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Abstract

Graph Convolutional Networks (GCNs) have been
extensively studied in recent years. Most of exist-
ing GCN approaches are designed for the homoge-
nous graphs with a single type of relation. How-
ever, heterogeneous graphs of multiple types of re-
lations are also ubiquitous and there is a lack of
methodologies to tackle such graphs. Some previ-
ous studies address the issue by performing conven-
tional GCN on each single relation and then blend-
ing their results. However, as the convolutional ker-
nels neglect the correlations across relations, the
strategy is sub-optimal. In this paper, we propose
the Multi-Relational Graph Convolutional Network
(MR-GCN) framework by developing a novel con-
volution operator on multi-relational graphs. In
particular, our multi-dimension convolution oper-
ator extends the graph spectral analysis into the
eigen-decomposition of a Laplacian tensor. And
the eigen-decomposition is formulated with a gen-
eralized tensor product, which can correspond to
any unitary transform instead of limited merely
to Fourier transform. We conduct comprehensive
experiments on four real-world multi-relational
graphs to solve the semi-supervised node classifi-
cation task, and the results show the superiority of
MR-GCN against the state-of-the-art competitors.

1 Introduction

In recent years, Graph Convolutional Networks (GCNs) have
been extensively studied, which can be applied to many graph
applications, such as node classification [Kipf and Welling,
2016; Hamilton et al., 2017], link prediction [Schlichtkrull
et al., 2018] and personalized recommendation [Ying et al.,
2018]. In terms of convolution operation manners, there are
two types of GCNs, namely spatial methods [Hamilton e al.,
2017; Jgrgensen et al., 2018] and spectral methods [Henaff
et al., 2015; Defferrard et al., 2016; Kipf and Welling, 2016].
Despite of extensive literatures, most of them work merely on
homogenous graphs with a single type of relation and cannot
tackle multi-relational graphs.

*Corresponding authors.
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Recently, some remedies are put forward to address the
problem, which fall into two lines in terms of their strate-
gies. The first line conducts GCN on each single rela-
tion and then integrates the results with multi-view learning
[Schlichtkrull et al., 2018; Ma et al., 2019; Sun et al., 2019].
In such methods, relation correlations are not effectively ex-
ploited as GCN basis is independently constructed on each
graph. Another line is aggregating the multi-relational graph
into a homogeneous graph [Khan and Blumenstock, 2019;
Yun et al., 2019]. For example, Multi-GCN [Khan and Blu-
menstock, 2019] adopts manifold ranking to achieve the ag-
gregation, and then applies a standard GCN on the aggregated
graph. The type of methods may result in information loss
or noises. Hence, both strategies are sub-optimal. The rea-
son roots at that the convolution operation on multi-relational
graphs is not defined and existing studies bypass the issue.

In this paper, we propose to define the convolution opera-
tor in multi-relational graphs, upon which a neural network
framework, termed as Multi-Relational Graph Convolutional
Network (MR-GCN), can be established. Specifically, a
Laplacian tensor is first constructed for a given multi-
relational graph. The tensor based eigenvalue decomposi-
tion is formulated, which offers the basis to develop multi-
relational graph convolution operators (MR-GCO). As the
tensor eigen-decomposition can be defined with a general-
ized tensor product, the basis of MR-GCO can be any unitary
transform, e.g., Haar, Discrete Cosine transform (DCT), in-
stead of limited merely to Fourier transform. To validate the
effectiveness of the proposed MR-GCN framework, we em-
pirically evaluate the performance on node classification task
in multi-relational graphs. The main contributions of the pa-
per can be summarized as follows:

* We define the convolution operator in multi-relational
graphs based on the eigen-decomposition of Laplacian
tensors. Upon the convolution operator, a neural net-
work framework, namely MR-GCN, is established for
node classification. To the best of our knowledge, we
are the first to extend GCNs spectral graph theory by
considering tensor eigen-decomposition.

* Different from conventional GCNs, which perform con-
volutions in the spectral domain with discrete Fourier
transform (DFT), our MR-GCN is established on
the eigen-decomposition defined by generalized tensor
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product. Hence, the spectral domain can be any uni-
tary transform, e.g., Haar, DCT, etc, instead of limited to
DFT.

* Comprehensive experimental evaluations have been
conducted on four real-world multi-relational graphs,
and the results show that the developed MR-GCN frame-
work outperforms state-of-the-art competitors.

2 Related Work
2.1 Graph Convolutional Networks

GCNs are increasingly developed for a wide range of tasks.
According to convolution operation manners, they can be
roughly categorized into two types, namely spectral meth-
ods [Bruna et al., 2013; Henaff et al., 2015; Defferrard et al.,
2016; Kipf and Welling, 2016] and spatial methods [Hamil-
ton et al., 2017; Monti et al., 2017; Jgrgensen et al., 2018].
[Bruna er al., 2013] introduce a graph based convolution op-
erator in spectral domain based on Fourier basis. Then, [Kipf
and Welling, 2016] simplify the convolution via a localized
first-order approximation. In contrast, spatial approaches uti-
lize spatially close neighbors to define convolution opera-
tions. For instance, [Hamilton et al., 2017] introduce a learn-
able aggregating function to summarize neighbors’ informa-
tion for node representations.

However, most of previous GCN methods are designed
for single relational graphs and cannot tackle multi-relational
ones. Though several multi-relational version of GCNs ap-
pear in recent studies [Schlichtkrull et al, 2018; Ma et
al., 2019; Sun et al., 2019; Khan and Blumenstock, 2019;
Yun et al., 2019], their solutions are still conventional GCN
in essence. The key obstacle stands in between GCN and
multi-relational graphs is that a multi-graph convolution op-
erator remains undefined, which is our focus in this paper.

2.2 Tensor Product

Tensor, also known as n-way or n-mode array, refers to a
multi-dimensional array of numbers. It is a powerful tool
to represent and analyze multi-dimensional data [Ng et al.,
2011; Li et al., 2013; Li et al., 2017]. Conventional tensor
product means mode-n multiplication. However, in this defi-
nition, the eigen-decomposition of a tensor cannot be well de-
fined. In [Kilmer and Martin, 2011], a novel tensor product,
termed as t-product is introduced, which is indeed a general-
ized matrix multiplication, where each element denotes a tube
and Fourier convolution is adopted because each element is a
vector rather than a scalar in conventional matrix. Based on
the product, a tensor singular value decomposition (t-svd) is
formulated. Very recently, [Song et al., 2019] further gener-
alize the t-product by relaxing the DFT into any unitary trans-
form. In this paper, we aim to define convolution operator in
multi-relational graphs with the generalized tensor product.

3 Proposed Framework

In this section, we introduce the proposed MR-GCN frame-
work. First, we revisit the basic concepts of graph convo-
lutions and some essential definitions of generalized tensor
product (GTP) as preliminaries. Then we present how the
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MR-GCN operator is developed and finally discuss to build
the semi-supervised node classifier upon the operator.

3.1 Preliminaries

Notations

In this paper, we define the fields of real and complex number
with respect to R and C. Tensors and matrices are symbolized
by Euler and boldface capital letters, respectively. Let A €
R™>n2Xns pe g third-order tensor, we represent its (i, j, k)-th
entry as A;;; and employ matlab notations A(3, , 1), A(, ¢, :)
and A(:, :, 1) to denote the i-th horizontal, lateral and frontal
slices, respectively. For simplicity, we also denote the frontal
slice AC, 1, 7) as A,

Graph Convolution Operator

The core idea of GCN is to define convolution operator based
on graph structures. To this end, the graph Fourier transform
is first formulated by replacing the eigen basis of continuous
Laplacian in Fourier transform with that of graph Laplacian.
Then, the convolution operator on the graph can be easily de-
fined following the convolution theorem. Given a graph G
with an adjacency matrix A € R we calculate its nor-
malized graph Laplacian as L =1—-D" %AD*%, where 1 is
the identity matrix and D represents a diagonal degree matrix
with entries D;; =Y inj. Then the convolution of a input

signal z € RY with a filter g€ RY on G is defined as:
zxg g = U (Uz ® Ug), (1)

where x¢ denotes the graph convolution operator, ® indicates
the Hadamard product which is element-wise multiplication
and U refers to the matrix of row-wise eigenvectors of the
normalized graph Laplacian, which is obtained by its eigen-
value decomposition L = U7 AU. Uz and Ug are the graph
Fourier transforms of x and g.

Generalized Tensor Product
To well define the eigen-decomposition of tensors, t-product
is formulated in [Kilmer and Martin, 2011]. In the prod-
uct, third-order tensors are considered as a matrix with each
element to be a vector, instead of a scalar. By analogue
with matrix multiplication, t-product is defined and vector-
vector interaction is achieved by circular convolution, which
corresponds to DFT. In [Song et al., 20191, DFT is further
extended to any unitary transform and a generalized tensor
product (GTP), i.e., ®-product, is introduced. Next, we
briefly introduce the GTP.

Let A € C™1*"2X13 e 3 third-order tensor, and ® € C"3x"3
be the unitary transform matrix, i.e., ®®7 =7 &=1. Here
®H denotes the Hermitian transpose of ®. We let ®[A] rep-

resent the transformed tensor (also denoted as Ag), which
is obtained by applying the transform @ to each tube along

the third dimension. That is, we have vec (Aq) (4,7, )) =

® [vec (A (3,],:))], where vec(-) refers to mapping the ten-
sor tube to a vector. Thanks to the unitary property of ®,
we have A = &7 ®[A] = &7 [Ap]. Let blockdiag(A) be a
ninz-by-nang block diagonal matrix, obtained by putting the
frontal slices of A into the diagonal, and fold indicate its in-
verse operator, namely A = fold (blockdiag (A)). With the
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notations, the conjugate transpose of A is defined as:
L NH
AT — ot [ fold (bolckdz’ag (.A@) )] G

Given two third-order tensors A € Cnvm2xns B ¢
Cr2xnaxns the @-product between them is defined as follow:

C= AopB = & [fold (blockdiag (Aq,) xblockdiag (z%q,))] . (3)

where ¢4 represents the generalized tensor product, X is the
standard matrix product and its result is C € C<"4%7s,

3.2 Multi-Relational Graph Convolution Operator

Let M G be an undirected multi-relational graph and its topol-
ogy is characterized by an adjacency tensor A € RVNxE,
where N and R represent the numbers of nodes and rela-
tions, respectively. We construct a diagonal degree tensor
D e RNNXE \where Dy = >, Aiji and Dy =0 for Vi # j.
Then, a normalized Laplacian tensor £ € RNXNXE ig con-
structed and each of its frontal slice £(¥) is computed as:

, B NP
L0 =1 —DWO 2 gODH "2 )

where 1€ RV is the identity matrix.

To extend the graph convolution theory into the multi-
relational case, we need perform eigen-decomposition on the
Laplacian tensor £. Unlike the matrix, which has a standard
eigen-decomposition, tensors require to know product defi-
nitions in advance. Here we adopt the ®-product presented
in preliminaries. The choice has two important advantages.
First, it can nicely exploit the inherent correlations across re-
lations. To understand this point, we revisit the GTP and re-
veal its essence. Figure 1 presents an example of GTP com-
putation. We can see that the product of two tensors A and
B is computed as the following three steps: (i) converting
the tensors into ® space (i.e., Ag and B:p); (ii) performing
slice-by-slice matrix multiplication; (iii) transforming the re-
sult back to the original space with ®. The steps follow
the definition in Eq. 3. By convolution theorem, the process
suggests that the product can be written as:

na

(Aog B) (i,§,:) = Y _A(i,k,:) oa B(k,j,:). (5

Figure 1: GTP computation process.

Algorithm 1 Tensor Based Eigenvalue Decomposition

Input: £LcCVVXE $cCR*E,
1: ,C@:‘I)[[,]

2. fori=1,..,Rdo

3 [U,S]=EVD(LY):

4: L?((If):U, Sg)zs;
5

6

: end for .
U= B ], S— B [Sq
Output: If € CVNXE S c CNXNXE,

Here og denotes a convolution defined by ®. For exam-
ple, when considering t-product, ® is the DFT and og corre-
sponds to the circular convolution. Thanks to the convolution
along the relation dimension, the eigentensor of £ defined on
®-product can nicely model the relation correlations. Sec-
ond, ®-product can correspond to any unitary transform (e.g.,
DCT, Haar, etc), not limited to DFT as t-product. Next, we
introduce how to perform tensor based eigenvalue decompo-
sition (TEVD) for the Laplacian tensor L.

Theorem 1. Let £ € CNVN*E pe q third-order Laplacian ten-
sor, where each frontal slice is symmetric and semi-definite.
We define TEVD along the third dimension with respect to
®-product and factorize L as follow:

L=U"05SoalU. (6)

Here U € CNNXR denotes the eigentensor and Uop U™ =
UTogU =Ty, where ®[Lg) is a tensor with each frontal slice
being the N x N identity matrix. S € CNN*E js a diagonal
tensor with eigenvalues.

The TEVD computation is summarized in Algorithm 1,
which is very simple. Its main idea is to convert each frontal
slice of tensor £ into ®-space, perform eigen-decomposition,
fold them into tensors Z/A{q, and S’q> and then transform the two
tensors back into the original space.

Definition 1. Given a normalized Laplacian tensor L €
RNXNXE of an undirected multi-relational graph MG, a con-
volution operator of the input signal x € R™N*E with the filter
g €RNE on MG can be defined as follow:

zxpc g =UTog [(Usar)®Uos )], @)

where ;G denotes the multi-relational graph convolution
operator (MR-GCO), ® refers to the element-wise Hadamard
product. And U g x and U o g represent the transformed

A
Eq. 3,% _\fﬁ UCe ) OUC DY)
a

. —) o7
Algorihm1 | g \}F%%ﬁj Eq. 3=
y I8 L 27
Eq. 2
@TEVD (| (BMR-GCO

Figure 2: An illustration of MR-GCO with &.
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(a) Constructing input tensor with GCN layler‘s.

(b) MR-GCO layers.

(c) Fully connected layers.

Figure 3: Semi-supervised learning with MR-GCN.

tensors based on U, which is the row eigentensor of Laplacian
tensor L with ®.

To better understand the MR-GCO definition, we illustrate
its computation process in Figure 2. Given a graph with adja-
cency tensor A, we construct its normalized Laplacian tensor
L and compute the corresponding eigenvalue decomposition
by Algorithm 1. As a result, we obtain the eigentensor U/
as the transform basis. According to the GTP definition in
Eq. 3, the signal x and filter g are transformed into a new
space by U, and then their Hadamard product result is ob-
tained. With Eq. 2, we compute 2/, which is the conjugate
transpose tensor of /. Finally, the Hadamard product result
is transformed back by ¢/7. The MR-GCO can better model
the relation correlations than multi-view GCNgs, e.g., R-GCN
[Schlichtkrull et al., 2018], because (i) the eigentensor basis
is not computed independently for each view, but as a whole
(See Eq. 6); (ii) the signal x is convolved with filter g based
on the whole eigentensor basis (See Eq. 7), instead of on each
view basis as multi-view GCNss.

3.3 Semi-supervised Learning with MR-GCN

The developed MR-GCO can be utilized in any multi-
relational graph tasks. In this paper, we adopt it to build a
semi-supervised node classifier. The architecture of the clas-
sifier is shown as in Figure 3. We can see that it consists of
three key components, which are conventional GCN layers,
MR-GCO layers and fully connected layers. Let us elaborate
the three components, respectively. Given a multi-relational
graph A € RVNXE we let a matrix X € RV denote its
node features, where F' is the feature size. As the input signal
X has an inappropriate size for MR-GCO, we apply two-layer
GCN [Kipf and Welling, 2016] in each relational graph with
d-dimensional output as:

X — (D 2AD 2 XOWD), ®)

where A =A+I is the adjacency matrix A of the graph G with
added self-connections, D is the diagonal degree matrix of A
and W) is the matrix of filter parameters. We note the layers
can be in any form, not necessary to be GCN. By folding the
its outputs, we obtain a tensor signal X € RV and feed it
into the second component. After several layers of MR-GCO,
the tensor signal is further transformed but its size does not
change. Finally, in the third component, the tensor signal is
flattened into a matrix and a simple multi-layer perceptron
(MLP) as well as a softmax layer is appended. In the task, we
adopt the cross-entropy loss.

1261

4 Experiments

4.1 Experimental Setup

Datasets

In this paper, we adopt node classification to evaluate the
performance. The following four real-world multi-relational
graphs are utilized and Table 1 summarizes the statistics of
them.

+ ACM! is an academic multi-relational graph. In the
graph, each node is a paper and two types of connec-
tions are considered, namely paper coauthor edge and
paper subject edge. Bag-of-word representation of each
paper is given as its node attribute, and its category is re-
garded as node label. We follow the settings of the raw
dataset for training, validation and test separation.

« IMDB! is a multi-relational graph from movie dataset,
which also includes two types of relations. Each movie
is a node and its description is also changed into bag-of-
word representation. The movie genre is the node label.
Similarly, the raw dataset provides the training, valida-
tion and test sets.

» Amazon’ is a multi-relational graph from Amazon pur-
chase record. We employ the metadata of Electron-
ics category and construct two types of connections
between products, namely co-viewed or co-purchased.
Node feature is composed one-hot encoding of its cate-
gory list and its price information. The main category of
each product is treated as node label. We randomly se-
lect 20 products from each category as our training set,
and validation and test sets consist of 500 and 1,000 in-
stances, respectively.

* Reuters® is a graph constructed from a multilingual
dataset. The dataset contains 1,200 documents over six
labels and is described by five views of 2,000 words. In
the graph, each document is a node. We treat its English
view as node attribute and construct four connections
based on the other views. Specifically, two document
nodes are connected in a view if their normalized text
similarity is larger than 0.5. We follow the similar way
on Amazon to construct the training, validation and test
sets.

Thttps://drive.google.com/file/d/
1q0Z3QjqWMIIvWjzrldRe3EA4iKzPi6S5/view

*http://deepyeti.ucsd.edu/jianmo/amazon/index.html

3http://lig-membres.imag.fr/grimal/data.html (Sample 1 is used)


https://drive.google.com/file/d/1qOZ3QjqWMIIvWjzrIdRe3EA4iKzPi6S5/view
https://drive.google.com/file/d/1qOZ3QjqWMIIvWjzrIdRe3EA4iKzPi6S5/view
http://deepyeti.ucsd.edu/jianmo/amazon/index.html
http://lig-membres.imag.fr/grimal/data.html
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Dataset | #Nodes | #Relation 1 | #Relation 2 | #Relation 3 | #Relation 4 | #Classes | #Features | #Training | #Validation | #Test

ACM 8,994 9,936 3,025 - 3 1,902 600 300 2,125
IMDB 12,772 4,661 13,983 - 3 1,256 300 300 2,339
Amazon | 14,810 29,808 13,675 - 5 850 100 500 1,000
Reuters | 1200 | 3216 | 2956 | 2532 | 2398 | 6 | 200 | 120 | 100 | 500
Table 1: The statistics of four datasets in the experiments.
Baselines Method | Type | Datasets
| | ACM IMDB Amazon

To test the performance of the proposed MR-GCN, we com-
pare it with graph embedding and state-of-the-art GCN ap-
proaches. Specifically, three graph embedding methods are
adopted as baselines (i.e., LINE [Tang et al., 2015], Deep-
Walk [Perozzi et al., 2014] and Node2Vec [Grover and
Leskovec, 2016]). As the three methods are all unsupervised,
we also consider a semi-supervised attributed graph embed-
ding method, namely Planetoid [Yang er al., 2016], and its
inductive version is leveraged. GCN [Kipf and Welling,
2016] is a robust and popular approach, we include it as a
baseline as well. We note that all the above graph embed-
ding and GCN approaches are developed for single relational
graphs. To compare with them, we report their performance
on each single relational graph and a union graph whose ad-
jacency matrix is an addition of all the adjacency matrices
of relations. Very recently, two new graph neural network
(GNN) approaches, heterogeneous graph attention network
(HAN) [Wang et al., 2019] and graph transformer network
(GTN) [Yun et al., 2019], are proposed for multi-relational
graphs. They both generate new graph structures based on
meta-paths, where HAN learns the importance of fixed meta-
paths via an attentional graph neural network and GTN au-
tomatically learns meta-paths. We also adopt the two ap-
proaches as baseline methods.

Implementation Details

To make a fair comparison, we set the embedding dimen-
sion as 64 and adopt Adam optimizer for all approaches. The
implementations of LINE, DeepWalk and Node2Vec are ob-
tained from OpenNE* and the ones of all the other base-
lines are provided by their authors. For HAN and GTN, we
adopt the meta-path setting as [Yun et al., 2019] on ACM and
IMDB, and initialize meta-paths for the other datasets with
adjacency matrices. We tune all the baseline methods based
on the validation sets.

In the proposed MR-GCN, we set the maximum of epochs
to be 500 and employ the early stop strategy. The window size
and dropout rate are set as 10 and 0.5, respectively. The other
hyperparameters, learning rate from {0.01, 0.005, 0.0025,
0.001}, layer numbers from {1, 2, 3, 4, 5}, 12 loss weight
decay parameter from {5e-2, 5e-4, le-8}, are tuned based
on validation sets. Finally, we set the learning rate as 0.001
on ACM and Reuters, 0.0025 on IMDB and 0.005 on Ama-
zon. We adopt 1 layer MR-GCO on Amazon and IMDB, 2
layer MR-GCO on Reuters and 4 layer MR-GCO on ACM.
The best optimal 12 loss weight decay parameters are 5e-4 on
ACM and Reuters, 1e-8 on IMDB and 5e-2 on Amazon.

*https://github.com/thunlp/OpenNE
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rel. 1 | 39.76  37.49 36.2
LINE rel. 2 | 61.13 4245 31.0
union | 63.62  38.44 45.0

rel. 1 | 66.26  40.87 43.7
DeepWalk | rel. 2 | 68.14  46.77 37.6
union | 79.91  48.95 54.1

rel. 1 | 67.39  48.99 454
Node2Vec | rel. 2 | 68.75 47.24 35.8
union | 81.08  50.02 54.2

rel. 1 | 87.95 54.47 73.7
Planetoid | rel. 2 | 86.54  54.47 73.8
union | 87.81 54.51 73.9

rel. 1 | 91.34  52.16 75.2
GCN rel. 2 | 80.94 54.55 74.4
union | 91.57  56.56 76.3

HAN multi | 89.93  56.82 62.3
GTN multi | 91.01  60.45 75.7

MR-GCN | multi | 93.22  61.65 77.8

Table 2: Classification accuracies on two-relational datasets (in per-
cent). Best results are in bold.

As our MR-GCN can be equipped with any unitary trans-
form, we select six well-known transforms to validate its
effectiveness, which are discrete Cosine, Walsh-Hadamard,
Fourier, Hartely, Haar and Slant [Jain, 1979].

4.2 Results and Discussions

Main Results

Tables 2 and 3 report the classification performance. As if
there are only two types of relations, the six unitary trans-
form matrices are exactly the same. Hence, Table 2 shows
the results on ACM, IMDB and Amazon which include two
relations and Table 3 summarizes the results on Reuters that
has four relations.

According to Table 2, we make following conclusions:
(i) Our MR-GCN yields the best performance on the three
two-relational graphs. This is attributed to our developed
multi-relational convolution operator. In the operator, the
tensor based eigenvalue decomposition is conducted to con-
struct the transform basis, which nicely exploits the inher-
ent correlations across relations. (ii) For all the single rela-
tional graph embedding methods, namely LINE, DeepWalk,
Node2Vec, Planetoid and GCN, we find that their results on
union graph structures are better than those on single rela-
tional graphs in general. The observation implies the useful-
ness of multi-relational topology, which validates our motiva-
tion. (iii)) GCN and Planetoid always beat LINE, DeepWalk
and Node2Vec, because they are semi-supervised approaches
while the other methods are unsupervised. (iv) We observe
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Method

Type |

| LINE DeepWalk Node2Vec Planetoid GCN | HAN  GTN | MR-GCN
rel. 1 | 26.5 27.3 29.3 58.9 64.8 68.8 (Cosine)
rel. 2 | 279 29.1 277 58.8 65.4 68.8 (Hadamard)
rel. 3 | 25.1 26.7 27.2 574 64.8 648 634 67.8 (Fourier)
rel. 4 | 23.8 26.7 27.0 57.7 64.8 : : 68.6 (Hartely)

68.8 (Haar)

union | 26.9 282 28.7 59.3 66.2
- - - - 68.6 (Slant)

multi

Table 3: Classification accuracies on Reuters.

that GNN based approaches, namely GCN (union), HAN,
GTN and the proposed MR-GCN significantly outperforms
Planetoid (union), except for the Amazon dataset where HAN
is worse due to no-well-fixed meta-paths available. The fact
implies the necessity to develop graph convolution operators
to tackle graph related problems, which also validates our
motivation to build convolution operators for multi-relational
graphs.

In Table 3, similar observations and conclusions can be
made. Moreover, among the six transforms, we find that Co-
sine, Hadamard and Haar deliver the best results, followed by
Hartely and Slant. Fourier is less competitive than the other
five transforms. The reason may be that the circular corre-
lation (corresponding to Fourier), which makes periodic as-
sumptions on signals, is not very suitable to model the graph
relations.

Ablation Studies

Revisiting Figure 3, it can be seen that our framework con-
tains two key components: (i) constructing input tensor with
a fold of the GCN result on each single relation; (ii) multi-
relational graph convolution operator. To examine the effec-
tiveness of the two components, we conduct experiments on
two variants, namely ‘-w/o GCN’ which utilizes random ini-
tializations instead of GCNs, and ‘-w/o MR-GCQO’ which re-
moves the multi-relational graph convolution operators. Ta-
ble 4 shows the results, from which we can conclude that both
components are very useful in our MR-GCN.

4.3 Parameter Sensitivity Study

Impact of layer numbers. Here we investigate how the
number of MR-GCO layers affects the performance. Figure 4
shows the results on the four datasets, where the layer number
is increased from 1 to 5. It can be observed that the parame-
ter is more sensitive on IMDB and Reuters than on ACM and
Amazon. The reason may be that the distributions of node
representations learned by different MR-GCO layers sensi-
tively affect the margins of classifiers on the two datasets.

Convergence and impact of training set sizes. In this part,
we test the convergence and the impact of training set sizes.
Here we adopt the Cosine transform and show the results on
Reuters (Results on other datasets are similar). We can see

Method (Cosine) ‘ Datasets
| ACM IMDB Amazon Reuters
MR-GCN 9322  61.65 77.80 68.60

- w/o GCN 89.27  53.23 77.10 66.80
-w/o MR-GCO | 91.81  59.94 76.50 66.80

Table 4: Ablation test.
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Figure 5: Convergence and impact of training set sizes.

from Figure 5(a) that the test loss and accuracy tend to level
off after 250 epochs, indicating a fast convergence. From
Figure 5(b), we find that the performance of GCN (union),
HAN, GTN and the proposed MR-GCN all improve as the
training sample ratio is increased from 10% to 50%, which
is not surprising as the methods obtain more supervision in-
formation. Moreover, we observe that MR-GCN consistently
outperforms GCN (union), HAN and GTN, which again val-
idates the superiority of the proposed method.

5 Conclusion

In this paper, we study the multi-relational graph learning
problem and extend the notion of GCN by developing a novel
multi-relational graph convolution operator. The operator is
defined upon the eigenvalue decomposition of the Laplacian
tensor. As we consider generalized tensor product, the de-
composition can correspond to any unitary transform. Exten-
sive experiments on four real-world datasets have been con-
ducted, and the results show the effectiveness of the proposed
method.
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