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Abstract

Spiking Neural Network (SNN) is considered
more biologically plausible and energy-efficient on
emerging neuromorphic hardware. Recently back-
propagation algorithm has been utilized for train-
ing SNN, which allows SNN to go deeper and
achieve higher performance. However, most exist-
ing SNN models for object recognition are mainly
convolutional structures or fully-connected struc-
tures, which only have inter-layer connections, but
no intra-layer connections. Inspired by Lateral
Interactions in neuroscience, we propose a high-
performance and noise-robust Spiking Neural Net-
work (dubbed LISNN). Based on the convolu-
tional SNN, we model the lateral interactions be-
tween spatially adjacent neurons and integrate it
into the spiking neuron membrane potential for-
mula, then build a multi-layer SNN on a popular
deep learning framework, i.e., PyTorch. We uti-
lize the pseudo-derivative method to solve the non-
differentiable problem when applying backpropa-
gation to train LISNN and test LISNN on multi-
ple standard datasets. Experimental results demon-
strate that the proposed model can achieve com-
petitive or better performance compared to current
state-of-the-art spiking neural networks on MNIST,
Fashion-MNIST, and N-MNIST datasets. Besides,
thanks to lateral interactions, our model processes
stronger noise-robustness than other SNN. Our
work brings a biologically plausible mechanism
into SNN, hoping that it can help us understand the
visual information processing in the brain.

1 Introduction

Now Artificial Neural Network (ANN) has been widely uti-
lized on variant tasks, such as image classification, speech
recognition, and natural language processing [LeCun et al.,
2015]. However, ANN only imitates brain structures in sev-
eral ways abstractly and roughly, e. g., neurons use synapses
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to integrate input information and interconnect with each
other, networks consist of layered sub-structure [Hinton and
Salakhutdinov, 2006]. The brain has more information pro-
cessing mechanisms. Spiking Neural Network (SNN) utilizes
discrete action potentials (or spikes) to represent and pro-
cess information, which is similar to how the brain works.
The exploration of SNN can help us understand the working
mechanism of the mind and the intelligence [Ghosh-Dastidar
and Adeli, 2009]. Besides, in most instances, the neurons in
SNN do not excite until they receive input spikes. Thus SNN
is potentially energy-efficient and may have a wide range
of application scenarios with emerging neuromorphic hard-
ware [Pfeiffer and Pfeil, 2018].

However, due to the complex neural dynamics and non-
differential nature of SNN, it is challenging to construct
an efficient SNN model. Researchers have made many ef-
forts in model design. In terms of learning rule, Diehl and
Cook [2015] utilized a biologically plausible learning rule,
i.e., Spike-Timing Dependent Plasticity (STDP) [Bi and Poo,
1998], to train a two-layer SNN with lateral inhibitions in an
unsupervised learning style. Hao et al. [2020] trained a three-
layer SNN using symmetric STDP rule, which was a spiking
version of the Hebbian rule summarised as “Cells that fire
together wire together” [Shatz, 1992; Hebb, 1962]. Some re-
searchers made changes to STDP and proposed STDP vari-
ants learning rule [Hu er al, 2017]. The Leaky Integrate-
and-Fire (LIF) model was converted into an iterative unit,
and a pseudo-derivative method was proposed to overcome
the non-differentiable problem. Then deeper SNN could
be trained using the backpropagation (BP) algorithm suc-
cessfully [Wozniak er al., 2018; Wu ef al., 2018]. There
are two categories of the encoding scheme in SNN, rate
coding and temporal coding. The temporal coding scheme
encodes information with the relative timing of individual
spikes [Comsa et al., 2019; Zhang et al., 2019]. More mod-
els use rate coding, which uses the rate of spike train in a
long time window to encode information [Jin et al., 2018;
Wu et al., 2019]. As for the network structure design, Xu et
al. [2018] proposed CSNN, which uses Convolutional Neu-
ral Networks (CNN) as the front module to improve the fea-
ture extraction ability of SNN. Wu et al. [2019] utilized spik-
ing neurons that have a convolutional receptive field to build
the network. Hu e al. [2018] imitated the residual net-
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work in deep learning and proposed a spiking residual net-
work. Bellec er al. [2018] got inspired by adapting neurons
of different time constants in the brain, proposed a framework
named LSNN which consists of two populations with differ-
ent neuron type, i.e., non-adapting neuron or adapting neu-
ron. Zhang and Li [2019] and WoZniak er al. [2018] trained
SNN with recurrent connection layer.

With proposed BP-like learning algorithms, SNN can de-
velop to larger scales and achieve better performance [Wu et
al., 2019; WozZniak et al., 2018]. Existing SNN for object
recognition has the convolutional structure in general, which
can extract features of objects effectively [Xu ef al., 2018; Wu
et al., 2019; Wozniak et al., 2018]. Most of them have inter-
layer connections, such as convolution kernel and feedfor-
ward connections. However, no model focuses on the intra-
layer connections, which is an essential mechanism of a bio-
logical neural system for object recognition. Neuroscientists
discover that lateral interactions in the retina neurons can en-
hance the visual object edge [Ratliff et al., 1974]. In the com-
putational neuroscience and cognitive science, Dynamic Neu-
ronal Field (DNF) is a popular recurrent neural network with
attractor dynamics, where a neuron excites neurons nearby
and inhibits further neurons [Schoner and Spencer, 2016;
Sandamirskaya, 2014]. This mechanism can enhance the sig-
nificant input regions, suppress noisy areas, and retain the in-
formation in the neuron population [Evanusa er al., 2019].
Inspired by lateral interactions, we supposed that local lateral
interaction connection can process spike train information ef-
ficiently. Thus we proposed a new lateral interaction based
SNN named LISNN. We test the LISNN model in visual ob-
ject recognition tasks, i.e., MNIST, N-MNIST, and Fashion-
MNIST datasets [LeCun et al., 1998; Orchard et al., 2015;
Xiao ef al., 2017]. The experiment results show that lat-
eral interactions help our model achieve high performance
in MNIST and N-MNIST datasets, and achieve state-of-the-
art in Fashion-MNIST dataset. Besides, LISNN has stronger
noise-robustness than others. Our main contributions are
three-fold:

1. To our best knowledge, this is the first attempt to ap-
ply a lateral interaction mechanism in biology to con-
volutional SNN. Thus lateral interactions play such an
essential role in the nervous system and human intel-
ligence, we believe that this study of combination be-
tween the computational model and lateral interactions
may be helpful to further exploration of the secret of
cognition.

2. We improve the anti-noise capability of SNN for ob-
ject recognition. The performance of deep learning al-
gorithms depends on the completeness of the training
dataset. As a result, the inevitable noise produced during
data collection, transmission, and processing can signif-
icantly impact the inference performance of networks.
Our model shows a stronger noise-robustness than other
SNN.

3. Our model achieves the best performance among exist-
ing SNN on the Fashion-MNIST dataset, which is rec-
ognized as a harder version of the widely-used MNIST.

Our research indicates that lateral interactions have a pos-
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itive effect on improving the performance and robustness of
the network. We hope our research can help neuroscientists
understand the advantages of lateral interactions from the per-
spective of computational models, and help us explore the
working mechanism of lateral interactions in the brain.

We organize the rest of this paper as follows. Related work
is briefly discussed in Section 2. The proposed LISNN model
is introduced in detail in Section 3. Experimental evaluations
are presented in Section 4. Finally, Section 5 concludes this

paper.
2 Related Work

Our goal is to combine the lateral interaction mechanism and
the convolution structure. Therefore, we mainly focus on
related work of convolution structure and lateral interaction
mechanism on the SNN in recent years.

2.1 Convolutional Structure SNN

Xu et al. [2018] proposed an augmented spiking based frame-
work named CSNN, which combines the feature extraction
capability of CNN and the biological rationality of SNN. Al-
though CSNN achieved comparable performances to other
cognitive models with significantly fewer neurons and train-
ing samples, in the strict sense, it is not the SNN of con-
volutional structure. Wu et al. [2019] proposed a directly-
training algorithm to train deeper and more complex SNN
with an explicitly iterative version of LIF model in the Py-
Torch!, a popular machine learning framework. Their model
consists of different modules, such as convolutional struc-
ture, mean pooling, and multi-layer fully-connected struc-
ture. Kheradpisheh et al. [2018] built a three-layer convo-
lutional spiking neural network for object recognition. Their
model utilized sparse spikes to encode and process informa-
tion, which gained remarkable processing speed and low en-
ergy consumption. But their model is trained by unsupervised
learning rule, STDP. Thus it needs extra classifier to complete
classification task.

2.2 Lateral Interaction

Lateral interaction connections have been used in many com-
puting models and have achieved excellent results. Diehl
and Cook [2015] use fixed lateral inhibition in the hidden
layer to form a winner-take-all mechanism, helping the net-
work to build different receptive fields and improve recogni-
tion performance. The lateral interaction mechanism helps
the network to suppress interference, even if the significance
of the noise has changed drastically, and it can even re-
serve the object position in the field of view when the object
stopped. [Evanusa et al., 2019].

Recurrent Spiking Neural Network (RSNN) is a fundamen-
tal class of SNN and especially suitable for processing time-
series data. Liquid State Machine (LSM), a special RSNN,
contains an input module, a recurrent reservoir layer, and a
readout module [Maass et al., 2002]. Generally, the inter-
nal connection of the reservoir is fixed or modified by local
unsupervised learning rules, e.g., STDP, with only a read-
out module trained by the supervised signal. Lacking global
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supervision information, the performance of LSM is limited.
Recently backpropagation is used to train SNN. Thus some
models with trained recurrent connections were proposed.
Wozniak et al. [2018] introduced an alternative perspective
on spiking neurons as a particular ANN block called Spiking
Neural Unit (SNU). The recurrent SNU (rSNU), i.e., SNU
variant model with a recurrent connection like Long Shot-
Time Memory (LSTM) and Gated Recurrent Units (GRU),
surpassed the state-of-the-art ANN without dropout on the
language modeling task using Penn Treebank (PTB) dataset.
Zhang and Li [2019] proposed Spike-Train level RSNN back-
propagation (ST-RSBP) algorithm to train deep RSNN with
multiple feedforward and recurrent layers. However, its net-
work structure is just simply fully-connected and not opti-
mized explicitly for image tasks.

Although lateral interaction is similar to the recurrent
structure in ANN, i.e., Recurrent Neural Networks (RNN)
and RSNN, we suppose that recurrent structure in ANN is an
abstraction and a particular case of lateral interaction in bi-
ology. Besides, the scope of lateral interaction in biology is
generally local, but the scope of the recurrent structure of ex-
isting SNN is the entire layer. Thus SNN with local lateral
interaction is more biologically plausible.

3 Model

In this section, we introduce the implemented details of our
model, including (1) how to encode visual features into spik-
ing train; (2) how to achieve lateral interactions in SNN struc-
ture; (3) how to train our model by BP algorithm.

3.1 Network Structure

There are three styles of layers in our network, convolution
layer, pooling layer, and fully-connected layer. Like most
CNN, convolution layers are applied in the forepart of our
network, which work as the receptor and afferent nerve where
external information is collected and extracted preliminarily.
Meanwhile, fully-connected layers are used in the posterior of
the network, which function as cortex where advanced cogni-
tive takes place. We suppose lateral interactions make more
effort in the feature extraction process. Thus we apply lateral
interactions in convolution layers, and no lateral interactions
are applied to fully-connected layers and pooling layers dur-
ing the following experiments. Different from conventional
CNN, we use mean-pooling to replace max-pooling, since
max-pooling leads to tremendous information loss in spiking
trains. A detailed structure of our model is shown in Figurel.

3.2 Input Encoding

To encode inputs into spiking trains, which is suitable for the
inherent dynamic of SNN, we use several methods to prepro-
cess different kinds of datasets. In terms of frame-based data,
firstly, we normalize the input and generate random numbers
from O to 1 evenly distributed, which has the same size as
input at every time step. Then we compare every generated
random number with its corresponding original data. If the
generated random number is greater than its original data, it
is set to 0. Otherwise, it is set to 1. By this means, we trans-
form a floating-point input into a spiking train, which also

1521

LiL @ " ) -
L @ i @
Input Mean Pooling Mean Pooling

Convolutions Convolutions

Figure 1: The architecture of LISNN.

ensures positions that have greater original data have higher
firing frequency. In terms of event-based data, we set a time
window that accumulates information in a period. For each
time window, we record the position where events are trig-
gered. If multiple triggered events happen in one position,
they are not counted repeatedly and considered to be a single
spike in a time window. By dynamically choosing the length
of a time window, event-based data can be transformed into
available spiking train.

3.3 Iterable SNN

The dynamic of SNN is based on studies of membrane po-
tential. A most commonly used mathematic model to simu-
late the physiological process is the Leaky Integrate-and-Fire
(LIF) model. LIF model can be described by:
T%it) =—-V(t)+ RI(t). (1)

Here 7 is the time constant which equals the product of the
resistance R and the capacitance C of the neuron soma. I(t)
is the input current collecting from synapses and is integrated
into V'(¢), which is the membrane potential. If V() is greater
than a certain threshold V;j, neuron emits an output spike.
Then V (t) resets to V,..s; and starts to accumulate again.

However, the LIF model has a complex internal struc-
ture that is incompatible to nowadays deep learning frame-
work. By discretizing and transforming the ordinary differ-
ential equation of the LIF model, SNN can be applied in deep
learning framework:

Vi) = (1- V- 1)+ ST0), @

3.4 Lateral Interactions

Lateral interaction mechanism was first brought up by Mach
in the 1860s to explain an optical illusion called Mach bands.
When edges of the slightly differing shades of gray contact
one another, it triggers edge-detection in the human visual
system and exaggerates the contrast. Beyond Mach bands
effect, Ratliff er al. [1974] found biological evidence of lat-
eral interactions during his research in the receptor units of
the compound eye of limulus and came up with a mathe-
matic model to quantitatively describe lateral interactions in
the 1950s. Nowadays, lateral interactions are confirmed not
only in the visual system but also in other sensory systems
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like the auditory system. Due to its ability to sharpen edges
and highlight the contour, lateral interactions have been ap-
plied in many areas. Weights of lateral interactions in many
models are preset and fixed according to the mathematical de-
scription of activity patterns in brain cortices, such as Mexi-
can hat function, which defines weights of lateral interactions
as a function of the distance between neurons. One of the
successful applications of lateral interactions, DNF [Schéner
and Spencer, 2016], raises an equation to simulate the physi-
ological process:

Tu(z,t) = —u(z,t) + h+ /f(u(x’, t))w(z, ") dz’
+ S(x,t). 3

Here, u(z,t) is the activation function of DNF at time
t, which is defined over a parameter space x describing
the state of the system. h is a negative item that de-
creases u(x, t) to resting level when external input S(z, ¢)
is absent. Finally, f(u) is a non-linear function shaping the
output of the DNF.

3.5 Applications of Lateral Interactions in SNN

Our model follows the basic structure of many other SNN,
which can be trained with backpropagation. We use dis-
cretized time steps and divide the forward propagation inside
spiking neurons into two phases: update of membrane po-
tential and firing. Membrane potential and spiking state are
decided by:

V() =IlVE—1)(1—s(t—1) + b+ I(t) @
+ (sneigh(t_ ]_) * )

&)

1 V() > Vin;
s(t) = {0 otherwise.
Here V (¢) is decided by four factors. The first factor is mem-
brane potential at the previous time step, which is multiplied
by a fixed leaky item [ and a reset item 1 — s(t — 1) (we set
the V,..s¢ as 0). The second factor b is a trainable bias vector.
I(t) is the input from synapses at the same time step. And the
last factor is lateral interactions taking place between neigh-
bor neurons. s,;qn is the spiking state of the neighbor. w is
a interaction kernel that are trainable in our model.
Accordingly, SNN without lateral interactions updates
membrane potential following:

VE)=1V(E—1)1—s{t—1))+b+I(¢). (6)

Except this, the during following experiments, SNN has ex-
actly the same structure and hyperparameter as its corre-
sponding LISNN in order to control variables.

We test LISNN on image datasets for their convenience
to correspond the neurons to pixels in the input image and
define the neighbor of a neuron. In this perspective, we take
different channels as items describing various features of a
pixel and merge them when updating membrane potential.
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3.6 Backpropagation for SNN

At last, there is still an obstacle for applying backpropagation
in SNN because Eq. 5 is indifferentiable. This problem can
be solved by appointing a particular pseudo derivative. Here
we use a rectangular function:

1 0<z<l;

dx = 7
v {0 otherwise. ™

With all these efforts, now it is feasible to use backpropa-
gation to train SNN.

4 Experiment

4.1 Experimental Settings

The experiments are implemented on NVIDIA TITAN Xp.
The code is written under the PyTorch framework, thus
weights are randomly initialized by the default method of
PyTorch. Besides, we use Adam as an optimizer and de-
cay learning rate by epochs. Table 1 lists the hyperparam-
eter used in our experiments, including batch size, learning
rate, the structure of the network, and so on. We evaluate the
performance of LISNN on three classification tasks: MNIST,
Fashion-MNIST, and N-MNIST, and compare it with the cur-
rent state-of-the-art performances of SNN. We also compare
the robustness of LISNN to SNN without lateral interac-
tions. We record accuracy of networks on datasets with added
noise of different gradients, which are trained on MNIST and
Fashion-MNIST with or without artificially added noise. Ev-
ery accuracy that we present below is the average of five repli-
cations with different random seeds.

Hyperparameters MNIST Fashion-MNIST N-MNIST
total time step 20 20 20
learning rate 0.001 0.001 0.001
batch size 100 100 50
training epoch 100 100 100
leaky item 0.2 0.2 0.2
potential threshold 0.5 0.5 0.5

Table 1: Hyperparameters of LISNN.

4.2 Static Image Dataset

MNIST? and Fashion-MNIST? are static image datasets, both
contain a training set of 60000 images and a testing set of
10000 images. Each image in these two datasets is a 28 x28
normalized grey-scale picture. For MNIST, its images be-
long to ten categories of handwritten numbers from 0 to 9.
Fashion-MNIST is designed to be a more difficult dataset than
MNIST, and its images belong to ten categories of clothing.
Firstly, we test the effect of interaction kernel size on the
MNIST dataset and find that when the interaction kernel size
is 5x5, the model achieves the best performance. Detailed
results are listed in Table 2. As a result, 5x5 is used as an
interaction kernel size in the following experiments. Then

Zhttp://yann.lecun.com/exdb/mnist/
*https://github.com/zalandoresearch/fashion-mnist
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Interaction Kernel Size  Hidden Layers ACC (%)
3x3 32C3-P2-32C3-P2-1282 99.46
5%5 32C3-P2-32C3-P2-128 99.50
Tx7 32C3-P2-32C3-P2-128 99.49

#32C3 represents convolution layer with 32 channels of the 3x3
filters. P2 indicates pooling layer with 22 filters.

Table 2: Effects of different interaction kernel sizes on MNIST.

Algorithms Hidden Layers ACC (%)
Spiking CNN [Lee et al., 2016] 20C5-P2-50C5-P2-200-10 99.31
SLAYER [Shrestha and Orchard, 2018]  12C5-P2-64C5-P2 99.41
STBP [Wu et al., 2018] 12C5-P2-40C5-P2-300 99.42
HM-2BP [Jin et al., 2018] 15C5-P2-40C5-P2-300 99.49
ST-RSBP [Zhang and Li, 2019] 15C5-P2-40C5-P2-300 99.62
SNN (without LI) 32C3-P2-32C3-P2-128 99.48
LISNN 32C3-P2-32C3-P2-128 99.50

Algorithms Hidden Layers ACC (%)
Spiking-CNN [Neil and Liu, 2016] - 95.72
LSTM [Neil et al., 2016] - 97.05
MLP [Lee et al., 2016] 800 97.80
CNN [Neil and Liu, 2016] - 98.30
Spiking-MLP [Lee et al., 2016] 800 98.74
STBP [Wu et al., 2018] 800 99.53
LISNN 32C3-P2-32C3-P2-128 99.45

Table 5: Performance of different algorithms on N-MNIST.

Table 3: Performance of different algorithms on MNIST.

we compare the performance of our model with several other
algorithms working on these two tasks. Detailed results are
listed in Table 3 and Table 4. It is shown that LISNN produces
excellent results on MNIST, which is close to state-of-the-art
SNN performance and gains the highest accuracy on Fashion-
MNIST among others.

4.3 Dynamic Image Dataset

N-MNIST is a spiking version of the frame-based MNIST
dataset. It contains a training set of 60000 sets of events and
a testing set of 10000 sets of events derived from the orig-
inal MNIST dataset. The N-MNIST dataset is captured by
moving the sensor on a motorized unit and having it viewing
MNIST images on a monitor. N-MNIST images have two
channels that record brighter pixels and darker pixels sepa-
rately. In this case, we partition the triggered pixels into 20-
time steps according to its timestamp.

We compare the performance of our model with several
other algorithms working on N-MNIST. The results are listed
in Table 5. Besides, it is shown that SNN-based models gain
competitive accuracy on N-MNIST. One of the possible rea-
sons is that Dynamic Vision Sensors (DVS) create inevitable
noise when capturing the object. This increases the difficulty
for networks to extract the significative features from input
data. However, with lateral interactions, noise can be ex-
cluded from objects. Thus it guarantees better convergence
and generalization capabilities.

Algorithms Hidden Layers ACC (%)
LRA-E [Ororbia and Mali, 20191  5x256 87.69
HM-2BP [Jin et al., 2018] 400-400 88.99
DL-BP [Agarap, 2018] 3x512 89.06
ST-RSBP [Zhang and Li, 2019] 400-R400 90.13
SNN (without LI) 32C3-P2-32C3-P2-128 91.60
LISNN 32C3-P2-32C3-P2-128 92.07

Table 4: Performance of different algorithms on Fashion-MNIST.
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Figure 2: Dataset Demonstration. (a) Pictures in the first row are ex-
tracted from ten different categories of MNIST. Pictures in the sec-
ond row and third row are fabricated by adding 0.4-mean gaussian
noise and 0.4-amount impulse noise to original MNIST, respectively.
We show Fashion-MNIST samples with or without noise using the
same selection and generation method, as shown in (b).

4.4 Noise-added Image Dataset

To exploit the potential of lateral interactions, we train models
on training datasets of original MNIST and Fashion-MNIST,
then measure their performance on testing datasets, which
is artificially appended with two different kinds of common
noise, i.e., gaussian noise and impulse noise. We demon-
strate several samples from testing datasets with and without
noise in Figure 2. Figure 3(a) and Figure 3(b) is the accu-
racy curves of models trained on original training datasets of
MNIST and Fashion-MNIST. The noise level of gaussian is
measured by its mean and the noise level of impulse is mea-
sured by its amount. Both of them range from 0.05 to 0.5,
with an interval of 0.05. In contrast, we also trained models
on training datasets of MNIST and Fashion-MNIST with 0.4-
mean gaussian noise. Their accuracy curves are demonstrated
in Figure 3(c) and Figure 3(d).

From Figure 3(a) and Figure 3(b), we can conclude that
SNN with lateral interactions exceeds SNN without lateral
interactions at almost all situations, especially when infer-
encing the unseen noise data. Besides, from Figure 3(c) and
Figure 3(d), we can conclude that training on noise datasets
helps improving performance on the noisy situation but leads
to performance loss on the original image. Thus, directly
adding noise to training datasets may not be a better strat-
egy against performance loss caused by noise than improving
the model’s robustness in all situations.
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Figure 3: Accuracy Curves. Gaussian Noise/Impulse Noise in legend indicates the kind of noise added to the datasets which are used for
testing. (a) Model is trained on original MNIST. (b) Model is trained on original Fashion-MNIST. (c) Model is trained on MNIST added with
0.4-mean gaussian noise. (d) Model is trained on Fashion-MNIST added with 0.4-mean gaussian noise.

5 Conclusion

It is a feasible and challenging way to explore and under-
stand how the brain works by computational modeling us-
ing information-processing mechanisms in the brain. In this
paper, we get inspiration from the lateral inhibition mech-
anism in the visual neural system and DNF in computa-
tional neuroscience and cognitive science, then introduce lat-
eral interactions into computation models. Finally, we pro-
pose a new SNN model for robust visual object recogni-
tion, named LISNN. LISNN achieves the best accuracy on
Fashion-MNIST and comparable performance on MNIST
and N-MNIST, which indicates lateral interactions have pos-
itive effects on improving the performance of the model. Be-
sides, comparing to SNN without lateral interaction, LISNN
shows stronger noise robustness.
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