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Abstract
Decoding visual stimuli from brain activities is an
interdisciplinary study of neuroscience and com-
puter vision. With the emerging of Human-AI Col-
laboration, Human-Computer Interaction, and the
development of advanced machine learning mod-
els, brain decoding based on deep learning attracts
more attention. Electroencephalogram (EEG) is a
widely used neurophysiology tool. Inspired by the
success of deep learning on image representation
and neural decoding, we proposed a visual-guided
EEG decoding method that contains a decoding
stage and a generation stage. In the classification
stage, we designed a visual-guided convolutional
neural network (CNN) to obtain more discrimina-
tive representations from EEG, which are applied
to achieve the classification results. In the genera-
tion stage, the visual-guided EEG features are input
to our improved deep generative model with a vi-
sual consistence module to generate corresponding
visual stimuli. With the help of our visual-guided
strategies, the proposed method outperforms tradi-
tional machine learning methods and deep learning
models in the EEG decoding task.

1 Introduction
Vision is one of the most important components in the hu-
man perception system. When eyes receive visual stimula-
tion, neural spikes are produced in brain [Jacobs et al., 2009].
Decoding neural spikes produced in the brain due to visual
stimuli is instrumental to the exploration of visual informa-
tion processing mechanism of humans and to development of
computer vision [Nestor et al., 2016]. With the development
of contemporary machine learning methods, it becomes pos-
sible to obtain high-quality decoding results from functional
magnetic resonance imaging (fMRI) and EEG.

fMRI sequences provide information from several visual
cerebral areas, and play an important role in visual decod-
ing tasks varying from categorizing to reconstruction [Haxby
et al., 2001; Haynes and Rees, 2005; Miyawaki et al., 2008;
Naselaris et al., 2009; Cowen et al., 2014]. In previous works,
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machine learning models are proposed to capture the rela-
tionship between visual stimuli and fMRI. More recently,
deep learning methods have also been proposed to recon-
struct images from fMRI [Horikawa and Kamitani, 2017;
Güçlütürk et al., 2017; Du et al., 2017].

The huge volume and high cost render fMRI based neural
decoding impossible in daily life [Poldrack and Farah, 2015].
On the contrary, EEG has significant advantages in aspects of
portability and price which promote the application of EEG
decoding systems. For example, EEG devices with integrated
machine learning algorithms are the key components in brain-
controlled systems for disabled persons [Liu et al., 2017; Park
et al., 2011]. In addition, deep neural networks have also been
reported to perform competitively on decoding visual related
EEG trials [Adamos et al., 2016; Spampinato et al., 2017;
Palazzo et al., 2017]. Assuming that EEG signal exists in
a cognitive domain, the workflow of existing EEG decoding
methods is summarized by Fig 1., i.e.s (1) Visual stimuli are
shown to subjects; (2) EEG trails are recorded; (3) EEG trials
are represented by handcrafted features or neural networks
for decoding. Importantly, this decoding pipeline only uti-
lizes information in cognitive domain. However, there is an
inevitable fact that state-of-the-art deep learning models out-
perform humans on representing and classifying images [He
et al., 2016]. So, information in the related visual domain can
assist to improve the performance of EEG decoding.

In this paper, we propose using visual representation to
guide the decoding of EEG. Our decoding framework con-
tains two stages: (1) Visual-guided EEG classification stage;
(2) Visual-guided stimuli generation stage. In the first stage,
a classification network is guided by visual representation to
category EEG into the classes of related visual stimuli. Then,
in the generation stage, an improved generative adversarial
network (GAN) [Goodfellow et al., 2014] produces the cor-
responding visual stimuli from visual-guided EEG represen-
tations. Compared with state-of-the-art neural decoding mod-
els, our method achieves superior performance.

2 Related Work
Spatial-temporal features of EEG are used to decode
stimulus-related signals into two event-related potentials
(ERPs) for capturing the distribution of signal with a Gaus-
sian mixture model (GMM) [Tzovara et al., 2012]. In a recent
study [Kaneshiro et al., 2015], principal component analysis
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Figure 1: Traditional EEG decoding strategy.

(PCA) and linear discriminant analysis (LDA) are combined
to recover fine-grained object category from EEG recordings.

Deep learning methods have become dominant in vari-
ous traditional and bio-inspired computer vision tasks and
bio [LeCun et al., 2015; Zhang et al., 2019]. Variations
of CNN models are applied to represent EEG for detect-
ing particular signal components [Cecotti and Graser, 2011;
Plis et al., 2014]. More recently, face image sequences and
EEG data are analyzed jointly for emotion detection [Soley-
mani et al., 2016]. Frameworks combing CNN and other
deep learning structures are proposed [Bashivan et al., 2015;
Jiao et al., 2018] to decode mental loads from EEG. Novel
EEG-driven automated visual classification and generation
methods have also been proposed [Spampinato et al., 2017;
Palazzo et al., 2017]. Generally, these studies are based on
the same assumption that EEG can guide deep learning mod-
els to achieve better results on image classification and gen-
eration. To the best of our knowledge, this work is the first
to use visual representation to guide the decoding of visual
stimulated EEG. Our study is based on the proven fact that
state-of-the-art deep neural networks perform better than hu-
mans on visual representation tasks [He et al., 2016].

3 Our Method
Since our decoding framework contains an EEG classification
stage and a stimuli generation stage, they will be described
respectively in the following subsections.

…
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Figure 2: EEG map evoked by visual stimuli.

3.1 Visual-guided EEG Classification
In the cognitive domain, EEG signals are first organized to
EEG maps Xcog as [Jiao et al., 2018], axes of which stand
for EEG channels and recordings of each channel (Fig 2).

As shown in Fig 3., Xcog and Xvis stand for input to rep-
resentation layers in these two domains. Our classification
model contains: (1) Feature representation layers (Cognitive
CNN and Visual CNN) in both cognitive domain and visual
domain; (2) Classification layer (Class) in cognitive domain.

The loss function of our classification model is a modified
softmax loss as shown in Equation (1).
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Figure 3: Visual-guided EEG classification.

L = −
N∑
j=1

yj logSj + (Fcog − Fvis)
2 (1)

In this equation, the first term is a standard softmax loss:
Sj is the softmax value which stands for probability of one
instance belonging to category j, yj is the label of input, and
N is the number of classes. The second term is a squared error
to make the normalized cognitive representation Fcog (output
of feature representation layers in the cognitive domain) be
close to the normalized visual representation Fvis in the fea-
ture space. In the training process, parameters of pretrained
visual CNN are fixed to render the cognitive representations
more discriminative, assisting to obtain superior performance
in the classification task.

3.2 Visual-guided Stimuli Generation
Since our visual generation stage is in the form of an im-
proved GAN model, we briefly introduce the basic GAN
method first. Then, we show how our improved GAN model
for decoding EEG data is constructed.

GAN models use a minimax game which guides two net-
works (a generative net and a discriminative net) to be trained
in opposite directions. In the adversarial training process, the
generative net tries to map a latent space to particular data dis-
tribution, while the discriminative net discriminates between
real data and generated instances. In our EEG decoding task,
the main role of GAN is learning to generate stimuli from
corresponding EEG representations.

Our improved GAN contains a generative netG , a discrim-
inative net D , and two representative networks R, which are
shown as Fig 4. Both G and D are convolutional neural net-
works which share the same structures as ones proposed in
[Palazzo et al., 2017]. R are the fully convolutional networks
(FCN) [Long et al., 2015] that share the same structures and
parameters. Goals of each network (G, D, and R) can be
categorized as follow:

(1) G takes Fcog as input for generating plausible images
Xfake;
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Figure 4: Illustration of generation stage. Fcog is visual-guided EEG
representation, G is generative net, D is discriminative net, and two
R are networks which are used to calculate consistence between
generated images and real visual stimuli.

(2) D tries to distinguish Xfake from visual stimuli Xvis;
(3) R assists to maintain consistency of visual components

between Xfake and Xvis via lower-level visual perception
and higher-level visual semantics.

The discriminative loss LD is computed as Equation (2),
where Fcog−w is wrongly corresponding EEG representation,
randomly chosen from different classes of Xvis. The genera-
tor loss LG is shown as Equation (3). Where λ (Lper+Lsem )
is the visual-consistent term which is achieved by visual rep-
resentation networks R. In this visual-consistent term, Lper

is in the form of ‖ f (Xvis)− f (Xfake) ‖22, which stands for
perceptual loss [Johnson et al., 2016] between FCN feature
maps (f in the first FCN layer for representing more low-
level visual details) of Xfake and Xvis. Lsem (containing
more semantic information) is the softmax cross entropy be-
tween semantic segmentation results of Xfake and Xvis after
going throughR. This visual-consistent term acts as auxiliary
for generating higher-quality images.

LD = − logD (Xvis|Fcog)− log(1−D (Xvis|Fcog−w))

− log(1−D (Xfake|Fcog))
(2)

LG = − logD (Xfake|Fcog) + λ (Lper + Lsem) (3)

Methods which are the most similar with our decoding
framework are [Spampinato et al., 2017; Palazzo et al., 2017].
The main differences between our method and theirs: (1)
The representation Fcog is visual-guided, whereas previous
works only utilize cognitive domain information in their gen-
eration stage. Our visual-guided Fcog is more discriminative
in classification stage and more diverse in generation stage,
contributing to better decoding performance; (2) The visual-
consistent term in our generative loss helps to maintainXfake

with more qualitative consistence when observed Xvis .

4 Datasets
Performance of our framework is evaluated and compared
with state-of-the-art methods on two public datasets: (1) Im-
ageNet subset [Spampinato et al., 2017; Kavasidis et al.,
2017]; (2) Face and object [Kaneshiro et al., 2015]. Details
of datasets are described in the subsections.

4.1 ImageNet Subset
This dataset is a 40-class subset of ImageNet [Deng et
al., 2009]. The related classes: dog, cat, butterfly, sor-
rel, capuchin, elephant, panda, fish, airliner, broom, canoe,
phone, mug, convertible, computer, watch, guitar, locomo-
tive, espresso, chair, golf, piano, iron, jack, mailbag, missile,
mitten, bike, tent, pajama, parachute, pool, radio, camera,
gun, shoe, banana, pizza, daisy, and bolete (fungus). Dur-
ing the EEG acquisition experiments, 2,000 images (50 im-
ages in each class) are shown to 6 subjects. A 128-channel
Brainvision EEG system is applied to record related neural
signal during the process described above, and totally 12,000
visual-evoked EEG sequences are acquired. More details can
be found in the related reference [Spampinato et al., 2017].

4.2 Face and Object
Visual stimuli applied in this dataset are categorized into two
classes: face and object (12 images in each class). EEG trials
are recorded by a 128-channel EGI system when 10 subjects
viewed a sequence of images. Details of stimulating experi-
ments and subjects are described in [Kaneshiro et al., 2015].
Meanwhile, data acquisition and preprocessing are also de-
tailed in the related paper. Finally, a dataset of 17,281 se-
quenced EEG recordings is formed, of which 8,641 samples
are evoked by stimuli of faces and 8,640 samples are evoked
by visual stimuli of objects. Formulation of this dataset is
similar to that of ImageNet subset as mentioned above.

5 Experiments and Analysis
Our decoding method can not only classify but also recon-
struct visual stimuli from single-trial EEG data. So, the first
goal of our experiments is to investigate whether EEG data
which represent visual stimuli of different categories can be
classified accurately. The other goal is to evaluate whether
our method can reconstruct plausible images from related
EEG recordings. The performance of classification and gen-
eration are detailed in the following subsections respectively.
Our models are based on the deep learning toolkit of Tensor-
Flow [Abadi et al., 2016].

5.1 Performance of Classification
Both objective and subjective evaluations are applied to com-
pare classification performance of our method with state-
of-the-art ones. The objective evaluation criterion is clas-
sification accuracy, while the subjective one is t-distributed
stochastic neighbor embedding (t-SNE) [Maaten and Hinton,
2008]. t-SNE can project high-dimensional data into a 2-D
scatter plot which is widely used for evaluating discrimina-
tive ability of feature vectors. For t-SNE visualization, the
evaluation criterion is: the more instances of one class can
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Figure 5: t-SNE maps on ImageNet subset dataset.

Method Classification Accuracy(%)
LDA 80.27
LSTM 83.09
CNN 85.60
CNN-Alex 88.80
CNN-VGG16 90.97
CNN-ResNet50 92.65
CNN-ResNet101 92.99

Table 1: Mean classification accuracy on ImageNet subset dataset.

Method Classification Accuracy(%)
LDA 81.06
LSTM 80.67
CNN 83.10
CNN-ResNet101 85.50

Table 2: Mean classification accuracy on face and object dataset.

be separated from ones of other classes, the better the related
features perform.

We performed classification experiments under the same
condition as described in related references [Spampinato et
al., 2017; Kaneshiro et al., 2015]. Training strategy of our
classification network is Adam. The independent separations
of EEG signal datasets are 80% for training, 10% for valida-
tion, and 10 % for testing. Structure of our EEG classification
net in cognitive domain is the same form as that of AlexNet
[Krizhevsky et al., 2012], except for numbers of neurons in
the classification layer (40 for ImageNet subset dataset, and
2 for face and object dataset). Data augmentation methods
and network training strategies are drawn from [Jiao et al.,
2018]. Pretrained networks in the visual domain are AlexNet
[Krizhevsky et al., 2012], VGG16 [Simonyan and Zisserman,
2014], ResNet50, and ResNet101 [He et al., 2016], which are
used to obtain visual representation to guide EEG decoding.

For ImageNet subset dataset, classification accuracy of dif-
ferent methods are listed in Table 1. LDA and long short term
memory (LSTM) are state-of-the-art methods [Kaneshiro et
al., 2015; Spampinato et al., 2017]. CNN is our EEG classifi-
cation net which is not guided by visual representation. CNN-
Alex, CNN-VGG16, CNN-ResNet50, and CNN-RestNet101
stand for classification performance guided by different pre-
trained visual networks. Results listed in this table show that
our visual-guided frameworks outperform LDA and LSTM,
among which the ResNet101 guided classification method
achieves a new state-of-the-art result, with our method im-
proving the performance of the EEG classification stage.
EEG features extracted by CNN in the cognitive domain and
EEG features guided by visual net are visualized by t-SNE

in Fig 5., data points with different colors representing cate-
gories of EEG features. It is obvious that the visual-guided
EEG representations of different visual classes are more sep-
arable in the corresponding feature space, while instances in
the same class are more uniformly distributed. These proper-
ties demonstrate superior performance of our method in han-
dling diversity (more separable data points in feature space
assist to generate diverse visual stimuli) in the generation
stage. Besides, performance of visual guided model (CNN-
ResNet101) and no visual guided CNN are compared by cat-
egory in Fig 6., a positive number or negative number (su-
periority of classification accuracy (%)) representing respec-
tively superior or inferior performance of our strategy com-
pared to traditional strategies in a given category. Our visual
guided strategy achieves superior classification performance
among most of the categories, except for Airliner, Folding
chair, Mailbag, Radio telescope, Revolver, and Running shoe,
which are attributable to the same synsets (categories of some
image classes) of Artifact in ImageNet dataset. We hypothe-
size that this illustrates that human knowledge in cognitive
domain keeps the advantage on classifying visual stimuli of
man-made objects.

We also compare the performance of our CNN and
ResNet101 guided CNN with LDA and LSTM on face and
object dataset. The related objective results are shown in Ta-
ble 2, and the subjective results are illustrated in Fig 7. It is
obvious to see that our method also performs better than the
non-visual guided models on this dataset.

5.2 Performance of Generation
The subjective visual quality of generated images is usu-
ally chosen as an evaluation criterion for generative mod-
els. In addition, inception score and inception classifica-
tion accuracy [Palazzo et al., 2017; Kavasidis et al., 2017]
are widely used quantitative evaluations for GANs (higher
values of inception score and inception classification accu-
racy stand for a superior performance of generation). We
also use these methods to evaluate performance of our gen-
eration stage. Since the number of images in face and ob-
ject dataset is very small, it does not meet the requirement
of diversity for training an effective GAN model [Goodfel-
low et al., 2014]. So, generation performance of both pre-
vious works [Spampinato et al., 2017; Palazzo et al., 2017;
Kavasidis et al., 2017] and our method are discussed just on
ImageNet subset dataset.

Training strategies for our improved GAN model mainly
follow those in [Palazzo et al., 2017]. Parameters of D and G
are listed in Table 3 and Table 4, in which Conv and Deconv
stand for convolution and deconvolution blocks with ReLU
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Figure 7: t-SNE maps on face and object dataset.

Layer Filter size Filter dimension
Conv1 4 64
Conv2 4 128
Conv3 4 256
Conv4 4 256
Fc5 1 1024

Table 3: Parameters of D net.

activation and batch normalization operation, and Fc is fully-
connected layer. We choose the best-performed visual-guided
representation (guided by ResNet101) as Fcog in generation
stage. FCN for the visual-consistent term λ (Lper + Lsem)
is pretrained on VOC2012 dataset [Everingham et al., 2010],
and λ is set to 0.5. Since only limited images in the dataset are
labeled by EEG, previous works initialize training of GAN
with random noise Z and unlabeled images (50,000 unla-
beled images in ImageNet). In our work, visual features Fvis

of 50,000 images can be obtained from visual networks, and
they are applied in the pretrain stage of GAN model. Then,
training of GAN is refined by the visual guided representation
Fcog .

In previous papers, high-quality results of three classes
(Airliner, Jack-oa-Lantern, and Panda) and low-quality re-
sults of other three classes (Banana, Capuchin, and Bolete)
are listed for subjective evaluation. We follow this evaluation
strategy and list generated instances of different methods in

Layer Filter size Filter dimension
Deconv1 4 512
Deconv2 4 256
Deconv3 4 128
Deconv4 4 64
Deconv5 4 32

Table 4: Parameters of G net.

Fig 8 and Fig 9. In these figures, the top rows named EEG-
GAN are the results generated by state-of-the-art method
[Palazzo et al., 2017; Kavasidis et al., 2017], while the bot-
tom ones are generated by our visual-guided GAN with the
visual-consistent term. Importantly, images generated by our
method contain more visual details and they correspond bet-
ter with related classes. The subjective visual quality of our
results on all these classes are superior to the state-of-the-
art one. This phenomenon demonstrates the efficiency of our
proposed decoding method in visual stimuli generation stage.

EE
G
-G
AN

O
ur
s

Figure 8: Good results of three classes on ImageNet subset dataset.
From left to right: Airliner, Jack-oa-Lantern, and Panda.

Inception scores and inception classification accuracy of
different methods are listed in Table 5, where EEG-GAN
stands for the method (state-of-the-art EEG decoding model)
proposed in [Palazzo et al., 2017; Kavasidis et al., 2017],
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Figure 9: Bad results of three classes on ImageNet subset dataset.
From left to right: Banana, Capuchin, and Bolete.

Method IS IC
EEG-GAN 5.07 0.43
VG-GAN 5.54 0.51
VG-GAN-VC 6.33 0.53

Table 5: Inception scores (IS) and Inception classification accuracy
(IC) on ImageNet subset dataset.

VG-GAN stands for our visual-guided GAN without visual-
consistent term, VG-GAN-VC represents our visual-guided
GAN with visual-consistent term. Results in this table
demonstrate that our visual-guided method achieves better
results in both these two aspects. In addition, the visual-
consistent term is efficient to further improve the objective
visual quality of generated images for obtaining better de-
coding performance.

6 Conclusion
Deep learning methods have achieved significant improve-
ments on neural decoding tasks. Inspired by the representa-
tive studies of other researchers, we propose a visual-guided
decoding framework for EEG data in this paper. To obtain
superior decoding results, our work takes full advantage of
visual representations which are obtained from state-of-the-
art deep learning models on computer vision tasks. The pro-
posed framework contains a visual-guided EEG classification
stage and a visual-guided generation stage. In the classifi-
cation stage, visual-guided EEG representations bridge the
gap between cognitive domain and visual domain for cate-
gorizing EEG recordings evoked by different visual stimuli
more accurately. In the visual-guided visual stimuli genera-
tion stage, the visual-guide EEG representation can also im-
prove the performance of generation. Besides, our improved
GAN model can improve consistency between visual repre-
sentation of real stimuli and generated instances to further
improve the subjective and objective quality of generated im-
ages. However, as the per-class classification results shown
in Fig 6., human can achieve higher classification accuracy
in certain classes. This phenomenon shows opportunities to
combine the advantages of both human brain and deep learn-
ing models to improve the performance. In the future, we will
extend the simultaneous and synergistic utilization of both vi-

sual information and cognitive knowledge to further improv-
ing neural decoding tasks, thus augmenting the areas such as
hybrid intelligence and human-AI collaboration.
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