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Abstract
Image edge detection is considered as a cornerstone
task in computer vision. Due to the nature of hier-
archical representations learned in CNN, it is in-
tuitive to design side networks utilizing the richer
convolutional features to improve the edge detec-
tion. However, there is no consensus way to in-
tegrate the hierarchical information. In this paper,
we propose an effective and end-to-end framework,
named Bidirectional Additive Net (BAN), for im-
age edge detection. In the proposed framework, we
focus on two main problems: 1) how to design a
universal network for incorporating hierarchical in-
formation sufficiently; and 2) how to achieve effec-
tive information flow between different stages and
gradually improve the edge map stage by stage. To
tackle these problems, we design a bottom-up and
top-down architecture, where a bottom-up branch
can gradually remove detailed or sharp boundaries
to enable accurate edge detection and a top-down
branch offers a chance of error-correcting by revis-
iting the low-level features that contain rich textual
and spatial information. Attended additive mod-
ule (AAM) is designed to cumulatively refine edges
by selecting pivotal features in each stage. Ex-
perimental results show that our proposed method
can improve the edge detection performance to new
records and achieve state-of-the-art results on two
public benchmarks: BSDS500 and NYUDv2.

1 Introduction
Edge detection aims to assign a label either edge pixel or non-
edge pixel to each pixel given an image, which is considered
as a fundamental task in computer vision and plays an im-
portant role in other higher-level tasks such as semantic seg-
mentation [Chen et al., 2016] and salient detection [Wang et
al., 2019a]. The history of researching edge detection is ex-
tremely long. Early researchers only focus on local cues such
as texture gradients, colors, or other hand-crafted visual fea-
tures [Martin et al., 2004]. But the lack of high-level semantic
information restricts the abilities to capture accurate edges.
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Figure 1: The quantitative and qualitative evaluations on differ-
ent side-outputs.(stage1-5:bottom-up) (a): The edge maps predicted
from inferior layers contain much details and noises, while those
from upper layers have the ability to capture object contours. The
precision and recall metrics in (b) have proved the conclusion, which
motivates us to investigate multi-level representations.

More recently, deep learning has achieved impressive re-
sults for edge detection. A series of deep learning methods
have been proposed, e.g., HED [Xie and Tu, 2017], RCF [Liu
et al., 2019], DeepEdge [Bertasius et al., 2015], DeepContour
[Shen et al., 2015b], CEDN [Yang et al., 2016], COB [Mani-
nis et al., 2018], CNet [Song et al., 2018], LPCB [Deng et al.,
2018], AMH-Net [Xu et al., 2017], CED [Wang et al., 2019b]
and BDCN [He et al., 2019]. The previous deep learning
methods can be grouped into three main categories generally:
1) holistically-nested architecture, 2) top-down architecture
and 3) bottom-up architecture, as shown in Fig 2.

The holistically-nested architecture is employed in HED
[Xie and Tu, 2017] and [Liu et al., 2019], which extracts fea-
tures from five convolutional stages of VGG-16 to obtain the
side-outputs and the final result is generated by a fixed weight
fusion strategy (Fig 2(a)). Generally, the low-level features
are noisy but contain much spatial information, while the
high-level features are coarse but carry much semantic infor-
mation [Guo et al., 2019; Gao et al., 2019; Zhu et al., 2016;
Shen et al., 2015a]. As shown in Fig 1, the visual edge maps
from different stages and evaluation metrics verify this con-
clusion. Naturally, the hierarchical features are complemen-
tary for the edge detection. But a linear combination has lim-
ited ability to investigate the complex relationship between
multi-level edge features since the side-outputs are isolated.

The top-down architecture in edge detection is inspired by
the popular U-Net structure, in which rough high-level fea-
tures carrying rich semantic information are progressively
passed to lower layers (Fig 2(b)). In this way, the lost de-
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Figure 2: The comparison of proposed method with other architectures for edge detection task.

Figure 3: We visualize an example of the generated feature maps
(the 1st, 7th and 14th channel). We can find the 1st slice has a more
accurate prediction than others and the wrong information in other
channels might affect the final estimation.

tailed boundaries will be retrieved and the coarse features
maps will be refined gradually in this branch. The bottom-up
architecture (Fig 2(c)) is proposed in [Song et al., 2018]. The
structure learns the side-outputs cumulatively, which progres-
sively removes the detailed and noisy boundaries to enable
high-resolution and accurate edge detection.

For bottom-up architecture, an ideal case is that the lower-
level edge information is cumulatively inherited while the
superfluous details are progressively abandoned. However,
some useful low-level features are inevitably removed, which
may cause uncorrectable effects to the resulting edge maps.
This is the same case for the top-down architecture, which
leads to sub-optimal results. So why don’t we make full
use top-down and bottom-up architectures in a collaborative
manner to complement the removed information and enhance
feature hierarchy? Based on that, we employ the progressive
bottom-up and top-down branches to build a long-path in-
formation propagation network and refine the features in this
consecutive information flow (Fig 2(d)). The combination of
top-down and bottom-up architecture provides the network
a chance of error-correcting, by revisiting the low-level fea-
tures containing rich textual and spatial information. Further-
more, based on the observation that some features transmit
superfluous or even wrong information to others as Fig 3, we
incorporate channel attention mechanism into our network to
select task-relevant and pivotal features.

In this paper, we propose an effective and end-to-end
framework, named Bidirectional Additive Net (BAN) for im-
age edge detection. The contributions of this paper can be
summarized as: 1) We propose a progressive bottom-up and
top-down information flow model for edge detection, where
the feature hierarchy can be enhanced and hierarchical rep-
resentations can be adaptively combined in this progressive
bottom-up and top-down schemes. This architecture provides

the network whit a chance of error-correcting and improves
the performance gradually; 2) we propose an attended ad-
ditive module to adaptively attend to each channel of the
passing features so that the informative and accurate feature
maps can be preserved, and the superfluous feature maps
can be removed to avoid the cumulative error. To the best
of our knowledge, we are the first to employ the channel-
wise attention mechanism for image edge detection on deep
learning; and 3) experimental results show that our proposed
method can improve the edge detection performance to new
records and achieve state-of-the-art results on two public
benchmarks: BSDS500 and NYUDv2. The ablation study
also verifies the effect of each component.

2 Our Method
In this paper, we propose a novel edge detection architecture,
which combines hierarchical feature maps adequately in pro-
gressive bottom-up and top-down branches. Given an input
image I ∈ RH×W×3. Our network aims to predict an accu-
rate fused edge map Ef ∈ RH×W×1. The framework of our
architecture is shown in Fig. 4. It contains four major compo-
nents: 1) pyramid feature extractor network, which extracts
richer spatial features from input images by atrous pyramid
architecture, 2) bottom-up branches, 3) top-down branches
and 4) attended additive module (AAM). We next elaborate
each of them in details.

2.1 Pyramid Feature Extractor Network
The pyramid feature extractor can be divided into two sub-
sets: feature extractor and pyramid atrous convolution mod-
ule. We denote the basic feature extractor as V , and it
contains multiple convolution layers, with pooling and ac-
tivation operations in five stages. Given an input image I ,
the basic feature extractor generates an edge feature Fi ∈
Rhi×wi×C(i = 1, 2, ..., L) in each stage followed by a 3× 3
convolution for feature dimension reduction. L denotes the
number of stages in basic feature extractor and i denotes the
i-th stage.

After obtaining simplify features Fi ∈ Rhi×wi×C , a series
of atrous convolution layer are employed to generate multi-
receptive-field edge features with the pyramid structure. We
set the kernel of the convolution layers asAr ∈ R3×3×C(r =
r1, r2, ..., rK) which C denotes the output channel, r denotes

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

595



stage1

stage2

stage3

stage4

stage5

stage1

stage2

stage3

stage4

stage5

A

A

A

A

A

A

A

A
   

Bottom-up Top-down
C    

C

Additive Fusion

1 1 Conv

Concatenate

A

Top-down branch

Bottom-up branch

Predicted Edge mapP

P

P

P

P

Pyramid Feature Enhance ModuleP

P 3 3 Conv

3 3
Rate=1

3 3
Rate=4

3 3
Rate=8

3 3
Rate=12

Classifier

Figure 4: The framework of our proposed network. The input is an original image with arbitrary sizes, and the output of the network is an
edge probability map with the same size. The feature extractor network employs the popular VGG-16 network.

the atrous rate and K denotes the number of atrous convo-
lutions. We believe that resolution is very important in edge
detection so we resize the features into input scales. This
pyramid atrous convolutional operation is defined as:

Pi = U(
∑rk

r=r1
(Ar ∗ Fi) + Fi) (1)

where ∗ denotes the atrous convolution operation, Pi indi-
cates the generated feature maps and U means the upsam-
pling operations. We also add a residual shortcut between Pi

and Fi in order to help gradients back propagation.

2.2 Bottom-up and Top-down Branches
Given an input image I , we generate enhanced edge fea-
tures Pi ∈ RH×W×C by pyramid feature extractor in Section
2.1. Then we employ successive bottom-up and top-down
branches to refine the generated edge features. The AAM
in this subsection represents the attended additive module,
which will be elaborated in the next subsection.

Bottom-up branch. Given a set of pyramid enhanced edge
features Pi, a bottom-up branch combines the lower level fea-
tures with higher level features gradually and generates fused
features BUi ∈ RH×W×C(i = 1, 2, .., L − 1). For a lower
level feature Pi−1 and a higher level feature Pi, we can gen-
erate fused features by:

BUi =

{
AAM(Pi+1, Pi), if i = 1

AAM(Pi+1, BUi−1), if i = 2, 3, ..., L− 1
(2)

Specially, we can observe that the final feature map carries
richer information than others in a bottom-up branch. The
experiments that is shown on Table 4 prove our conclusion
and the effect of the bottom-up branch.

Top-down branch. Given a set of pyramid enhanced edge
features Pi, a top-down branch generates features by trans-
mitting upper-layer edge features to inferior edge features

progressively. For an upper-layer feature map Pi and a lower
feature map Pi−1, the top-down branch will generate features
map TDi ∈ RH×W×C(i = L− 1, L− 2, ..., 1) as:

TDi=

{
AAM(Pi, Pi+1), if i = L− 1

AAM(Pi, TDi+1), if i = L−2, L−3, ..., 1 (3)

Multi branches. In this subsection, we describe the pro-
gressive bottom-up and top-down branches structure. Fol-
lowing this inference scheme, TDn

i denotes the fused fea-
ture map in the i-th stage from the top-down branch at n-
th branch. In a similar way, we can define the output fea-
ture map in the i-th stage from the bottom-up and top-down
branches at n-th branch as BUn

i , TDn
i (n = 1, 2, ..., N, i =

1, 2, ..., L − 1). The total number of branches is defined as
N . The outputs of the corresponding bottom-up branch can
be generated by:

BUn
i =


AAM(Pi+1, TD

n−1
1 ), if i = 1 and n ≥ 2

AAM(Pi+1, Pi), if i = 1 and n = 1

AAM(Pi+1, BU
n
i−1), if i = 2, 3, ..., L− 1

(4)

The generated features from corresponding top-down branch
are represented as:

TDn
i =


AAM(Pi, BU

n−1
L−1), if i=L−1 and n ≥ 2

AAM(Pi, Pi+1), if i=L−1 and n = 1

AAM(Pi, TD
n
i+1), if i=L−2, L−3, ..., 1

(5)

2.3 Attended Additive Module
After employing the progressive bottom-up and top-down
branches into our network, we can utilize multi-level features
for the generation of image edge maps. In this subsection, we
introduce the details of Attended Additive Module for proba-
bly fusing these features. The structure is shown in Fig 5.

In general, let f ∈ RH×W×C denote an arbitrary flowing
feature map that has C channels. Firstly, we apply pooling
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Figure 5: The detailed structure of Attended Additive Module

layer to f to obtain a vector v ∈ RC , which contains the
global information of f . Then two progressive 1× 1 con-
volution layers (the same as fully connected layer here) are
employed to investigate the importance of each channel and
the relationship between themselves. A sigmoid operation is
employed to normalize the weight to [0, 1]. This process can
be represented by the following equation:

w = Sigmoid(Conv(σ(Conv(Pool(f))))) (6)

where w denotes the channel weight, σ represents the ReLU
activation function, Conv refers to convolution layer and
Pool refers to pooling layer. So the AAM(·, ·) in last sub-
section is defined as:

AAM(Pi, f) = w ∗ f + Pi (7)

Inspired by [Bertasius et al., 2015], we employ two different
pooling schemes, e.g. average and max pooling, for channel
reweighting.

2.4 Network Optimization
Loss function. The original cross entropy loss cannot get
satisfactory performance because of the unbalance between
positive and negative classes for edge detection. Following
the previous work [Liu et al., 2019] [He et al., 2019], we
employ a class-balanced cross entropy loss function to train
the network. The loss function is defined as:

Lce(W ) = −γ · β
∑

gi∈G+

logP (gi = 1|I;W )

−(1− β)
∑

gi∈G−
logP (gi = 0|I;W )

(8)

where I is an input image, and G is the final ground truth of
the input image I . G+ denotes all of the edge pixels, while
G− is all of the non-edge pixels. β = |G−|

|G| is the ratio of
edge pixels in all pixels, which is used to reweigh the posi-
tive and negative classes weights when computing loss. γ is
a hyper-parameter to balance the edge and non-edge pixels
ratio. W refers to all trainable parameters in our network.
But the network can’t generate crisp edge maps on the con-
dition of only cross entropy loss without the non-maximum
suppression (NMS). Follow the previous work, we also em-
ploy dice loss to thin the predicted edges. The ei denotes a
pixel in predicted edge maps.

Ld(W ) =

∑N
i e2i +

∑N
i g2i

2
∑N

i eigi
(9)

The mixed loss function is defined as :

L(W ) = Lce(W ) + λdLd(W ) (10)

where λd is a hyper-parameter that controls the trade-off be-
tween cross-entropy loss and dice loss.

Training strategies. To obtain a final edge map, we first
generate a weighted-fusion output Efuse by a weighted lin-
ear combination of side-outputs En

i (i = 1, 2, ..., L;n =
1, 2, ..., N). En

i is generated by each Attended Additive
Module followed by a 1×1×1 convolutional layer as shown
in Fig 4. Inspired by the [Xie and Tu, 2017], we merge the
weighted-fusion output Efuse with the side-output En

i . We
also supplement the edge maps generated by F1 and F5 to
the final output for obtaining sufficient details and semantic
information. We employ a deep supervision training strategy
to train our network. It can restrain the gradients vanishing
problem and guarantee a satisfactory edge prediction in each
side-output, which is helpful to get a final prediction.

3 Experiments
3.1 Experiments Setup
Datasets. To evaluate our proposed method, we use two
commonly used benchmark datasets: BSDS500 [Arbelaez et
al., 2011] and NYUDv2 [Silberman et al., 2012]. BSDS500
benchmark dataset is an extension of the BSDS300. Follow
[Xie and Tu, 2017] [Liu et al., 2019], we train our network
on training and validation sets and test our method on test set.
NYUDv2 is collected from a variety of indoor scenes with
1,449 RGB images and depth images. We split the whole
images into two subsets: 756 for training and 654 for testing.
To prevent over-fitting, we apply data augmentation strategies
following [Xie and Tu, 2017].

Evaluation metrics. Following the existing works, the
non-maximum suppression (NMS) is employed to generate
thinned edge maps firstly. After that, we use F-measures at
optimal dataset scale (ODS), optical image scale (OIS) and
average precision(AP) for evaluation metrics. In the match-
ing process, we set the maximum tolerance distance to 0.0075
for BSDS500 and 0.011 for NYUDv2 respectively.

Implementation details. We initialize our network by the
VGG16 model pre-trained on ImageNet. We set the stride
of pool4 to 1 and apply atrous convolution in the last stage
of VGG16 to obtain reasonable resolution, which is very im-
portant for dense pixel classification. The Fuse operations
in our network are implemented by addition operations. The
convolution layer in our network are initialized from zero-
mean Gaussian distribution with 0.01 standard deviation. The
hyper-parameter λd in Equation 10 is set as 300. The C,N
and L are set to 21, 2 and 5 in Section 2. Following [Liu et
al., 2019], λ is set to 1.1 for BSDS500 and 1.2 for NYUDv2
respectively. We employ SGD optimization during training.
The learning rate, weight decay, momentum and batch size
are set to 1e-7, 0.9, 2e-4 and 10, respectively. We train
BSDS500 for 15k steps and NYUDv2 for 30k steps because
of the different sizes of training set.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

597



Variants ODS OIS AP
Baseline 0.794 0.812 0.779
n=1(v1) 0.800 0.818 0.809
n=2(v1) 0.810 0.827 0.862
n=3(v1) 0.806 0.824 0.847
n=1(v2) 0.801 0.819 0.830
n=2(v2) 0.808 0.825 0.864
n=3(v2) 0.805 0.822 0.839

Table 1: The influence of number of branches and comparison be-
tween two variants architectures. Other settings are fixed.

Methods ODS OIS AP
Baseline 0.794 0.812 0.779
Prediction-level 0.797 0.815 0.837
Feature-level 0.805 0.821 0.840
AAM(average) 0.809 0.826 0.848
AAM(max) 0.809 0.825 0.840
AAM(two-stream) 0.810 0.827 0.862

Table 2: Ablation study for different information flow mechanism
and the attended additive model. The number of top-down and
bottom-up branches is set to 2. ‘Prediction-level’ and ‘Feature-level’
represent directly fusing the edge maps and feature maps. ‘average’
and ‘max’ mean average and max pooling layer. ‘two-steam’ indi-
cates that employing two different pooling layers.

3.2 Ablation Study
The Baseline in ablation study means that the five side-
outputs are fused by a concatenation operation followed by
an 1 × 1 ×1 convolution layer without information flow. We
conduct experiments using BSDS500 dataset.
Different variants. Firstly we investigate the performance
of different variants. We discuss two variants here: 1) first
bottom-up branch and then top-down branch, 2) first top-
down branch and then bottom-up branch. We call the first
variant as ’v1’ and another one ’v2’. We evaluate the per-
formance of two variants and choose the ’v1’ variant as our
structure based on the experimental results. From Table1, we
can observe that both ’v1’ and ’v2’ outperform the baseline,
which shows the effectiveness and importance of information
flow between different stages.
Different numbers of bottom-up and top-down branches.
From Table 1, we can observe that the multiply top-down and
bottom-up branches enhance the performance of edge detec-
tion greatly (n≤2). But when the n=3, the performance de-
clines slightly. The reason might be that the too deep net-
work makes the training difficult, especially for the edge de-
tection which has extremely unbalanced and scarce training
data. Even so, the performances are also outperform the base-
line and single direction (n=1).

Training Strategies ODS OIS AP
network(w/o deep supervision) 0.796 0.814 0.784
network(only dice loss) 0.790 0.807 0.827
network(w/o dice loss) 0.809 0.827 0.860
network(w/ dice loss) 0.810 0.827 0.862

Table 3: Ablation study for different loss function and training strat-
egy. The network is our proposed network.

Side-outputs ODS
Baseline T=1 T=2

stage1 0.722 0.743 0.804
stage2 0.749 0.770 0.803
stage3 0.771 0.788 0.803
stage4 0.756 0.802 0.804
stage5 0.757 0.803 -
fuse 0.794 0.810

Table 4: The comparison of side-outputs between baseline and our
network. We compared the performance on ODS, which is the most
important evaluation metrics in edge detection.

(b) dice loss (c) ce loss (d) ce+dice loss(a) GT

Figure 6: The qualitative comparison of different different loss func-
tion. ’ce loss’ denotes weighted binary cross entropy loss.

Prediction-level vs. Feature-level. One of the differences
between our method and [He et al., 2019] is that we employ a
feature-level information flow model rather than prediction-
level. Because we think the feature maps contain richer in-
formation than edge maps. In Table 2, we compare the ef-
fect of prediction-level and feature-level information flow.
From Table 2, We can draw the following conclusions:
(1) The prediction-level information flow is useful for edge
detection, which increases all evaluation metrics by 0.3%
ODS,0.3% and 5.8% AP; (2) feature-level information flow
improves the performance of edge detection significantly.
Compared with the baseline, feature-level information flow
performs it by 1.1% ODS, 0.9% OIS and 6.1% AP, which
has greater improvement than prediction-level information
flow. These prove the effectiveness of feature-level infor-
mation flow mechanism and progressive bottom-up and top-
down branches.

Attended additive module and different pooling schemes.
In Table 2, we also discuss the attended additive module and
the different pooling schemes in the module. The Feature-
level denotes that AAM without channel reweighting mech-
anism. As can be seen, the channel reweighting mechanism
in AAM improves the performance by filtering unnecessary
and noisy information and select important components on
flowing features. And the different pooling schemes also im-
prove the performance of edge detection slightly. The reason
might be that the different pooling schemes capture different
global information in channel reweighting, which makes the
reweighting operations more robust and effective.

Side-outputs. As shown in Table 4, different stages in our
networks gradually produce better performance, while the fi-
nal results fuse all the side-outputs and obtain the best perfor-
mance. This indicates the effect of our proposed architecture.

The loss function and training strategy. Our model is
trained by a fused loss function with a deep supervision strat-
egy. The supervisions are fed to each side-output in each
branch. Tab. 3 shows that deep supervision is helpful for edge
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Methods ODS OIS AP
Human 0.803 0.803 -
Canny 0.611 0.67 0.520
Pb 0.672 0.695 0.652
MCG 0.744 0.777 0.760
OEF 0.746 0.770 0.815
DeepEdge 0.753 0.772 0.807
DeepContour 0.757 0.776 0.790
HED 0.788 0.808 0.840
COB 0.793 0.819 0.849
RCF 0.798 0.815 -
LPCB 0.800 0.816 -
CED 0.794 0.811 0.847
CED-MS 0.803 0.820 0.871
BDCN 0.806 0.826 0.847
AMH-Net(ResNet50) 0.798 0.829 0.869
CNet(ResNet101) 0.805 0.819 0.851
BAN 0.810 0.827 0.862
BAN-MS 0.816 0.834 0.870

Table 5: The comparison with other methods on BSDS500
dataset.’MS’ in the table indicates the results of multi-scale testing

Methods ODS OIS AP
gPb-UCM 0.631 0.661 0.562
OEF 0.651 0.667 0.653
gPb+NG 0.687 0.716 0.629
SE 0.695 0.708 0.719
SE+NG+ 0.706 0.734 0.549
HED-RGB 0.720 0.734 0.734
HED-HHA 0.682 0.695 0.702
HED-RGB-HHA 0.746 0.761 0.786
RCF-RGB 0.729 0.742 -
RCF-HHA 0.705 0.715 -
RCF-RGB-HHA 0.757 0.771 -
LPCB-RGB 0.739 0.754 -
LPCB-HHA 0.707 0.719 -
LPCB-RGB-HHA 0.762 0.778 -
BDCN-RGB 0.748 0.763 0.770
BDCN-HHA 0.707 0.719 0.731
BDCN-RGB-HHA 0.765 0.781 0.813
AMH-Net(ResNet50)-RGB-HHA 0.771 0.786 0.802
CNet(ResNet101)-RGB-HHA 0.762 0.781 0.797
BAN-RGB 0.755 0.770 0.760
BAN-HHA 0.707 0.718 0.710
BAN-RGB-HHA 0.773 0.786 0.790

Table 6: The comparison with other methods on NYUDv2 dataset.

detection. The network trained by fused loss function obtains
a slightly better performance. And the dice loss makes the
edges crisp, which is helpful for other tasks such as optical
flow and object proposal, as shown in Fig. 6.

3.3 Comparison with State-of-the-art
Comparison on BSDS500. In this subsection, we perform
comparisons of our proposed BAN and other methods, in-
cluding traditional methods (Canny [Canny, 1986], Pb [Mar-
tin et al., 2004], MCG [Pont-Tuset et al., 2017] and OEF
[Hallman and Fowlkes, 2015]) and deep learning methods
(DeepEdge [Bertasius et al., 2015], DeepContour [Shen et
al., 2015b], HED [Xie and Tu, 2017], COB [Maninis et al.,
2018], RCF [Liu et al., 2019], LPCB [Wang et al., 2019b],
BDCN[He et al., 2019], AMH-Net [Xu et al., 2017] and
CNet [Song et al., 2018]). The experimental results are sum-
marized in Table 5. From Table 5 we can observe that our
method obtains F-measure of 0.810 on ODS in single-scale
input images and 0.816 of multi-scale input images, which

outperforms all the previous approaches. ODS is the most im-
portant evaluation metric in edge detection which reflects the
performance on the whole dataset. BAN also obtains better
performance compared with CED-MS that uses multi-scale
input images and ResNet-based methods such as AMH-Net
and CNet on ODS. We observe that our method outperforms
the others, including human for all evaluation metrics.

Comparison on NYUDv2. In this subsection, we compare
our method with state of the art methods, including gpb-UCM
[Arbelaez et al., 2011], OEF [Hallman and Fowlkes, 2015],
gpb+NG [Gupta et al., 2013], SE [Dollár and Zitnick, 2015],
SE+NG+ [Gupta et al., 2014], HED [Xie and Tu, 2017], RCF
[Liu et al., 2019], LPCB [Deng et al., 2018] and BDCN [He
et al., 2019]. In the recent work such as [Xie and Tu, 2017]
and [Liu et al., 2019], the final result are obtained by averag-
ing the results from two seperately models which are trained
by RGB images and HHA images respectively. The compari-
son results are shown in Table 6. As shown in the results, our
method outperforms other recent approaches including some
ResNet-based approaches. Specifically, we can see that our
method performs better than the best VGG-based approach
BDCN(RGB) with an increase of 0.7% ODS and 0.7% OIS.
When we combine RGB and HHA, the performance of our
method sets a net record and reaches 0.773, 0.786 and 0.790.
It’s worth noting that the F-measure at ODS and OIS are more
important evaluation metrics than AP for edge detection [Liu
et al., 2019] [Deng et al., 2018]. From Table 6, we can also
notice that our method outperforms ResNet-based methods:
CNet and AMH-Net at F-measures.

4 Conclusion
In this paper, we propose a novel progressive bottom-up and
top-down information flow model named Bidirectional Addi-
tive Net (BAN), which utilizes the feature-level information
flow from bottom-up to top-down branches to enhance infor-
mation propagation and obtain richer feature hierarchy. We
filter the propagating information by reweighting each chan-
nel of feature maps by Attended Additive Module (AAM).
Experimental results show that our proposed method outper-
forms the state-of-the-art on two benchmark datasets.
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