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Abstract
Model fine-tuning is a widely used transfer learn-
ing approach in person Re-identification (ReID) ap-
plications, which fine-tuning a pre-trained feature
extraction model into the target scenario instead
of training a model from scratch. It is challeng-
ing due to the significant variations inside the tar-
get scenario, e.g., different camera viewpoint, il-
lumination changes, and occlusion. These varia-
tions result in a gap between the distribution of
each mini-batch and the distribution of the whole
dataset when using mini-batch training. In this pa-
per, we study model fine-tuning from the perspec-
tive of the aggregation and utilization of the global
information of the dataset when using mini-batch
training. Specifically, we introduce a novel net-
work structure called Batch-related Convolutional
Cell (BConv-Cell), which progressively collects
the global information of the dataset into a latent
state and uses this latent state to rectify the ex-
tracted feature. Based on BConv-Cells, we further
proposed the Progressive Transfer Learning (PTL)
method to facilitate the model fine-tuning process
by joint training the BConv-Cells and the pre-
trained ReID model. Empirical experiments show
that our proposal can improve the performance
of the ReID model greatly on MSMT17, Market-
1501, CUHK03 and DukeMTMC-reID datasets.
The code will be released later on at https://github.
com/ZJULearning/PTL

1 Introduction
Person re-identification (ReID) is to re-identify the same per-
son in different images captured by different cameras or at
different time. Due to its wide applications in surveillance
and security, person ReID has attracted much interest from
both academia and industry in recent years.

With the development of deep learning methods and the
newly emerged person ReID datasets, the performance of per-
son ReID has been significantly boosted recently. However,

several open problems remain. First, training a feature ex-
traction model from scratch need a large volume of annota-
tion data, but the annotated data is hard to acquire in per-
son ReID tasks due to the poor quality of the image and the
privacy concerns of pedestrians. Hence, making use of the
existing datasets to help training the feature extractor have
attracted great attention in the community. Second, the sig-
nificant variations between different scenarios and within the
same scenario make the person ReID task challenging. A no-
ticeable performance degradation often occurs if we directly
apply a pre-trained model on the target dataset without fine-
tuning it into the target scenario.

Most of the recently proposed works [Deng et al., 2018;
Ma et al., 2018] have focused on mitigating the impact of
variations between different datasets. Most of these works
focus on transferring the image style of the target domain and
the source domain to the same by using Generative Adversar-
ial Networks (GANs) based models. However, the imperfect
style transferring models can bring in noises and potentially
change the data distribution of the whole dataset. Meanwhile,
the person ID in the generated images is not guaranteed to be
the same as in the real images.

As for variations inside the dataset, which we focused in
this work, it is less mentioned in recently proposed works.
The distribution difference between each mini-batch and the
entire dataset caused by internal variations has a significant
influence on the model fine-tuning process. This difference
leads to a deviation of gradient estimation and thus affect
the effect of model fine-tuning. The most straightforward ap-
proach to mitigate this problem is increasing the batch size.
However, Keskar et al. [Keskar et al., 2016] and our experi-
ments revealed that using a large-batch setting tends to con-
verge to sharp minimizers, and further leads to poorer perfor-
mance.

Moreover, most of the state-of-the-art deep learning meth-
ods in person ReID task have used an off-the-shelf network,
like DenseNet [Huang et al., 2017] and ResNet [He et al.,
2016], as backbone network. However, Deep CNNs are dif-
ficult to initialize and optimize with limited training data.
Therefore, model fine-tuning is widely used to mitigate short-
ages of annotated training data in person ReID tasks, which
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make the study of how to mitigate the impact of the inter-
nal variation more critical. For instance, most of the off-the-
shelf models used in ReID tasks are pre-trained on a relatively
larger dataset like ImageNet [Russakovsky et al., 2015] and
then fine-tuning into the target dataset.

In this paper, we study how to mitigate the impact of inter-
nal variations from the viewpoint of aggregation and utiliza-
tion of the global information of the dataset. First, we propose
a novel CNN building block, which we call the Batch-related
Convolutional Cell (BConv-Cell). The BConv-Cell progres-
sively aggregates the global information of the dataset into a
latent state in a batch-wise manner. The latent state aggre-
gated in previous batches will be used to mitigate the impact
of the internal variations in the following batches. Based on
the BConv-Cells, we further propose the Progressive Trans-
fer Learning (PTL) method to fine-tune the pre-trained model
by integrating it with the BConv-Cells. We conduct exten-
sive experiments on MSMT17 [Wei et al., 2018], Market-
1501 [Zheng et al., 2015], CUHK03 [Li et al., 2014] and
DukeMTMC-reID [Zheng et al., 2017] datasets to show that
our proposal can effectively promote the ReID performance.

We summarize the contributions of this work as follows:

1. We propose a novel network structure called the Batch-
related Convolutional Cell (BConv-Cell). In mini-batch
training, the BConv-Cells can progressively aggregate
the global information of the dataset, and then use this
information to help optimize model in the next batches.

2. Based on the BConv-Cells, we then propose the Progres-
sive Transfer Learning (PTL) method to fine-tune a pre-
trained model into the target scenario by integrating the
BConv-Cells.

3. The experimental results show that the model fine-tuned
by using our proposal can achieve state-of-the-art per-
formance on four persuasive person ReID datasets.

2 Batch-related Convolutional Cell
The BConv-Cell is based on a straightforward thought that
making use of the global information of the dataset to miti-
gate the adverse influence caused by internal variation.

The BConv-Cell is inspired by the Conv-LSTMs [Xingjian
et al., 2015]. However, there are several fundamental differ-
ence between the BConv-Cells and the Conv-LSTMs. First,
there is no time concept and explicit temporal connections
between inputs in the BConv-Cells. Meanwhile, the BConv-
Cells is not designed to handle sequential inputs but single
segmented images. Second, the BConv-Cells have a different
architecture from the Conv-LSTMs. The BConv-Cells only
maintain a latent state which contained the aggerated global
information, but the Conv-LSTMs reserved both the hidden
state and the cell state. Moreover, the BConv-Cells is not de-
signed to conduct prediction.

By using the memory mechanism, the BConv-Cells can
progressively collect global information and use it to facil-
itate the parameter optimization process during fine-tuning.
More than that, different from other LSTM based methods
like meta-learners, the output of the BConv-Cells can be di-
rectly used as the extracted feature. Meanwhile, the nature of

the BConv-Cells is a stack of Conv-layers, so it can be used as
a building block of a multi-layer feature extraction network.

The key equations of the BConv-Cell have shown as fol-
low:

ib = σ(Wxi ∗ xb + bi)

fb = σ(Wxf ∗ xb + bf )

ob = σ(Wxo ∗ xb + bo)

Cb = fb ◦ Cb−1 + ib ◦ tanh(Wxc ∗ xb + bc)

yb = ob ◦ tanh(Cb),

(1)

where ∗ denotes the convolution operator, ◦ denotes the
Hadamard product, σ denotes a sigmoid function, xb is the in-
put of the BConv-Cell in b-th batch. ib, fb and ob is the output
of input gate i, forget gate f and output gate o respectively,Cb

is the latent state reserved after b-th batch, W is the weight of
the corresponding convolutional layer in the BConv-Cell and
yb is the output of the BConv-Cell. All the input xb, latent
state Cb and gate output ib, fb, ob are 3-dimensional tensors.

As shown in Eq. 1, the output yb is determined by the latent
state Cb and the input xb. The latent state Cb is determined
by the input xb and Cb−1. From the fourth formula of Eq. 1,
we can notice that the Cb maintains part of the information of
all the historical input batches. The iteration formula of latent
state Cb as:

Cb = g(x1, x2, ..., xb), (2)
where g is the simplified notation of the composition of func-
tions {gi|1 ≤ i ≤ b}.

3 Progressive Transfer Learning Network
3.1 Progressive Transfer Learning
Given an off-the-shelf CNN as the backbone network, we
pair up the BConv-Cells with its Conv-blocks to form a new
network, and we name it as the progressive transfer learning
(PTL) network. A sketch of the PTL network has shown in
Figure 1. The red dotted box denotes a building block of the
PTL network, which formed by a BConv-Cell, a 1x1 Conv-
layer and the Conv-block of the backbone network. Formally,
we define this building block as:

xib = Fconv(x
i−1
b )

yib = Fbconv(F1×1(x
i
b, y

i−1
b ), Ci

b−1)

Ci
b = g(xi1, x

i
2, ..., x

i
b),

(3)

where x0b indicate the input image of b-th batch, xib is the
output of the i-th (i >= 1) Conv-block in b-th batch, yib is the
output of the i-th BConv-Cell. Eq. 3 only contains the second
and the third equation when i = 0. The function Fconv and
Fbconv represent the mapping function learned by Conv-block
and BConv-Cell respectively. F1×1 is the 1x1 Conv-layer as
shown in Figure 1. Ci

b is the latent state of the i-th BConv-
Cell after the b-th batch. The structure of the Conv-block is
flexible, which can be replaced by Conv-block of many Deep
CNNs like DenseNet or ResNet.

As shown in Eq. 3, the BConv-Cell learn the mapping func-
tion from input to feature space while collecting global in-
formation and updating the latent state. We can notice from
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Figure 1: Sketch of the PTL network. The black dotted box indicates the backbone network. xib and yib are the outputs of the i-th Conv-block
of the backbone and the related BConv-Cell respectively, x0b denotes the input image, b indicates the b-th input batch, Ci

b−1 is the latent state
of the i-th BConv-Cell after the last batch. The red dotted box denotes the block pair of the Conv-block and the BConv-Cell. In each block
pair, xib and yi−1

b are concatenated and feeding into a 1x1 Conv layer before feed into the BConv-Cell. The output of the last BConv-Cell and
that of backbone network are concatenated before feeding into the 1x1 Conv-layer. The latent state of the BConv-Cell is stored after every
batch and feedback to the same BConv-Cell when next batch coming.

Eq. 3 that the discriminative knowledge of the past batches is
progressively aggregated into the latent state.

3.2 Network Architecture
We have tested the PTL method with several different
structures of backbone networks, including DenseNets and
ResNets. We use the DenseNet-161 as backbone network to
describe the construction of the PTL network.

The DenseNet-161 consists of five Conv-blocks, we use
four BConv-Cells to pair up with the top four Conv-blocks as
shown in the Figure 1. At the top of the network, we use a
BConv-Cell to capture the low-level feature of the input im-
age, which is shown in the left of Figure 1. At the bottom
of the network, the output of the last BConv-Cell is concate-
nated with the output of the last Conv-block and then feed into
a 1x1 Conv-layer to get the feature vector. During training,
the feature vector is then fed into a classifier which contains
three Fully connection layers. For simplicity, the classifier is
not shown in Figure 1. During evaluating, we directly use the
feature vector conduct image retrieve.

As we can see in the Figure 1, feature maps transmit along
two dimensions in the PTL network. The first is batch iter-
ation, BConv-Cells evolve the latent states with each input
batch and transmit it to the next batch. The second is the
depth of the network, in which feature maps transmit from
the first layer to the last layer.

During testing, we set all the latent states as zeros. To sim-
ulate the test condition, all the latent states are set to zeros at
the beginning of each epoch during training. This setting en-
sures that historical knowledge is progressively collected and
aggregated only once in each epoch.

As we mentioned above, the backbone in Figure 1 can be
replaced by most of the commonly used feature extraction
networks. In this work, we use ResNet-50, DenseNet-161
and MGN [Wang et al., 2018] as backbone network.

3.3 Parameter Optimization Procedure
Our proposal facilitate parameter optimization by using the
BConv-Cells to cooperate with the backbone network, which
does not limit the selection of the optimization method.
Hence, the combined model still can be optimized by using
commonly used optimizers like SGD and SGD-M.

Input 𝑥"

Teacher 
model

Student 
model

L1 Loss

Cross 
Entropy Loss

As Target

Final loss

𝜆

1 − 𝜆

Label

+

Figure 2: The implementation of STD method. The teacher model
is set to evaluation mode during the whole process.

We argue that the PTL method can make up for two short-
comings of SGD-M optimizer. First, in SGD-M, the histor-
ical gradient is aggregated in a linear sum roughly by using
humanly pre-defined weights, which make it inflexible and
not optimized. Second, the loss after each batch only deter-
mined by the current input batch, which has a strong bias and
leading to performance oscillation during training.

By using the PTL method, the historical gradient aggrega-
tion is replaced by calculating the gradient of a composition
function recursively with learnable weights. More than that,
the sample bias of current batch can be mitigated by using the
historical knowledge carried by the learned latent states Cb.

4 Student-Teacher Distillation Method
Compared with the backbone network, the parameter number
of the PTL network grew up inevitably. To fairly compare
with baselines, we introduce an improved model distillation
method called Student-Teacher Distillation (STD) method to
fine-tune a backbone model (like ResNet-50) by using the
fine-tuned PTL model. The STD method is not essential for
the PTL method in practical applications.

As the prerequisite, we assume we have obtained a fine-
tuned model by using our proposed PTL method. We then in-
troduce a new objective function for model distillation. The
objective function consists of two parts. First is a cross en-
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tropy loss between the output predictions of the student model
and the ground truth. The second is a L1 loss between the out-
put feature vector of the student model and that of the teacher
model. The new objective function is given by:

Ldistill = (1− λ)LCE + λLl1, (4)

where λ is a hyper-parameter to adjust the ratio of the cross-
entropy loss and the L1 loss. This new object function com-
bines both supervision information and merit of the PTL net-
work to extract discriminative feature.

The implementation of STD method has shown in Figure
2. We set the teacher model to evaluation mode during the
whole process. The input image feeds into teacher and stu-
dent model at the same time. After which, the parameter of
the student network will be updated according to the proposed
objective function in Eq. 4. After training, the teacher model
can be abandoned.

5 Experiments
We first carried out model fine-tuning experiments with our
proposal on four convincing ReID datasets and compared
it with both the state-of-the-art ReID methods and several
transfer-learning methods. We then conduct model transfer-
ring experiments among multiple datasets to evaluate the per-
formance of the PTL method when handling multiple step
transferring.

5.1 Dataset
We selected four persuasive ReID datasets to evaluate
our proposal, including Market-1501, DukeMTMC-reID,
MSMT17 and CUHK03.

Market-1501. The Market-1501 dataset contains 32,668
annotated bounding boxes of 1,501 identities.

DukeMTMC-reID. The DukeMTMC-reID dataset con-
tains 1,404 identities. 702 IDs are selected as the training
set and the remaining 702 IDs as the testing set.

MSMT17. The raw video on the MSMT17 dataset is
recorded in 4 days with different weather conditions in a
month using 12 outdoor cameras and three indoor cameras.
The MSMT17 dataset contains 126,441 bounding boxes of
4,101 identities. We followed the same dataset split by Wei
et al. [Wei et al., 2018], and we also used the evaluation
code provided by them (https://github.com/JoinWei-PKU/
MSMT17 Evaluation).

CUHK03. The CUHK03 dataset consists of 14,097 images
of 1,467 persons from 6 cameras. Two types of annota-
tions are provided in this dataset: manually labeled pedes-
trian bounding boxes and DPM-detected bounding boxes. We
followed the same dataset split as used in the [Wang et al.,
2018]. For all experiments on Market-1501, DukeMTMC-
reID and CUHK03, we used the evaluation code provided in
Open-ReID (https://github.com/Cysu/open-reid).

Market-Duke. We use the training sets of the two datasets
Market-1501 and DukeMTMC-reID to form a new dataset
called the Market-Duke dataset. We further use this dataset to
train the models to compare the difference between one-step

Method #Param. mAP CMC-1
GoogLeNet [Wei et al., 2018] - 23.00 47.60
PDC [Wei et al., 2018] - 29.70 58.00
GLAD [Wei et al., 2018] - 34.00 61.40

ResNet-50 28m 28.63 59.77
ResNet-50+PTL 35m 32.58 62.76
DenseNet-161 32m 38.60 70.80
DenseNet-161+PTL 42m 42.25 72.65
DenseNet-161+PTL+STD 32m 41.38 73.12

Table 1: Results on the MSMT17 dataset. #Param. indicates param-
eter number, m indicates million.

model fine-tuning and multi-step model fine-tuning. All val-
idation, query and gallery set of these two datasets are aban-
doned.

5.2 Experiment Setting

We select the DenseNet-161 model and ResNet-50 model
both pre-trained on the ImageNet dataset as backbone model.
As for state-of-the-art model in ReID tasks, we select the
MGN [Wang et al., 2018] model, which also use a ResNet-
50 as backbone network. We modified the backbone network
by using our proposed PTL method, and name these mod-
els as DenseNet-161+PTL, ResNet-50+PTL and MGN+PTL
respectively. We then use the STD method to train the
DenseNet-161 model (DenseNet-161+PTL+STD) by using
the DenseNet-161+PTL as teacher model.

All images have been reshaped into 256x128 (height x
width) before feeding into the network except for the ex-
periments of MGN and MGN+PTL, which use image size
384x128. We take out the output of the 1x1 Conv-layer as
the discriminative feature. The initial learning rate is set to
0.01 and decay the learning rate ten times every ten epochs.
Models are fine-tuned for 50 epochs. Unless otherwise stated,
in all of our experiments, we use SGD-M as the optimizer.
The hyper-parameter λ is set to 0.8 by practicing in the fol-
lowing experiments. For experiments involved MGN and
MGN+PTL, we followed the experiment setting in [Wang et
al., 2018]. Meanwhile, we use the single-query setting in all
experiments.

To the best of our knowledge, the official implemen-
tation of the MGN has not been released. Hence, we
use the reproduction version published in https://github.com/
GNAYUOHZ/ReID-MGN. The results obtained by this re-
production code are noted as MGN (reproduced) in all the
tables. Although the MGN model uses the ResNet-50 as the
backbone network, the parameter number of the MGN model
(66m) is much more than the ResNet-50 model (28m). Due
to the GPU usage limitation, we have not conducted experi-
ments about the MGN+PTL+STD.

We use the cross-entropy loss in all of the fine-tuning pro-
cesses in our experiments, except for the MGN+PTL. The
MGN use a combined loss function insists of cross-entropy
loss and triplet loss, we use the same loss function in all the
experiments of the MGN+PTL.
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Method mAP CMC-1
DML [Zhang et al., 2018] 70.51 89.34
HA-CNN [Li et al., 2018] 75.70 91.20
PCB+RPP [Sun et al., 2018] 81.60 93.80
MGN [Wang et al., 2018] 86.90 95.70

DenseNet-161* 69.90 88.30
DenseNet-161 76.40 91.70
DenseNet-161+PTL 77.50 92.50
DenseNet-161+PTL+STD 77.50 92.20
MGN (reproduced) 85.80 94.60
MGN+PTL 87.34 94.83

Table 2: Results on the Market-1501 dataset. DenseNet-161* used
a batch size of 90, other experiments involving DenseNet-161 used
a batch size of 32. MGN (reproduced) is our reproduction of the
MGN [Wang et al., 2018].

5.3 MSMT17
We first evaluate the PTL method on the MSMT17 dataset.
The detailed evaluation statistics has shown in Table 1. We
can see a significant performance promotion by using the PTL
method. The performance of the DenseNet-161+PTL+STD
outperforms not only the backbone model but also all of the
baseline methods. We also can notice that the DenseNet-
161+PTL+STD model can achieve higher CMC-1 score than
the DenseNet-161+PTL model. We attribute the success to
the combined loss function of the STD method. By combin-
ing the cross-entropy Loss with the L1 loss, the student model
can learn the discriminative knowledge from the teacher
model while imposing restrictions on the learned knowledge.

5.4 Market-1501
We use DenseNet-161 and MGN as backbone model to eval-
uate the performance of the PTL method on Market-1501
dataset. We select several state-of-the-art person ReID meth-
ods as baselines. Among these methods, the DML [Zhang et
al., 2018] is also pre-trained on ImageNet and transferred to
Market-1501.

The results has summarized in Table 2. We can notice
that by using the PTL method and the STD method, a sim-
ple DenseNet-161 model can outperform the state-of-the-art
transfer learning based person ReID methods on Market-1501
dataset. Meanwhile, the MGN+PTL outperforms all the state-
of-the-art methods.

Moreover, we can notice that using a large batch size
(DenseNet-161*) is not an effective way to narrow the gap
between the distribution of each mini-batch and the distribu-
tion of the dataset. In contrast, large batch size can result in
poor performance.

5.5 CUHK03
We then conduct model fine-tuning experiments on CUHK03
dataset. We compare the performance of MGN+PTL with
several state-of-the-art methods. The results has summarized
in Table 3. We can notice that by using the PTL method, the
ReID performance of the MGN model has promoted tremen-
dously, and outperforms all the state-of-the-art methods.

Methods Detected Labelled
mAP CMC-1 mAP CMC-1

HA-CNN [Li et al., 2018] 38.60 41.70 41.00 44.40
PCB [Sun et al., 2018] 54.20 61.30 - -
PCB+RPP [Sun et al., 2018] 57.50 63.70 - -
MGN [Wang et al., 2018] 66.00 66.80 67.40 68.00

MGN (reproduced) 69.41 71.64 72.96 74.07
MGN+PTL 74.22 76.14 77.31 79.79

Table 3: Results on the CUHK03 dataset.

Method mAP CMC-1
HA-CNN [Li et al., 2018] 63.80 80.50
PCB [Sun et al., 2018] 69.20 83.30
MGN [Wang et al., 2018] 78.40 88.70

MGN (reproduced) 77.07 87.70
MGN+PTL 79.16 89.36

Table 4: Results on the DukeMTMC-reID dataset.

5.6 DukeMTMC-reID
We then conduct experiments on DukeMTMC-reID dataset.
As for baselines, we compare the performance with sev-
eral state-of-the-art methods, including HA-CNN, PCB and
MGN. The results have shown in Table 4, we can notice that
by using our method, the MGN+PTL model can outperforms
all state-of-the-art methods.

5.7 Transfer among Multiple Datasets
In real-world applications, ReID model needs to transfer
among a sort of datasets to take advantage of all avail-
able data. Therefore, we conduct multiple dataset transfer-
ring experiments to evaluate the performance of our pro-
posal when dealing with model fine-tuning among multiple
datasets. Similar to the experiment on MSMT17 dataset, we
also use the STD method to train a DenseNet-161 model to
compare with the baselines fairly.

The detailed results have shown in Table 5, from which
we can see that the PTL method achieves better performance
compared with baseline models. We also notice that the
performance of two-step transferring achieves better perfor-
mance compare with one step transferring. For instance, fine-
tuning follow the order ’Duke to Market to MSMT17’ out-
performs ’Market-Duke to MSMT17’. We argue that it is
caused by the substantial style variation in the Market-Duke
dataset is richer than either Market-1501 or DukeMTMC-
reID dataset.

More than that, we can see that the order of fine-tuning can
influence the performance of the final model. The model fine-
tuned by ’Duke to Market to MSMT17’ can achieve highest
score in both mAP and CMC-1.

5.8 Evaluate STD Method on MSMT17
In this subsection, we evaluate the STD method on MSMT17
dataset. We conduct a series of comparative experiments by
adjusting the ratio of the cross-entropy loss and L1 loss.
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Method Fine-tuning list mAP CMC-1
DenseNet-161 Market-Duke to MSMT17 41.12 72.49
DenseNet-161+PTL+STD Market-Duke to MSMT17 42.53 74.11

DenseNet-161 Market to Duke to MSMT17 41.22 72.78
DenseNet-161+PTL+STD Market to Duke to MSMT17 42.34 73.60

DenseNet-161 Duke to Market to MSMT17 41.80 73.00
DenseNet-161+PTL+STD Duke to Market to MSMT17 42.73 74.31
DenseNet-161+PTL Duke to Market 76.00 91.30
DenseNet-161+PTL+STD Duke to Market 75.50 91.10

DenseNet-161+PTL Duke to MSMT17 to Market 77.90 91.60
DenseNet-161+PTL+STD Duke to MSMT17 to Market 77.40 91.60

Table 5: Results of transfer among multiple datasets. Fine-tuning
list indicates the order of fine-tuning, e.g., ’Duke to Market’ means
the model is fine-tuned on DukeMTMC-reID before fine-tune it on
Market-1501. Market and Duke denote the Market-1501 dataset and
the DukeMTMC-reID dataset respectively.

Method #Param. λ mAP CMC-1
DenseNet-161+PTL 42m - 42.45 72.48
DenseNet-161+PTL+STD 32m 0.00 38.60 70.80
DenseNet-161+PTL+STD 32m 0.30 41.26 72.52
DenseNet-161+PTL+STD 32m 0.50 42.27 73.49
DenseNet-161+PTL+STD 32m 0.80 42.51 73.37
DenseNet-161+PTL+STD 32m 1.00 41.66 72.32

Table 6: Results of the STD method on the MSMT17 dataset. The λ
denotes the hyper-parameter in Eq. 4. The λ denotes the proportion
of L1 loss in the combined loss function. λ = 0 means use a SGD-M
optimizer to fine-tune a DenseNet-161 model on MSMT17 without
using the STD method.

We use the DenseNet-161+PTL model transferring from
Market-1501 to MSMT17 in Table 5 as the teacher model.
The student model is a DenseNet-161 model which has been
transferred from ImageNet to Market-1501 using a SGD-M
optimizer.

The detailed results are shown in Table 6. From this ta-
ble, we can see that by using the STD method, the per-
formance of the DenseNet-161 model is promoted signifi-
cantly. Meanwhile, we can see that the score of the DenseNet-
161+PTL+STD grows up when λ grows up. However, when
λ bigger than 0.8, the score no longer increases anymore. We
argue that it is because the cross-entropy loss in the combined
loss function is essential.

6 Related Works
6.1 Transfer Learning Methods
Many transfer learning methods have been proposed recently.
Zhong et al. [Zhong et al., 2018] proposed a domain adaption
approach which transfers images from one camera to the style
of another camera. Fan et al. [Fan et al., 2018] proposed an
unsupervised fine-tuning approach which used an IDE model
trained on DukeMTMC-reID as start point and fine-tuned
it on target dataset. Different from these approaches, our
method is based on model fine-tuning, which is more flexi-
ble and easy to conduct.

As for optimization methods used in transfer learning,
training a meta-learner to learn how to update the parame-

ters of the backbone model have attracted lots of attention
recently [Ha et al., 2016; Finn et al., 2017]. In these ap-
proaches, parameters are updated using a learned update al-
gorithm. For instance, Finn et al. [Finn et al., 2017] proposed
a meta-learning method MAML by using a LSTM network
to update parameters. Our proposal is distinct from these
approaches in several aspects. First, the goal of these meta-
learning works is to find a better parameter optimization route
which can efficiently optimize the model parameter. Differ-
ently, the PTL network is designed to mitigate the distribution
difference between mini-batch and the whole dataset. Mean-
while, the BConv-Cells can be directly participating in the
feature extraction.

6.2 Person Re-identification Networks
With the prosperity of deep learning, using deep learning
networks as feature extractor has become a common prac-
tice in person ReID tasks. Many deep learning based per-
son ReID methods [Varior et al., 2016; Zhang et al., 2017;
Li et al., 2014] have been proposed. As for transfer learning
based deep person ReID method, Geng et al. [Geng et al.,
2016] proposed a deep transfer learning model to address the
data sparsity problem.

6.3 Knowledge Distillation Methods
Our proposed STD method is a special case of knowledge
distillation [Hinton et al., 2015]. More generally, it can be
seen as a special case of learning with privileged informa-
tion. Using distillation for model compression is mentioned
by Hinton et al. [Hinton et al., 2015]. Wu et al. [Wu, 2016]
used the distillation method to improve the accuracy of binary
neural networks on ImageNet.

7 Conclusion
In this paper, we propose a Batch-related Convolutional Cell
(BConv-Cell) to mitigate the impact of the bias of each mini-
batch caused by internal variations. The BConv-Cells can
progressively collect the global information of the dataset
during training while participating in the feature extraction.
This global information will be used to mitigate the bias
of each mini-batch in the next iterations. Based on the
BConv-Cells, we propose the Progressive Transfer Learning
(PTL) method to fine-tune the pre-trained model into the tar-
get dataset. Extensive experiments show that our method
can improve the performance of the backbone network sig-
nificantly and achieved state-of-the-art performance on four
datasets, including Market-1501, MSMT17, CUHK03, and
DukeMTMC-reID datasets.
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