
Structured Probabilistic End-to-End Learning from Crowds

Zhijun Chen1,2∗ , Huimin Wang1,2∗ , Hailong Sun1,2† , Pengpeng Chen1,2 ,
Tao Han1,2 , Xudong Liu1,2 and Jie Yang3

1SKLSDE Lab, School of Computer Science and Engineering, Beihang University, China
2Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, China

3Web Information Systems, Delft University of Technology, Netherlands
{zhijunchen, whm2016, sunhl, chenpp, hantao, liuxd}@buaa.edu.cn, jie@exascale.info

Abstract

End-to-end learning from crowds has recently been
introduced as an EM-free approach to training deep
neural networks directly from noisy crowdsourced
annotations. It models the relationship between
true labels and annotations with a specific type of
neural layer, termed as the crowd layer, which can
be trained using pure backpropagation. Parameters
of the crowd layer, however, can hardly be inter-
preted as annotator reliability, as compared with
the more principled probabilistic approach. The
lack of probabilistic interpretation further prevents
extensions of the approach to account for impor-
tant factors of annotation processes, e.g., instance
difficulty. This paper presents SpeeLFC, a struc-
tured probabilistic model that incorporates the con-
straints of probability axioms for parameters of the
crowd layer, which allows to explicitly model an-
notator reliability while benefiting from the end-to-
end training of neural networks. Moreover, we pro-
pose SpeeLFC-D, which further takes into account
instance difficulty. Extensive validation on real-
world datasets shows that our methods improve the
state-of-the-art.

1 Introduction
The success of deep learning in many vision and language
tasks heavily relies on the quantity and quality of labeled
training data [Zhang et al., 2016]. Crowdsourced data an-
notation offers a cost-effective means to acquire a large set
of labeled data. However, crowdsourced labels are often of
limited quality, which has become a key concern for training
deep neural networks and other types of classifiers [Yang et
al., 2019].

To train classifiers from noisy crowdsourced labels, exist-
ing methods generally treat true labels as unknown variables,
and infer the value by modeling a probabilistic relationship
between true labels and the annotations (e.g., the confusion
matrix) [Zheng et al., 2017]. Key considerations are factors
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in the annotation process such as annotator reliability and in-
stance (data instance) difficulty, which are represented as pa-
rameters of the probabilistic relationship. Depending on how
the inference is integrated with the training of classifier, ex-
isting methods fall into two broad categories:

• The two-stage approach [Dawid and Skene, 1979;
Whitehill et al., 2009; Welinder et al., 2010; Han et al.,
2016] infers the true label for each instance and after-
ward, it trains classifiers using the inferred labels.

• The joint approach, also referred to as the learning-
from-crowds approach [Raykar et al., 2010; Kajino et
al., 2012; Yan et al., 2012; Rodrigues et al., 2013;
Bi et al., 2014; Albarqouni et al., 2016; Rodrigues
and Pereira, 2018], simultaneously infers the true labels
while training the classifier, allowing the two processes
to benefit from each other; consequently, this approach
generally results in better performance.

Most of the methods in the joint approach, however, are com-
putationally expensive when the classifier is a neural network,
as the learning with generally carried out with expectation-
maximization (EM) algorithm that infers the true labels and
learns parameters of the classifier (especially neural net-
works) in an iterative manner [Rodrigues and Pereira, 2018].

Recently, Rodrigues and Pereira [2018] introduce an end-
to-end learning-from-crowds approach where the relationship
between true labels and annotations is modeled by a specific
type of neural layers, i.e., the crowd layer. Parameters of the
crowd layer can be trained together with the parameters of the
rest of the neural network using backpropagation, thus largely
accelerating the learning process. Despite that, parameters of
the crowd layer can hardly be interpreted as annotator relia-
bility, which comes in contrast to the traditional probabilistic
approach that always gives us effective and principled solu-
tions. The lack of probabilistic interpretation also makes it
challenging to extend the approach to account for other im-
portant factors of the annotation process, e.g., instance dif-
ficulty, hindering the potential improvement of the learning
process.

In this paper, we demonstrate that we can get the best of
both worlds by presenting SpeeLFC (Structured Probabilistic
end-to-end Learning From Crowds), a structured probabilis-
tic model (i.e., probabilistic graphical models) to end-to-end
learning from noisy crowd annotations. SpeeLFC enforces

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1512



the parameters of the crowd layer to satisfy the constraints
of probability axioms, thereby explicitly modeling annota-
tor reliability in the network. To learn the parameters with
such constraints, we introduce a reparameterization trick that
allows the network to be trained with the standard gradient-
based optimization algorithm. Our approach, therefore, bene-
fits both from the expressiveness and reasonableness of prob-
abilistic approaches for representing annotator reliability and
from the effectiveness of the end-to-end approach for train-
ing neural networks. In addition, our approach can be easily
extended to model other influential factors of the annotation
process. Moreover, we propose SpeeLFC-D, which extends
SpeeLFC to model instance difficulty as an additional set of
parameters of the crowd layer.

In summary, we make the following key contributions:
• We propose SpeeLFC, a novel structured probabilistic

model that learns interpretable parameters of the crowd
layer in end-to-end learning from crowds;
• We propose SpeeLFC-D, an extension of SpeeLFC that

further models instance difficulty in end-to-end learning
from crowds;
• We conducted evaluation of our proposed approach on

two real-world datasets, showing that both SpeeLFC and
SpeeLFC-D are able to outperform the state-of-the-art
models.

To the best of our knowledge, we are the first to consider
the probabilistic interpretation of neural network parameters
and the first to model instance difficulty in end-to-end learn-
ing from crowds. Experimental results show that the proba-
bilistic constraints alone in SpeeLFC not only make our ap-
proach more interpretable and expressive, but also contribute
to learning classifier with higher performance.

2 Preliminaries
To help motivate the two proposed models, here we first intro-
duce the far-reaching approach Crowd-Layer [Rodrigues and
Pereira, 2018], and then introduce the simple yet profound
idea that underlies both of our proposed models.

LFC problem formulation. Let D = {x(i),Y(i)}Ii=1 be
an i.i.d. dataset, where for each instance x(i) ∈ RD we
are given a set of noisy crowdsourced annotations Y(i) =
{y(i,j)}j∈J (i) . J (i) represents all the annotators who an-
notated the ith instance, and y(i,j) represents annotation by
the jth annotator (a total of J annotators) on instance x(i),
which is a 1 − of −K encoded K dimensional vector. Each
instance x(i) has its corresponding unobserved ground truth
t(i). The goal of LFC is to train an accurate classifier for pre-
dicting t given new unknown instances x by using noisy data
{x(i),Y(i)}Ii=1.

Crowd-Layer
The Crowd-Layer constructs a probabilistic discriminative
model and optimizes the cross-entropy loss on crowdsourced
annotations, which is shown in Figure 1 (a). Particularly, it
adds functions fj(t(i)) = Π(j)t(i) to the ground truth t(i)

after the classifier to obtain a new vector a(i,j), where Π(j) is

Figure 1: Schematics of the Crowd-Layer (a) and our models (b).

an annotator-specific matrix. The elements in the matrix are
the parameters of neural network to be trained, whose value
range is (−∞,+∞). Then it uses a softmax function to map
vector a(i,j) to the new vector y(i,j) which can satisfy a dis-
tribution form. Note that there are other variants in Rodrigues
et al. [2018] , but the model presented here is the main model
when faced with classification problems.

The Basic Idea in Our Models
Different from Crowd-Layer, in our two proposed models,
the distribution of crowdsourced annotation y(i,j) is obtained
by the linear transformation of ground truth distribution t(i)

through the annotator transition matrix Π(j) we construct.
That is, assume in a binary classification scenario:

Π(j)t(i) = y(i,j), (1)
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(2)
where element π(j)

mn represents the probability that the jth an-
notator will annotate m given the ground truth is n. Note
that the transition matrix we construct here is the transpose
of the confusion matrix generally used in machine learning.
Our annotator transition matrix Π(j) can therefore express a
probabilistic relationship between the annotation y(i,j) and
ground truth t(i), and its meaning can thus be interpreted as
worker reliability. We illustrate the relationship among the
three variables as “triangular association” in Figure 1.

Recall that Crowd-Layer, like ours, uses a specific matrix
to model an annotator. However, the linear transformation
a(i,j) = Π(j)t(i) without any probabilistic meaning and the
nonlinear transformation of softmax in the model break the
delicate “triangular association”.

3 Method
In this section, we formally introduce two models, SpeeLFC
and SpeeLFC-D, which exploit the power of structured prob-
abilistic models for end-to-end learning from crowds.
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Figure 2: SpeeLFC overview: (1) Given an input instance x(i), the classifier fΘNN (x(i)) generates the ground truth t(i). (2) Then, annotation
transition matrix Π(j)′ converts ground truth t(i) into a noisy version of it, i.e., y(i,j) = Π(j)′t(i). Here we use the reparameterization
technique, that is, we construct an ancestral-transition matrix for each true-transition matrix, and the latter is obtained by performing “softmax
on column” operation on the former. Thus, the model is parametrized by Θ = {ΘNN ,Π

(1), . . . ,Π(J)}. (3) Finally, given the observed
annotations, the common optimization objective log p(Y|X; Θ) (equivalent to minimizing the corresponding cross-entropy loss) is built on
the model, which can be done with standard stochastic optimization techniques.

3.1 SpeeLFC
Model
Here we introduce the probabilistic generative process we
construct from instance features to noisy crowdsourced an-
notations. First, as shown in Figure 2, for each instance x(i),

t(i)|x(i); ΘNN ∼ Cat(t(i); fΘNN
(x(i))), (3)

where the distribution of its unobserved ground truth
t(i) comes from a conditional categorical distribution
Cat(t(i)|fΘNN

(x(i))), which can be a flexible neural network
model parametrized by ΘNN .

Then, we directly model each annotator with an annotator-
specific transition matrix Π(j)′ as mentioned in Section 2,
which represents her performance pattern on ground truth.
Thus, the distribution of annotation y(ij) is determined by:

p(ind(y(i,j)) = m| ind(t(i)) = n; Π(j)′) = π(j)′

mn ,

m, n, ind(·) ∈ {1, . . . ,K}, ∀j,
(4)

where π(j)′

mn represents the probability that the jth annotator
will annotate m given the ground truth is n, and ind(·) is to
take the location index of the value 1 in the one-hot vector
(K denotes the number of categories). Here the generation
process from ground truth to crowdsourced annotation corre-
sponds to the basic idea introduced in Section 2.

Based on the probabilistic model constructed above,
we unfortunately find an optimization dilemma when
we try to optimize the log-conditional likelihood
log p(Y|X; ΘNN , {Π(j)′}Jj=1) using gradient-based opti-
mization algorithms. Because there are inevitable constraints

of the parameters {Π(j)′}Jj=1:

K∑
m=1

π(j)′

mn = 1, m, n ∈ {1, . . . ,K}, ∀j, (5)

0 ≤ π(j)′

mn ≤ 1, m, n ∈ {1, . . . ,K}, ∀j, (6)

and the updates brought to the parameters by the backprop-
agation cannot make the parameters automatically obey the
constraints of Eq. 5 and Eq. 6. Last, we break out of this op-
timization dilemma just by invoking the reparameterization
technique, which also used in the “Mixture Density Network”
in Bishop [2006] and variational autoencoder (VAE) [Kingma
and Welling, 2013].

The reparameterization. The essence of the reparameteri-
zation is quite simple, i.e., we posit that each column vector of
each annotator’s true-transition matrix π

(j)′

:,n is derived from
the corresponding column vector of its ancestral-transition
matrix π

(j)
:,n through softmax:

π(j)′

:,n = softmax(π(j)
:,n), (7)

i.e.,

π(j)′

mn =
exp(π

(j)
mn)∑K

m=1 exp(π
(j)
mn)

, m, n ∈ {1, . . . ,K}, ∀j. (8)

Thus, after reparameterization, the whole network is parame-
terized by Θ = {ΘNN ,Π

(1), . . . ,Π(J)} on which the Adam
can be smoothly performed. Furthermore, the {Π(j)′}Jj=1
can perfectly play the roles of annotator transition matrices
which strictly satisfy Eq. 5 and Eq. 6.
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Figure 3: SpeeLFC-D overview: (1) First, given an input instance x(i), classifier fΘNN1(x(i)) and difficulty mapping function fΘNN2(x(i))

generate ground truth t(i) and β(i), respectively. The β(i) is then mapped to a positive scalar β(i)′ ∈ (λ1, λ1 + λ2) with f(β(i);λ1, λ2),
and β(i)′ represents the instance difficulty. (2) Then, annotation transition matrix Π(i,j) converts ground truth t(i) into a noisy version of
it, i.e., y(i,j) = Π(i,j)t(i). Specifically, the transition matrix is simultaneously determined by annotator ability α(j) and instance difficulty

β(i)′ . σ(α(j)β(i)′) constitutes each diagonal element of the transition matrix, and σ(α(j)β(i)′ )
K−1

constitutes each element in other positions.
(3) Finally, we just perform the gradient-based optimization algorithm on log p(Y|X; Θ).

Objective and Optimization
Based on the model we have constructed, our optimiza-
tion objective is to maximize the log-conditional likelihood
log p(Y|X; Θ) of the observed crowdsourced annotations
w.r.t. Θ = {ΘNN ,Π

(1), . . . ,Π(J)}:
log p(Y|X; Θ)

=
I∑

i=1

∑
j∈J(i)

log p(y(i,j)|x(i); Θ)

=

I∑
i=1

∑
j∈J(i)

log
{ K∑

k=1

[
p(ind(t(i)) = k|x(i); ΘNN )·

p(y(i,j)| ind(t(i)) = k; Π(j))
]}

:= U(Θ).

(9)

Based on Eq. 3-8, the U(Θ) provides a unified objective func-
tion for optimization in SpeeLFC, which can be done with
standard stochastic optimization techniques, such as SGD or
Adam [Kingma and Ba, 2014]. In fact, according to Eq. 9, we
only need to use Π(i,j)t(i) to obtain the distribution y(i,j) as
mentioned in Section 2, and then maximize the log-likelihood
of the corresponding observed annotation.

3.2 SpeeLFC-D
Overall, the probabilistic generative process of crowd-
sourced annotations constructed in SpeeLFC-D is similar to
SpeeLFC. As shown in Figure 3, for each instance x(i) , its
ground truth t(i) is generated by:

t(i)|x(i); ΘNN1 ∼ Cat(t(i)|fΘNN1
(x(i))). (10)

Then, we construct the instance difficulty β(i)′ , represent-
ing how easily the instance can be annotated correctly by an-
notators. For images, it may be related to the resolution of
the image. We assume that the instance difficulty is obtained
by mapping the instance features through the instance diffi-
culty mapping function fΘNN2

(x(i)) and a subsequent auxil-
iary function. That is:

β(i) = fΘNN2
(x(i)), (11)

β(i)′ = λ1 + λ2 · sigmoid(β(i)), (12)

where fΘNN2
(x(i)) is a neural network function parametrized

by ΘNN2, and λ1, λ2 ∈ (0,+∞) are hyper-parameters. Eq.
12 helps us map the original β(i) ∈ (−∞,+∞) to a positive
range (λ1, λ1 + λ2).

Last, we model each annotator ability with an annotator-
specific scalar α(j) ∈ (−∞,+∞), and we assume that the
higher the annotator ability α(j) and the less instance dif-
ficulty (meaning bigger β(i)′ in our model), the greater the
probability that the annotator will annotate the instance cor-
rectly, and vice versa. Thus, we have the following construc-
tion:

p(ind(y(i,j)) = k| ind(t(i)) = k;α(j), β(i)′)

=σ(α(j)β(i)′), k ∈ {1, 2, . . . ,K},
(13)

σ(α(j)β(i)′) =
1

1 + exp(−α(j)β(i)′)
, (14)

where ind(·) is to obtain the location index of the value 1
in the one-hot vector (ind(·) ∈ {1, 2, . . . ,K}). Correspond-
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Figure 4: Boxplots for the number of annotations (a) and the accura-
cies (b) of the AMT annotators for the SPC and the MGC datasets.

Model Accuracy Model Accuracy

MV + MLP 0.7226 PC-GP 0.7263
GLAD + MLP 0.7289 Raykar 0.4867
Crowd-Layer 0.7307 Raykar(w/prior) 0.7078

Semi-LFC 0.7290 MA-LR 0.7240
PC 0.7261 SpeeLFC-D 0.7336

SpeeLFC 0.7314

Table 1: Accuracy on the SPC dataset.

ingly, the probability that the jth annotator with α(j) will an-
notate the instance x(i) with β(i)′ incorrectly is as follows:

p(ind(y(i,j)) = k′| ind(t(i)) = k;α(j), β(i)′)

=
1

K − 1
[1− σ(α(j)β(i)′)],

k ∈ {1, 2, . . . ,K}, k′ ∈ {1, 2, . . . ,K} − {k}.

(15)

In fact, for each annotator, the above construction will sepa-
rately models a transition matrix Π(i,j) for her performance
pattern on each instance x(i). Thus, the diagonal elements of
the matrix Π(i,j) are obtained from Eq. 13, while the ele-
ments on other positions are obtained from Eq. 15.

Based on the model we construct, the objective and opti-
mization in SpeeLFC-D are the same as in SpeeLFC.

4 Experiments
4.1 Settings
Datasets and Compared Methods
We performed experiments on two real-world datasets la-
beled from Amazon Mechanical Turk (AMT), i.e. the Sen-
timent Polarity Classification (SPC) dataset [Rodrigues et al.,
2013] and the Music Genre Classification (MGC) dataset
[Rodrigues et al., 2013]. The SPC dataset contains 5000
sentences (with crowdsourced annotations) from movie re-
views extracted from the website RottenTomatoes.com and
their sentiment polarity was classified as positive or negative,
while the MGC dataset contains 700 samples (with crowd-
sourced annotations) of songs with 30 seconds in length and
were divided into 10 different music genres (e.g., classical,
country, disco). The two datasets received a total of 27747
and 2946 annotations from 203 and 44 distinct annotators on
AMT, respectively. For both tasks, 5429 and 300 instances
are provided as test sets respectively. Figure 4 shows the

Model Accuracy Model Accuracy

MV + MLP 0.6267 Raykar 0.1200
GLAD + MLP 0.6603 Raykar(w/prior) 0.6300
Crowd-Layer 0.4287 MA-LR 0.6400

SpeeLFC 0.6923 SpeeLFC-D 0.6833

Table 2: Accuracy on the MGC dataset.

Figure 5: Comparison among the real transition matrices, the cor-
responding transition matrices estimated by SpeeLFC and the cor-
responding matrices estimated by Crowd-Layer on the SPC dataset.
Note that the corresponding probability values are also shown in the
transition matrices.

distributions of the number of annotations provided by each
annotator and their accuracies.

SpeeLFC and SpeeLFC-D are compared with: MV + MLP
(Majority Voting + Multilayer Perceptron), first the ground
truth was estimated by MV, and then a general MLP was
trained using the estimated ground truth; GLAD + MLP, sim-
ilar to MV + MLP, except that the truth inference algorithm
is GLAD [Whitehill et al., 2009]; Crowd-Layer [Rodrigues
and Pereira, 2018]; Raykar and Raykar(w/prior) [Raykar et
al., 2010], the latter is the Raykar model with the prior for the
annotator reliability; MA-LR [Rodrigues et al., 2013].

Implementation Details
For the SPC dataset, we set the classifier in both SpeeLFC
and SpeeLFC-D as an MLP with one hidden layer (with
1200 units, ReLU activations), using 50% dropout and Adam
stochastic optimization [Kingma and Ba, 2014]. The learn-
ing rate is 0.0001, batch-size is 64, and epoch number is 200.
In addition, the function fΘNN2

(x(i)) in SpeeLFC-D is also
an MLP with one hidden layer (with 128 units, ReLU acti-
vations, 50% dropout). And the values of the hyperparam-
eters λ1 and λ2 in SpeeLFC-D are 0.001 and 100, respec-
tively. In SpeeLFC, the values on the diagonal elements of
Π(j) (j = 1, . . . , J ) were initially set to 1.4, and the other
values were set to 1. α(j) (j = 1, . . . , J ) in SpeeLFC-D was
initially set to 0.028. For the MGC dataset, Rodrigues and
Pereira [2013] uses deep learning representation methods to
extract 124 features for each instance. We directly set the
classifier in both SpeeLFC and SpeeLFC-D as an multiclass
Logic Regression just like Rodrigues and Pereira [2013], that
is, the MLP without hidden layer. The learning rate is 0.001,
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Figure 6: Comparison between the real transition matrices and the corresponding transition matrices estimated by SpeeLFC on the MGC
dataset. Note that the color intensity of the cells increases with the relative magnitude of the value.

and epoch number is 5000. The function fΘNN2
(x(i)) in

SpeeLFC-D is an MLP with one hidden layer (with 32 units,
ReLU activations, 50% dropout, the learning rate on θNN2 is
0.0001). In SpeeLFC, the values on the diagonal elements of
Π(j) were initially set to 4.7, and the other values are 1. In
addition, the other settings are the same as those in the SPC
dataset. The settings of the compared methods are the same
as ours.

4.2 Results
The accuracies of the classifiers on the two datasets are shown
in Table 1 and Table 2, respectively. Among them, the re-
sults of Semi-LFC [Atarashi et al., 2018], PC [Kajino et al.,
2012], PC-GP [Kajino et al., 2012], Raykar [Raykar et al.,
2010], Raykar (w/prior) [Raykar et al., 2010], and MA-LR
[Rodrigues et al., 2013], are taken from Atarashi et al. [2018]
and Rodrigues and Pereira [2013]. We observe that the pro-
posed SpeeLFC and SpeeLFC-D achieve better results on
both datasets as compared to the baselines and state-of-the-
art models. On the SPC dataset, because of the inherent task
difficulty and the relatively more number of annotations re-
ceived for each instance (5.55 on average), most methods ex-
hibit similarly high accuracies. In particular, the highlight we
can find is that our proposed models even surpass the recently
released semi-supervised learning-from-crowds model called
Semi-LFC [Atarashi et al., 2018], even though the Semi-LFC
uses more information (i.e., unlabeled data) than ours.

In the case of the MGC dataset for the ten-class classifi-
cation scenario, the performance of these models shows a
larger difference. We observe that the proposed SpeeLFC and
SpeeLFC-D show more obvious advantages over the com-
pared methods; in particular, both of them significantly out-
perform Crowd-Layer by a large margin. We conducted an
additional experiment to further optimize the network ar-
chitecture of Crowd-Layer, by adding a hidden layer con-
taining 128 units (50% dropout), and still found the per-
formance (accuracy: 0.5850) to be largely below our pro-
posed models. Those results clearly demonstrate the impor-
tance of probabilistically interpretable parameters in end-to-
end learning from crowds. Additionally, we further observe
in Table 2 that SpeeLFC outperforms SpeeLFC-D. Recall
that SpeeLFC models each annotator with K × K parame-

ters while SpeeLFC-D only models each annotator with one
parameter. Such a comparison result shows that SpeeLFC is
more robust for the ten-class classification task with more pa-
rameters to be learned.

We now analyze the annotator transition matrices estimated
by the proposed SpeeLFC. Similar to Atarashi et al. [2018]
and Rodrigues et al. [2017], the six annotators with the
largest number of annotations were selected. The results are
shown in Figure 5 and Figure 6. Note that the correspond-
ing real annotator transition matrices are calculated based on
their annotations and the ground truth. The accurate estima-
tion of annotator performance pattern verifies the validity of
the whole network we build and demonstrates that the struc-
tured probabilistic models provide us with an explainable and
principled solution based on an end-to-end learning manner
using pure backpropagation. For comparison, we also show
in Figure 5 the corresponding matrices estimated with Crowd-
Layer: among the six matrices, five contain negative num-
bers, thus cannot express the probability relationship between
the annotation and ground truth.

5 Conclusion
This paper presents two novel models for end-to-end learn-
ing from crowds. We present SpeeLFC, a structured proba-
bilistic model that benefits both from the expressiveness and
reasonableness of probabilistic approaches for representing
annotator reliability and from the effectiveness of the end-
to-end approach for training neural networks. Moreover, we
present SpeeLFC-D, which further models instance difficulty
in end-to-end learning from crowds. Evaluation of our pro-
posed methods on real-world datasets shows that both meth-
ods improve the state-of-the-art.
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