-closure (LCA-closure) LCA(M) is
obtained by the following process. Initially, set M ′ = M
and as long as there are vertices x, y ∈ M ′ whose least com-
mon ancestor w is not in M ′, add w to M ′. When the process
terminates, output M ′ as the LCA-closure of M .

Observation 1. Let T be an arborescence and M ⊆ V (T ).
Then, |LCA(M)| ≤ 2|M |.

We define a refinement of the notion of a template tree of
[Ramanujan and Szeider, 2017] and [Gupta et al., 2018a] as
follows. Let T be a b.a rooted at v? and let X ⊆ V (T ) such
that v? ∈ X . Let Z = LCA(X). Let T ′ be a tree constructed
as follows. We begin with T and delete all nodes which do
not lie on a v?-u path in T for any u ∈ Z. For every x, y ∈ Z
such that x is an ancestor of y in T ′ and there is no other
vertex of Z which is an internal node of the x-y path in T ′,
we add to Z the unique child of x which lies on this x-y
path in T ′. (In [Ramanujan and Szeider, 2017], an arbitrary
internal node (if one exists) was added to Z, and in [Gupta et
al., 2018a], no internal node was added.) We then repeatedly
short-circuit each node of degree 2 in T ′ which is not in Z.
That is, we repeat the following step as long as possible: pick
a vertex u ∈ V (T ) \ Z with exactly one in-neighbor u− and
one out-neighbor u+; delete u and add the arc (u−, u+). Let
T ′′ be the tree that remains when the above step can no longer
be performed. We call T ′′ the template tree of X in T .

Observe that the vertex set of the template tree T ′′ of
X in the above definition is the set Z, whose size at most
2|LCA(X)| ≤ 4|X| (by Observation 1), and it contains the
set X . Moreover, the leaves of T ′′ are contained in X .

Definition 4. A tuple (L,ψ, χ, `) is valid for an instance
(D, k, v?, F ) if the following conditions hold.

1. L is an arborescence on at most 4(2k + 1) nodes rooted
at v? such that V (L) ⊇ AF and leaves(L) ⊆ AF ,

2. ψ : V (L) → Types such that ψ(u) = u for every u ∈
AF , and ψ(u) ∈ Types \AF for every u ∈ V (L) \AF ,

3. χ : V (L)→ [log n] ∪ {0} where χ(v?) = log n,
4. ` : A(L)→ [log n] ∪ {0}, and
5. for each (u, v) ∈ A(L) with `(u, v) = 0, either ψ(u) =
ψ(v) or vertices of type ψ(u) beat vertices of type ψ(v).
We relate the definition above with binomial arborescence

via the notion of a template tree as follows.
Definition 5. A tuple (L,ψ, χ, `) is realizable for an in-
stance (D, k, v?, F ) if it is valid and there is an n-node b.a T
rooted at v? with V (L) ⊆ V (T ) such that the following hold:
(i) L is the template tree of AF in T , (ii) for each u ∈ V (L),
the number of nodes in the subarborescence of T rooted at
u is 2χ(u), and (iii) for each (u, v) ∈ A(L), the number of
internal nodes on the path from u to v in T is `(u, v).

In the above definition, T is said to witness the realizabil-
ity of this valid tuple. With each valid tuple (L,ψ, χ, `), we
associate a “packing condition”. Specifically, we say that
(L,ψ, χ, `) is packable if there exists a partition P of V (D)
and a mapping f : V (L) ∪ A(L) → P that satisfies the fol-
lowing constraints.
1. For each u ∈ V (L), we have (i) |f(u)| = 2χ(u) −∑

v∈ChildL(u)(2
χ(v) + `(u, v)), (ii) for each v ∈ f(u), v

is beaten by some vertex of type ψ(u), and (iii) there ex-
ists a vertex of type ψ(u) in f(u).

2. For each (u, v) ∈ A(L), we have (i) |f(u, v)| = `(u, v),
and (ii) for each w ∈ f(u, v), w is beaten by some vertex
of type ψ(u) but beats some vertex of type ψ(v).

The following proposition follows (though not stated ex-
plicitly) from the work of Gupta et al. [2018a],
Proposition 2. A given instance of TFP is a yes-instance if
and only if some realizable tuple (L,ψ, χ, `) is packable.

We define the language W ⊆ {0, 1}∗ to be the set
{ω(D, k, v?, F, π) | (D, k, v?, F, π) has a realizable tuple (L,
ψ, χ, `) that is packable}. Proposition 2 then implies a poly-
nomial compression of TFP into the language W . However,
W is also not easily seen to be in NP as the natural certificate
consists of a tuple (L,ψ, χ, `) and a partition P; while it is
not difficult to substitute every set in P with a function that
only states how many vertices of each type belong to that set
and use that as a witness (we will do this later), it is not clear
how to verify that (L,ψ, χ, `) is realizable—in particular, the
dynamic programming algorithm of Gupta et al. [2018a] for
this task takes time polynomial in |V (D)| that, in general,
could be superpolynomial in the input length (O(k2 log k)).

We next give an explicit reduction fromQ to CNF-SAT. (In
turn, this reduction implies that Q and W are in NP.)

4 The CNF-SAT Encoding
Due to lack of space, we describe each subformula that will
be part of our final output CNF-SAT formula only in words.
However, we present our descriptions in such a way that it is
straightforward to write it as an AND of clauses. Moreover,
we use intuitive terminology for the subformulas as often as
possible in order to facilitate readability.

The main idea in our reduction is to simulate the “guess-
and-verify” operation for instances of W as a test for the sat-
isfiability of an appropriate CNF formula. Towards that, let

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

324



Dummy = {d1, . . . , d`} be a set of ` = 4(2k + 1) − |AF |
“dummy” nodes. Intuitively, the dummies are placeholders
for the (unknown) vertices outside AF that either (i) belong
to in LCA(AF ) in the (unknown) template tree L, or (ii) are
the children of these vertices. We distinguish between the two
types of dummies via the following lemma, which is a direct
consequence of the definition of template trees.
Lemma 1. Let (L,ψ, χ, `) be a realizable tuple for an in-
stance (D, k, v?, F ). For each u ∈ V (L) \ AF , we have
u ∈ LCA(AF ) in any s.b.a that witnesses the realizability of
this tuple if and only if u has at least two children in L.

We require the following set of variables.
• ∀ two distinct elements u, v ∈ AF ∪ Dummy where v 6=
v?, we have a variable xLu→v to indicate that u is the parent
of v in the (unknown) template tree L. (Only dummies
assigned a parent will be considered as part of the tree.)
We exclude v? to assert that it is the root of L.
• ∀ dummy u ∈ Dummy and type i ∈ Types \AF , we have

a variable xψu⇐i to indicate that ψ assigns the type i to u.
• ∀u ∈ AF ∪Dummy and “bit-index” b ∈ [log n]∪ {0}, we

have a variable xχ,bu to indicate whether the bth bit (where
the least significant one is indexed by 0) of 2χ(u) is 1.

• ∀ distinct u, v ∈ AF ∪ Dummy where v 6= v? and “bit-
index” b ∈ [log log n] ∪ {0}, we have a variable x`,bu→v to
indicate whether the bth bit of `(u, v) is 1.

• ∀ element u ∈ (AF ∪Dummy) \ {v?} and “distance” d ∈
[log n], we have a variable xdist,du to indicate that there is
a path of length d from v? to u in L. (These variables are
necessary for a compact encoding of a formula that will be
given to ensure the validity of (L,ψ, χ, `).)

• ∀e ∈ AF ∪Dummy∪((AF ∪Dummy)×(AF ∪Dummy))
(i.e., e is a single element or a pair of elements from
AF ∪ Dummy), type i ∈ Types \ AF and “bit-index”
b ∈ [log n] ∪ {0}, we have a variable xg,be,i to indicate
whether the bth bit of g(e, t) is 1. Here, g is the witness
of the satisfaction of the implicit packing condition which
will be defined in Section 4.2.

• Additional “local variables” (where a local variable is one
used in a single specific formula for implementation pur-
poses) will be presented when required.

4.1 Constraints for the Realizability of (L,ψ, χ, `)
We first present constraints that assert that (L,ψ, χ, `) is
valid. To assert that L is an arborescence, the following
lemma will come in handy.
Lemma 2. Let L be a digraph where v? ∈ V (L) has in-
degree 0. Then, L is an arborescence rooted at v? of height
at most log n if and only if the following conditions hold.
• Each vertex u ∈ V (L) \ {v?} has in-degree at most 1.
• For each u ∈ V (L) \ {v?}, there is i ∈ [log n] such that L

has a path of length i from v? to u.
Lemma 2 is based on the fact that L is an arborescence

rooted at v? if and only if every vertex other than v? has in-
degree exactly 1 and is reachable from v?. The same fact
helps us identify those dummies which participate in L and
to ensure that V (L) ⊇ AF . Towards this, the following defi-
nition and lemma will be useful.

Definition 6. Let L′ be a digraph where v? ∈ V (L) has in-
degree 0. Then, the reachability digraph of v? in L′ is the
subgraph of L′ induced by the set of v? and the other vertices
u ∈ V (L′) such that L′ has a path of length i from v? to u
for some i ∈ [log n].

Lemma 3. Let L be an arborescence rooted at v? of height at
most log n. Then, there exists a digraphL′ where every vertex
u ∈ V (L′) \ {v?} has in-degree at most 1, the reachability
digraph of v? in L′ is precisely L, and every leaf in L has
out-degree 0 in L′.

We now present the constraints.

1. For every u ∈ (AF ∪ Dummy) \ {v?}, the formula
AtMostOneParent(u) is true if and only if at most one
variable in {xLv→u : v ∈ (AF ∪ Dummy) \ {u}} is true.

2. For every u ∈ Dummy, the formula ExactlyOneType(u)

is true if and only if exactly one variable in {xψu⇐i : i ∈
Types \AF } is true.

3. For every u ∈ AF ∪ Dummy, the formula
ExactlyOneSizeBit(u) is true if and only if exactly
one variable in {xχ,bu : b ∈ [log n] ∪ {0}} is true.
Moreover, xχ,lognv? is true.

4. For every u ∈ (AF ∪ Dummy) \ {v?}, the formula
AtMostOneDist(u) is true if and only if at most one vari-
able in {xdist,du : d ∈ [log n]} is true.

5. For every u ∈ AF \{v?}, the formula AtLeastOneDist(u)
is true if and only if there exists d ∈ [log n] such that xdist,du
is true. We note that this set of constraints will ensure that
V (L) ⊇ AF .

6. For every u ∈ AF \ {v?} and d ∈ [log n], the formula
VerifyDistd(u) is true if and only if xdist,du is true and either
(i) d = 1 and xLv?→u is true, or (ii) d ≥ 2 and there is a
w ∈ (AF ∪ Dummy) \ {v?, u} such that both xLw→u and
xdist,d−1w are true.

7. For each u ∈ Dummy, the formula Reachable(u) is true if
and only if there is a d ∈ [log n] such that xdist,du is true.

8. For every u ∈ Dummy, the formula NotLeaf(u) is true
if and only if Reachable(u) is false or there exists w ∈
(AF ∪Dummy)\{v?, u} such that xLu→w is true. This set
of constraints will be used to ensure that leaves(L) ⊆ AF .

We now introduce a few formulas that will be used sev-
eral times. First, we identify the nodes and arcs of L as fol-
lows. For every u ∈ AF ∪ Dummy, the formula IsNode(u)
is true if and only if either u ∈ AF or both u ∈ Dummy and
Reachable(u) is true. Moreover, for every two distinct ele-
ments u, v ∈ AF ∪Dummy, the formula IsArc(u, v) is true if
and only if v 6= v?, IsNode(u) is true, IsNode(v) is true, and
xLu→v is true. Additionally, for every two distinct elements
u, v ∈ AF ∪ Dummy, the formula Beats(u, v) is true if and
only if there exist i, j ∈ Types such that the following condi-
tions hold: (i) i = j or vertices of type i beat vertices of type
j; (ii) either u = i ∈ AF or both u /∈ AF and xψu⇐i is true;
(iii) either v = j ∈ AF or both v /∈ AF and xψv⇐j is true.

To validate Condition 5 in Definition 4, we ensure that for
every two distinct elements u, v ∈ AF ∪Dummy, the formula
IfArcThenValid(u, v) is true if and only if, if IsArc(u, v) is
true, then Beats(u, v) is true.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

325



LCA-Closure. Based on Lemma 1, we determine whether
a dummy belongs to the LCA-closure as follows. For ev-
ery u ∈ Dummy, we have a formula InClosure(u) that is
true if and only if IsNode(u) is true and there exist two dis-
tinct q, p ∈ (AF ∪ Dummy) \ {v?, u} such that both xLu→p
and xLu→q are true. Moreover, for every u ∈ Dummy, we
have a formula ChildOfClosure(u) that is true if and only if
IsNode(u) is true and InClosure(u) is false. To verify that ev-
ery degree-2 dummy is indeed a child of a node in the LCA-
closure, for every two distinct u, v ∈ Dummy, we have a
formula NoDeg2ConsecDum(u, v) that is true if and only if,
if both IsArc(u, v) is true and ChildOfClosure(u) is true, then
ChildOfClosure(v) is false.

A crucial ingredient of our encoding is a “local check” to
verify whether the size logarithms assigned by χ enable the
existence of a b.a that gives rise to L as per Definition 5.
(Not all sizes enable this—for example, if n = 16, L is a
star with 6 nodes, and each leaf is assigned size 2, the tuple
is not realizable; indeed, v? has only 4 incomparable children
whose subtrees have size 2, see Fig. 1). This ingredient is
encapsulated in Lemma 5. (The first item has already been
validated.) Towards its presentation and proof, the following
lemma will be useful.

Lemma 4. 1. Let T be a b.a, and let u ∈ V (T ). Then, the
subarborescence rooted at u is a b.a.

2. For any set of nodes U , r ∈ U and χ : U → [log n] ∪
{0}, there exists a b.a rooted at r where each node in U \
{r} is a child of r and for each u ∈ U the size of the
subarborescence rooted at u is 2χ(u) if and only if χ is
injective and χ(r) > χ(u) for each u ∈ U .

3. For any two nodes r and u, χ : {r, u} → [log n] ∪ {0}
and ` ∈ [log n] ∪ {0}, there exists a b.a rooted at r with
a path of ` internal nodes from r to u and where for each
v ∈ {r, u} the size of the subarborescence rooted at v is
2χ(v) if and only if 2χ(r) ≥ 2χ(u)+`+1.

Proof. (1) and (2) follow directly from Definition 1, while (3)
can be proved by fixing r, u and χ : {r, u} → [log n] ∪ {0}
and performing a straightforward induction on `.

Based on Lemmas 1 and 4, we have the following useful
characterization of realizable tuples.

Lemma 5. Let (L,ψ, χ, `) be a valid tuple for an instance
(D, k, v?, F ). Then, (L,ψ, χ, `) is realizable if and only if
the following conditions are satisfied.

1. There does not exist an arc (u, v) ∈ A(L) such that u, v /∈
AF and both u and v have degree 2 in L.

2. For every arc (u, v) ∈ A(L) such that u ∈ AF or u has
degree at least 3 in L, we have `(u, v) = 0.

3. For every arc (u, v) ∈ A(L), χ(u) > χ(v).
4. For every u ∈ V (L) of degree at least 3 and any two

distinct children v, w of u in L, we have χ(v) 6= χ(w).
5. For every arc (u, v) ∈ A(L) such that u /∈ AF and v is

the only child of u in L, we have 2χ(u) ≥ 2χ(v)+`(u,v)+1.

Proof. ( =⇒ ) (1) follows from Lemma 1, (2) follows from
the definition of template trees and realizability, (3) follows
from Lemma 4 (2), (4) follows from the second statement

of this lemma and Definition 1, and (5) follows from by
Lemma 4 (3).
( ⇐= ) For every leaf u of L, we root a 2χ(u)-node b.a at
u. For every (u, v) ∈ A(L), we subdivide it exactly `(u, v)
times to obtain an arborescenceL′ of height log n rooted at v?
which, (using the 5 properties in the premise) can be seen to
be a subgraph of an s.b.a. Therefore, we use χ(u) for every
u ∈ V (L) to root (or reconstruct) appropriately sized b.a’s at
every node of V (L) and for each (u, v) ∈ A(L), use `(u, v)
and the height of v in L′ to reconstruct the b.a’s rooted at the
newly created subdivision vertices. It is easy to prove that
assuming the given 5 properties, this is always possible and
moreover, the resulting s.b.a T rooted at v? indeed witnesses
the realizability of the given tuple.

For Condition 2 in Lemma 5, for each distinct u, v ∈ AF ∪
Dummy, the formula LocCheckLenSensible(u, v) is true if
and only if, if both (i) IsArc(u, v) is true, and (ii) either u ∈
AF or u ∈ Dummy and InClosure(u) is true, then for every
b ∈ [log log n] ∪ {0}, x`,bu→v is false.

To validate Condition 3 in Lemma 5, for every two
distinct elements u, v ∈ AF ∪ Dummy, the formula
LocCheckSizeDec(u, v) is true if and only if, if IsArc(u, v)
is true, then the largest b ∈ [log n] ∪ {0} such that xχ,bu and
xχ,bv are either not both true or not both false exists and is
such that xχ,bu is true and xχ,bv is false.

To validate Condition 4 in Lemma 5, for every three
distinct elements u, v, w ∈ AF ∪ Dummy, the formula
LocCheckSizeDiff(u, v, w) if true if and only if, if both
IsArc(u, v) and IsArc(u,w) are true, then there exists b ∈
[log n] ∪ {0} such that either both xχ,bv is true and xχ,bw is
false or both xχ,bv is false and xχ,bw is true.

To validate Condition 5 in Lemma 5, we need to imple-
ment standard binary addition. For this, we introduce lo-
cal variables. Specifically, for every two distinct elements
u, v ∈ AF ∪ Dummy and b ∈ [log n] ∪ {0}, we have a new
variable yLocCheckPath(u,v),b to indicate whether the bth bit in the
binary encoding of the (nonnegative) integer

logn∑
i=0

[xχ,iv ] · 2i + 2
∑log log n

i=0 [x`,i
u→v ]·2

i

,

where we use [z] (for any variable z) to denote 1 if z
is true and 0 otherwise. Towards this, for every two dis-
tinct elements u, v ∈ AF ∪ Dummy and b ∈ [log] ∪ {0},
we have a new variable zLocCheckPath(u,v),b to indicate whether the
bth bit in the binary encoding of the (nonnegative) integer
2
∑log log n

i=0 [x`,i
u→v ]·2

i

. Then, for every two distinct elements
u, v ∈ AF ∪ Dummy, for every function f : {[log log n] ∪
{0}} → {0, 1} (because there are only O(log n) such func-
tions, the number of formulas to consider is kO(1)), we
have a formula that is satisfied if and only if, if for every
i ∈ [log log n] ∪ {0} we have that f(i) = 1 if and only if
x`,iu→v is true, then for every b ∈ [log n] ∪ {0} we have that
zLocCheckPath(u,v),b is true if and only if b =

∑log log n
i=0 f(i) · 2i − 1.

To validate the “y-variables”, for every two distinct ele-
ments u, v ∈ AF ∪ Dummy and b ∈ [log n − 1] ∪ {0},
we also have a new variable cLocCheckPath(u,v),b and a formula
that is satisfied if and only either (i) b = 0 and both xχ,0v

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

326



and zLocCheckPath(u,v),0 are true, or (ii) b ≥ 1 and at least two
among xχ,bv , zLocCheckPath(u,v),b and cLocCheckPath(u,v),b−1 are true. Note
that the “c-variables” are meant to encode carry-overs in ad-
dition computations. Now, for every two distinct elements
u, v ∈ AF ∪ Dummy and b ∈ [log n] ∪ {0}, we have a
formula that is satisfied if and only if either (i) b = 0 and
yLocCheckPath(u,v),0 is true if and only if exactly one variable among
xχ,0v and zLocCheckPath(u,v),0 is true, or (ii) b ≥ 1 and yLocCheckPath(u,v),b

is true if and only if exactly one variable or exactly three vari-
ables among the variables xχ,bv , zLocCheckPath(u,v),b and cLocCheckPath(u,v),b−1
are true.

Lastly, for every two distinct elements u, v ∈ AF ∪
Dummy, the formula LocCheckPath(u, v) is true if and only
if, if both IsArc(u, v) and ChildOfClosure(v) are true, then
either (i) for every b ∈ [log n] ∪ {0}, the two variables xχ,bu
and yLocCheckPath(u,v),b are both true or both false, or (ii) the largest
b ∈ [log n] ∪ {0} such that xχ,bu and yLocCheckPath(u,v),b are either
not both true or not both false is such that xχ,bu is true and
yLocCheckPath(u,v),b is false.

The REALIZABLE formula. We define the formula
REALIZABLE as the AND of the following formulas: (i)
every formula in items 1–8 in “Validity”; (ii) for ev-
ery two distinct elements u, v ∈ AF ∪ Dummy, the
formulas IfArcThenValid(u, v), LocCheckLenSensible(u, v),
LocCheckSizeDec(u, v) and LocCheckPath(u, v); (iii) for
every three distinct elements u, v, w ∈ AF ∪ Dummy, the
formula LocCheckSizeDiff(u, v, w).

4.2 Constraints for the Packing-Based Condition
We rephrase the packing condition as follows. We say that
(L,ψ, χ, `) is implicitly packable if there exists a function
g : (V (L) ∪A(L))× Types→ [n] ∪ {0} that satisfies:
1. For each u ∈ V (L), we have (i) |

∑
t∈Types g(u, t)| =

2χ(u) −
∑
v∈ChildL(u)(2

χ(v) + `(u, v)), (ii) for each t ∈
Types such that g(u, t) ≥ 1, either ψ(u) = t or ver-
tices of type t are beaten by vertices of type ψ(u), and
(iii) g(u, ψ(u)) ≥ 1.

2. For each (u, v) ∈ A(L), we have (i)
|
∑
t∈Types g((u, v), t)| = `(u, v), and (ii) for each

t ∈ Types such that g(u, t) ≥ 1, there exists a vertex of
type t that is beaten by some vertex of type ψ(u) but beats
some vertex of type ψ(v).

3. For each t ∈ Types, |
∑
e∈V (L)∪A(L) g(e, t)| = µ(t).

It can be verified that the following statement holds true.
(For lack of space, we omit a proof.)
Lemma 6. Let (L,ψ, χ, `) be a realizable tuple for an in-
stance (D, k, v?, F ). Then, (L,ψ, χ, `) is packable if and
only if it is implicitly packable.

Thus, Proposition 2 implies the following lemma.
Lemma 7. A given instance of TFP is a yes-instance if and
only if some realizable tuple (L,ψ,χ,`) is implicitly packable.

By arguments similar to those in the previous subsection,
it is not difficult to validate (in CNF-SAT) the satisfaction of
each of the three constraints in the definition of the implicit

packing condition. For lack of space, we omit these details.
The formula to be generated in this subsection is denoted by
PACKABLE; we state its properties in the next subsection.
The output of the reduction is ϕ = ϕ(D, k, v?, F ) =
REALIZABLE ∧ PACKABLE. Then, the following holds.
Observation 2. The size of the formula ϕ is polynomial in k,
and it is computable in polynomial time.

We have defined ϕ in such a way that a satisfying assign-
ment for ϕ corresponds precisely to the tuple (L,ψ, χ, `, g)
where (L,ψ, χ, `) is a realizable tuple and is implicitly pack-
able (using the function g). Conversely, given a realizable
tuple (L,ψ, χ, `) and the function g certifying that this tuple
is implicitly packable, one can construct a satisfying assign-
ment for ϕ. This proves our main theorem.
Theorem 1. TFP admits a polynomial compression into
CNF-SAT.

5 Outline of the Kernelization Algorithm
[Aziz et al., 2014] give a polynomial-time reduction to TFP
from the variant of 3-SAT where every literal appears at most
twice. Call this reduction D. This variant of 3-SAT can be
easily seen to be NP-hard by a simple reduction from 3-SAT
where one creates distinct copies of each variable for each of
its literals and then finally adds a 2-CNF formula encoding
the equality among these copies. Call this reduction from 3-
SAT, E . Finally, let F denote the standard polynomial-time
reduction from CNF-SAT to 3-SAT.

Let Q denote the composed algorithm D ◦ E ◦ F which
takes as input a CNF-SAT instance, runs Algorithm F on it,
then Algorithm E on the output of F and finally, Algorithm
D on the output of E . Notice that Q is a polynomial-time
reduction from CNF-SAT to TFP. Executing Q on our CNF-
SAT encoding results in the polynomial kernelization for TFP
parameterized by the feedback arc set number.

6 Conclusions and Future Research
Our CNF-SAT encoding for the Tournament Fixing Problem
with output size bounded polynomially in the feedback arc
set number of the input is pleasantly surprising because TFP
is a graph layout problem and designing even fixed-parameter
tractable algorithms for such problems is quite challenging,
let alone kernelization algorithms. Moreover, combining our
SAT encoding with state-of-the-art SAT solvers could poten-
tially lead to new and faster algorithms for the TFP problem.
Finally, resolving the parameterized complexity of TFP with
respect to stronger parameters such as feedback vertex set re-
mains an interesting open problem for future research.

Acknowledgements
The authors wish to thank the anonymous reviewers for their
helpful comments and acknowledge support by the European
Research Council (ERC) via grant LOPPRE, reference no.
819416, Israel Science Foundation (ISF) grant no. 1176/18
and the Centre for Discrete Mathematics and its Applications,
University of Warwick.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

327



References
[Aziz et al., 2014] Haris Aziz, Serge Gaspers, Simon

Mackenzie, Nicholas Mattei, Paul Stursberg, and Toby
Walsh. Fixing a balanced knockout tournament. In
Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada., pages 552–558, 2014.

[Brandt et al., 2016] Felix Brandt, Markus Brill, and Bern-
hard Harrenstein. Tournament Solutions. In F Brandt,
V Conitzer, U Endriss, J Lang, and A. D. Procaccia, ed-
itors, Handbook of Computational Social Choice, pages
453–474. Cambridge University Press, 2016.

[Brandt et al., 2018] Felix Brandt, Markus Brill, and Paul
Harrenstein. Extending tournament solutions. Social
Choice and Welfare, 51(2):193–222, 2018.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Downey and Fellows, 2013] Rodney G. Downey and
Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[Fisher and Ryan, 1995] David Fisher and Jennifer Ryan.
Tournament games and positive tournaments. Journal of
Graph Theory, 19(2):217–236, 1995.

[Gupta et al., 2018a] Sushmita Gupta, Sanjukta Roy, Saket
Saurabh, and Meirav Zehavi. When rigging a tournament,
let greediness blind you. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI 2018, July 13-19, 2018, Stockholm, Swe-
den., pages 275–281, 2018.

[Gupta et al., 2018b] Sushmita Gupta, Sanjukta Roy, Saket
Saurabh, and Meirav Zehavi. Winning a tournament by
any means necessary. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI 2018, July 13-19, 2018, Stockholm, Swe-
den., pages 282–288, 2018.

[Kim and Vassilevska Williams, 2015] Michael P. Kim and
Virginia Vassilevska Williams. Fixing tournaments for
kings, chokers, and more. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 561–567, 2015.

[Kim et al., 2016] Michael P. Kim, Warut Suksompong, and
Virginia Vassilevska Williams. Who can win a single-
elimination tournament? In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA., pages 516–522, 2016.

[Laffond et al., 1993] G. Laffond, J. F. Laslier, and M. Le
Breton. The bipartisan set of a tournament game. Games
and Economic Behavior, 5:182–201, 1993.

[Mattei et al., 2015] Nicholas Mattei, Judy Goldsmith, An-
drew Klapper, and Martin Mundhenk. On the complexity
of bribery and manipulation in tournaments with uncertain
information. Journal of Applied Logic, 13(4, Part 2):557

– 581, 2015. Special JAL Issue dedicated to Uncertain
Reasoning at FLAIRS.

[Ramanujan and Szeider, 2017] M. S. Ramanujan and Ste-
fan Szeider. Rigging nearly acyclic tournaments is fixed-
parameter tractable. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA., pages 3929–3935,
2017.

[Russell and Walsh, 2009] Tyrel Russell and Toby Walsh.
Manipulating tournaments in cup and round robin compe-
titions. In Francesca Rossi and Alexis Tsoukias, editors,
Algorithmic Decision Theory, pages 26–37, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg.

[Stanton and Vassilevska Williams, 2011] Isabelle Stanton
and Virginia Vassilevska Williams. Rigging tournament
brackets for weaker players. In IJCAI 2011, Proceedings
of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011, pages 357–364, 2011.

[Vassilevska Williams, 2010] Virginia Vassilevska Williams.
Fixing a tournament. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010,
Atlanta, Georgia, USA, July 11-15, 2010, 2010.

[Vu et al., 2009] Thuc Vu, Alon Altman, and Yoav Shoham.
On the complexity of schedule control problems for
knockout tournaments. In 8th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Budapest, Hungary, May 10-15, 2009, Volume
1, pages 225–232, 2009.

[Williams, 2016] Virginia Vassilevska Williams. Knock-
out tournaments. In Handbook of Computational Social
Choice, pages 453–474. 2016.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

328


