
The Complexity Landscape of Resource-Constrained Scheduling

Robert Ganian1 , Thekla Hamm1 and Guillaume Mescoff2
1Vienna University of Technology

2Rennes University
rganian@gmail.com, thamm@ac.tuwien.ac.at, guillaume.mescoff@ens-rennes.fr

Abstract
The Resource-Constrained Project Scheduling
Problem (RCPSP) and its extension via activity
modes (MRCPSP) are well-established scheduling
frameworks that have found numerous applications
in a broad range of settings related to artificial in-
telligence. Unsurprisingly, the problem of finding
a suitable schedule in these frameworks is known
to be NP-complete—however, aside from a few re-
sults for special cases, we have lacked an in-depth
and comprehensive understanding of the complex-
ity of the problems from the viewpoint of natural
restrictions of the considered instances.
In the first part of our paper, we develop new algo-
rithms and give hardness-proofs in order to obtain a
detailed complexity map of (M)RCPSP that settles
the complexity of all 1024 considered variants of
the problem defined in terms of explicit restrictions
of natural parameters of instances. In the second
part, we turn to implicit structural restrictions de-
fined in terms of the complexity of interactions be-
tween individual activities. In particular, we show
that if the treewidth of a graph which captures such
interactions is bounded by a constant, then we can
solve MRCPSP in polynomial time.

1 Introduction
The RESOURCE-CONSTRAINED PROJECT SCHEDULING
PROBLEM (RCPSP) provides a generic and well-established
framework for the formal description of scheduling prob-
lems. RCPSP has been the subject of extensive theoreti-
cal as well as empirical research in the context of Artifi-
cial Intelligence [Smith and Pyle, 2004; Kuster et al., 2007;
Varakantham et al., 2016; Song, 2017], Operations Research
and Scheduling [van Bevern et al., 2016; Fu et al., 2010;
Fu et al., 2016]; see also the survey [Kolisch and Pad-
man, 2001] and book [Artigues et al., 2008] dedicated to the
topic. RCPSP falls within the wider framework of so-called
scheduling problems which are classical and have been at the
focus of a vast and diverse amount of works [Schwindt and
Zimmermann, 2015].

On a high level, in scheduling problems one is given a set
of activities that have to be processed in a given time frame

while adhering to certain conditions. Solutions to schedul-
ing problems are also called schedules. RCPSP represents
the subclass of scheduling problems where the processing of
activities requires the use of resources; these have certain ca-
pacities that limit how many activities can be processed con-
currently, and activities have certain resource requirements
and durations which describe what resources each activity
needs to be assigned to and for how long. It is assumed
that an activity cannot be interrupted (one also calls this non-
preemptiveness). Now for RCPSP, a schedule consists of an
assignment of the activities to certain points in time (simply
modeled by natural numbers) such that the time it takes to
process all activities satisfies a given makespan bound. Often
one requires that activities also adhere to a precedence order.

A prominent generalisation of RCPSP that has received
considerable attention [Bofill et al., 2017; Barrios et al.,
2011; Poppenborg and Knust, 2016] is based on the addition
of activity modes, capturing scenarios where it is possible to
complete activities in multiple ways—each possibly requir-
ing different amounts of time and resources. This gives rise
to the MULTI-MODE RESOURCE-CONSTRAINED PROJECT
SCHEDULING PROBLEM (MRCPSP).

Contribution. It is known that RCPSP is NP-complete,
and in fact remains NP-complete even when we consider
only a single resource and when there are no precedence
constraints [van Bevern et al., 2016; Garey and Johnson,
1975]. However, so far we have lacked a comprehensive un-
derstanding of the complexity of these fundamental schedul-
ing problems under explicit and natural restrictions of con-
sidered instances; interestingly, already Blazewicz, Lenstra
and Kan (1983) called for such a theoretical investigation in
their seminal paper which formalized RCPSP: “The obvious
research program would be to determine the borderline be-
tween easy and hard resource constrained scheduling prob-
lems.” For example, is (M)RCPSP restricted to instances of
constant makespan and number of resources NP-hard, or does
the problem become polynomial-time solvable?

Our first contribution is a complete complexity map for
(M)RCPSP which takes into account all combinations of vari-
ants arising from the following explicit restrictions/attributes
which are immediately tied to numerical properties of the in-
put or have been established in previous literature:

• Fixed upper-bound on number of activities (n), number

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1741

of resources (m), maximum duration of an activity (t),
maximum capacity of a resource (c), makespan (Cmax),
and/or on the number of activities that can use each re-
source (rdeg);
• No precedence constraints (¬P);
• “Simple” instances, where each activity only uses a

single resource (S) (see, e.g., the work of Damay et
al. [2007]);
• Whether we consider modes (MRCPSP) or not

(RCPSP);
• All numbers are encoded in unary1 (U).

With the exception of the modes attribute, we will adopt the
convention of listing the attributes considered in a given frag-
ment in angular brackets—for instance, MRCPSP〈c, rdeg〉
refers to instances of MRCPSP where each resource has ca-
pacity bounded (by a constant), and each resource is only
used by a (constant-)bounded number of activities.

Each of the above attributes can be viewed as an inde-
pendent binary “switch”; altogether this amounts to 210 con-
sidered fragments of (M)RCPSP. Our first contribution is a
complete classification of all of these problems in terms of
classical complexity theory; we show that 736 fragments
are polynomial-time solvable and 288 are NP-hard. This is
achieved by a collection of 3 new hardness proofs (in addi-
tion to 4 known NP-hard cases) and 6 polynomial-time al-
gorithms, utilizing a range of diverse algorithmic techniques.
An illustration of our complexity map is provided in Figure 1.

In the second part of our paper, we shift our focus from ex-
plicit restrictions on instances to implicit ones. More specif-
ically, we ask whether one can exploit the structure of in-
teractions between activities and/or resources to lift any of
the obtained polynomial-time algorithms towards more gen-
eral classes of instances. A natural way of capturing such
structure is the concept of treewidth. As our second contribu-
tion, we show that treewidth allows us to push the frontiers of
tractability for MRCPSP when applied to the activity graph—
a graph which represents activities as vertices and adds edges
between activities which interact either by sharing a resource
or a precedence constraint.

Related work. While the treewidth of instances has not
been considered for RCPSP yet, the parameter has found
numerous applications in prominent subfields and problems
that are relevant for AI research, such as SAT [Gottlob et al.,
2002], ILP [Ganian and Ordyniak, 2018] and CSP [Cohen et
al., 2015]. It is worth noting that instances of low treewidth
may arise naturally in a variety of problems and settings—for
example, the treewidth of control flow graphs arising from
goto-free programs is known to be at most 6 [Thorup, 1998].
RCPSP is known to be polynomial-time solvable when the
poset width of the precedence constraints is bounded [van
Bevern et al., 2016].

2 Preliminaries
For an integer i, we use [i] as shorthand for {1, . . . , i}. The
function argmin refers to an (arbitrary) argument of the min-

1This captures the distinction between weak and strong NP-
hardness. Unary instances arise when encoding certain problems.

imum. We assume that N is the set of non-negative integers.
For a vector R, we use R[`] to denote its `-th coordinate.

Problem definition. An instance I of MRCPSP is a tuple
〈A,R,C,M, T,Q, <P , Cmax〉, of

• A = {a1, . . . , an} a set of activities;
• R = {r1, . . . , rm′ , rm′+1, . . . , rm′+m′′} a set

of resources, where we distinguish between m′

renewable (r1, . . . , rm′) and m′′ non-renewable
(rm′+1, . . . , rm′+m′′) resources, and let m = m′ +m′′;
• C : R→ N a mapping from resources to capacities;
• M = {M1, . . . ,Mn} a set of (pairwise disjoint) activ-

ity mode sets, and let B =
⋃
i∈[n]Mi be the set of all

modes;
• T : B → N \ {0} a mapping from modes to durations;
• Q : B → Nm a mapping of modes to resource require-

ments;
• <P a strict partial order on A which represents prece-

dence constraints;
• Cmax ∈ N is the allowed makespan; we also refer to

numbers in [Cmax] ∪ {0} as time points or time steps.

A solution or schedule for I is a pair (ω, α), where ω is a
mapping from each activity ai to a mode wi ∈ Mi and α is
a mapping from each ai to a starting time in [Cmax] ∪ {0},
satisfying the following four types of constraints.

Makespan constraints: For each activity ai: α(ai) +
T (wi) ≤ Cmax.
Resource constraints: For each resource r`:

– if r` is renewable, i.e., ` ∈ [m′], for each
time point j ∈ [Cmax]: Rj [`] ≤ R[`], where
Rj denotes the vector of resource capacities be-
ing used at time point j—formally, Rj =∑
i:α(ai)≤j<α(ai)+T (wi)

Q(wi); and
– if r` is non-renewable, i.e., ` ∈ [m] \ [m′],∑

ai∈AQ(wi)[`] ≤ R[`].
Precedence constraints: For each ai, ai′ ∈ A such that
ai <P ai′ : α(ai) + T (wi) ≤ α(ai′).

The task in MRCPSP is to decide whether the instance ad-
mits a solution (in which case we also wish to compute such
a solution), or not.

RCPSP is the restriction of MRCPSP to the case where
each activity has a single mode and all resources are renew-
able. In this case, we can simplify the notation by omitting
M and having T and Q directly refer to activities in A.

The problem definition suggests a number of interesting
and natural parameters which we want to consider as flags
used to define the basic fragments of (M)RCPSP considered
in this paper. A class D of MRCPSP instances has the flag
〈n〉 if there exists some integer z such that each instance in
D has at most z activities. The flags 〈m〉 (total number of
resources—renewable as well as non-renewable), 〈t〉 (max-
imum value of T), 〈c〉 (maximum value of C), 〈Cmax〉 are
defined analogously. D has the flag 〈rdeg〉 if there exists some
integer z such that, for each instance I ∈ D and for each re-
source r` in that instance, there are at most z activities which
can use r`—formally, |{ ai | ∀b ∈ Mi, C(b)[`] = 0 }| ≥
n−z. Intuitively, 〈rdeg〉 represents a natural generalization of

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1742

MRCPSP〈n〉 MRCPSP〈rdeg, S,¬P 〉 MRCPSP〈m, c, Cmax〉 MRCPSP〈m, c, t,¬P 〉 MRCPSP〈m,¬P,Cmax, U〉 MRCPSP〈m, rdeg〉

RCPSP〈c, rdeg, t,¬P,Cmax, U〉

RCPSP〈m, c, t, S, U〉

RCPSP〈m, c, S,¬P,U〉

RCPSP〈m, t, S, Cmax, U〉

RCPSP〈c, rdeg, t, S, Cmax, U〉

RCPSP〈m, t, S,¬P,U〉

RCPSP〈m, t, S,¬P,Cmax〉

n S rdeg ¬P Cmaxm c m ¬P t c m ¬P Cmax U m rdeg

Figure 1: The obtained complexity map for MRCPSP showing polynomial-time solvable and NP-hard fragments of MRCPSP. Arrows indicate
tightness of the polynomially tractable fragments w.r.t. the flags; removing any flag from a tractable fragment results in an NP-hard fragment.

the flag 〈n〉, since it does not restrict the number of activities
globally but only relatively to each resource.

Three of the four remaining flags—notably the ones sig-
nifying the lack of precedence constraints (〈¬P 〉), an unary
encoding of the numbers (〈U〉), and whether we have modes
or not—are self-explanatory. The last remaining flag is 〈S〉
(short for “simple”), which signifies that for every activity ai
in an instance in the class D, there is at most one resource
used by ai in any mode—formally, ∀i ∈ [n] |{` ∈ [m] |
∃b ∈ Mi Q(b)[`] > 0}| ≤ 1. Simple instances represent
a middle ground between instances with a single resource
and general instances [Damay et al., 2007] and have a nat-
ural correspondence to classical scheduling over m types of
machines [Gehrke et al., 2018].

We will use |I| to denote the size of a (unary or binary,
depending on the flag “U”) encoding of the instance I.
Treewidth and Graph Representations. A nice tree-
decomposition T of a graph G = (V,E) is a pair (T,X),
where T is a tree rooted at a node r and X is a function that
assigns each tree node t a set X (t) = Xt ⊆ V of vertices
such that the following conditions hold:

• For every vertex u ∈ V , there is a tree node t such that
u ∈ Xt.
• For every edge uv ∈ E(G) there is a tree node t such

that u, v ∈ Xt.
• For every vertex v ∈ V (G), the set of tree nodes t with
v ∈ Xt forms a subtree of T .
• |Xr| = |X`| = 1 for every leaf ` of T .
• There are only three kinds of non-leaf nodes in T :

Introduce node: a node t with exactly one child t′
such that Xt = Xt′ ∪{v} for some vertex v 6∈ Xt′ .
Forget node: a node t with exactly one child t′

such thatXt = Xt′ \{w} for some vertexw ∈ Xt′ .
Join node: a node t with two children t1, t2 such
that Xt = Xt1 = Xt2 .

The sets Xt are called bags of the decomposition T and
Xt is the bag associated with the tree node t. The width of
a nice tree-decomposition (T,X) is the size of a largest bag
minus 1. The treewidth of a graphG, denoted by tw(G), is the
minimum possible width of a nice tree-decomposition of G.

For every fixed k, a nice tree-decomposition of a graph G
of treewidth k can be computed efficiently if one exists [Bod-
laender et al., 2016; Kloks, 1994; Arnborg et al., 1987]. We
use X ↓(t) to denote the set of all vertices in bags of the sub-

a1 a2

a3 a4 n = 4,m = 4

Q(b11) = (1, 0, 0, 0),Q(b31) = (1, 1, 0, 0)

Q(b12) = (0, 1, 0, 0),Q(b32) = (1, 0, 0, 1)

Q(b2) = (0, 0, 1, 0),Q(b4) = (0, 0, 0, 1)

a4 <P a1 <P a2

I

GI

Figure 2: Graph representations of a MRCPSP-instance . (A mode is
in Mi if i is its upper index, e.g., b12 ∈ M1.)

tree of T rooted at t.
In our initial analysis of the potential applications of

treewidth, we will restrict our attention to a natural graph
representation of a MRCPSP instance I which captures how
activities may interact with each other. Notably, the activity
graphGI has vertex setA and edges represent precedences as
well as the possibility of using the same resource—in partic-
ular, its edge set is { aiaj | (aj <P ai)∨ (ai <P aj)∨ (∃b ∈
Mi, b

′ ∈ Mj , ` ∈ [m] Q(b)[`] 6= 0 ∧ Q(b′)[`] 6= 0) }. An
illustration is provided in Figure 2.

3 A Complexity Map for (M)RCPSP
In this section we give the polynomial-time algorithms and
lower bounds (NP-hardness proofs) from which the complex-
ity of all fragments obtained by considering any combination
of considered flags follows (see Figure 1).

3.1 Polynomially Tractable Fragments
We present our six tractability results in an order roughly
corresponding to the technical difficulty of the algorithms.
Our first result is a simple observation identifying a basic
polynomial-time fragment of MRCPSP.

Observation 1. MRCPSP〈n〉 is in P.
Proof Sketch. Branch over all permutations of the activities
and all assignments of activities to their modes. In each
branch, greedily build a solution which assigns activities to
the selected modes and starts them in an order which does
not violate the permutation, or decide that this is not possible,
in quadratic time. The time complexity of this procedure lies
in O(n!

∏n
i=1 |Mi| · |I|2) ⊆ O(|I|n+2).

The following fragment—consisting of simple instances
without precedence constraints and with a bound on the num-
ber of activities that use any particular resource—can be
solved via a reduction to the MRCPSP〈n〉 fragment.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1743

Corollary 2. MRCPSP〈rdeg, S,¬P 〉 is in P.
Proof Sketch. Since every activity uses at most a single re-
source (regardless of the mode it is set to), and since there are
no precedence constraints between activities, an instance I
of MRCPSP〈rdeg, S,¬P, 〉 can be split into a set of indepen-
dent instances, each containing a single resource and at most
rdeg activities. Using the previous observation this yields an
algorithm in O(m · rdeg!|I|rdeg+2) ⊆ O(|I|rdeg+3).

We now proceed to fragments with non-trivial algorithms.

Theorem 3. MRCPSP〈m, c, Cmax〉 is in P.
Proof. Any solution (ω, α) to an instance I contains at most
q = Cmax · c ·m modes which use at least one resource—i.e.,
the set B>0 = { b ∈ ω(A) | ∃j ∈ N : Q(b)[j] > 0 } has
cardinality at most q. Let A>0 = {a ∈ A | ω(a) ∈ B>0} be
the set of activities using these modes in the solution.

We can solve I using the algorithm A which begins by
branching over all subsets of modes of cardinality at most q
containing at most one mode from each of the pairwise dis-
joint Mi as options for B>0. From such a choice for a pos-
sible B>0 we infer a corresponding ω by setting ω(ai) = b
for ai ∈ A>0 whenever B>0 ∩Mi = {b}, and for all other
activities ai ∈ A \ A>0 choosing ω(ai) as b ∈ Mi such that
Q(b) = 0m (i.e., b requires no resources) and minimizes T (b)
among these modes. It is easy to see that, whenever a solution
with the chosen B>0 exists, a solution with the chosen B>0

and deduced ω exists.
Now, we proceed similarly as in the proof of Observation 1

in which we branched on the order in which the activities
are scheduled in a solution and then greedily constructed α
which conforms to this ordering whenever such an α exists.
The caveat here is that this exact approach would introduce a
linear dependency on n! which is in general not in poly(|I|).
Instead, A branches only on the order in which the activi-
ties in A>0 are scheduled by a solution, inserts the activi-
ties in A \ A>0 into this ordering, at the respective small-
est positions respecting the precedence relation, and then
a greedy starting time assignment is performed just as be-
fore. The overall running time of A can be shown to lie in
O(|B|Cmax·c·m · (Cmax · c ·m)! · |I|2) ⊆ O(|I|Cmax·c·m+2).

The proof strategy for Theorem 3 can be combined with
that of Observation 1 to obtain a polynomial-time algorithm
when rdeg and m are bounded. The resulting algorithm runs
in time O((rdeg ·m)! · |I|rdeg·m+2).

Corollary 4. MRCPSP〈m, rdeg〉 is in P.

The final two (and arguably most difficult) fragments for
which we show polynomial-time tractability both have no
precedence constraints and have boundedly many resources.

Theorem 5. MRCPSP〈m,¬P,Cmax, U〉 is in P.
Proof Sketch. Let a resource snapshot be a Cmax ×m matrix
over [c]∪{0} (i.e., the maximum capacity of a resource). Ob-
serve that the number of resource snapshots is upper-bounded
by (c+ 1)Cmax·m. The resource snapshot J of a partial sched-
ule (i.e., a solution restricted to a subset of activities) (ω, α) is
the matrix where, for each x ∈ [Cmax] and y ∈ [m], the entry
J [x, y] equals the amount of resource ry left at time step x.

Given an instance I, let Ji be the set of resource snap-
shots of all partial schedules for the activities { aj | j ≤ i }.
Clearly, J0 contains a single resource snapshot, namely the
one where J [x, y] = C(ry) for all x, y. On the other hand, if
Jn 6= ∅ then I is clearly a YES-instance.

To prove the theorem, we describe a dynamic program-
ming algorithm A which computes Ji+1 from Ji. A begins
by looping over all resource snapshots in Ji, branching over
each mode b ∈ Mi+1 of activity ai+1 and branching over
each starting time s ∈ [Cmax − T (b)]. For each such choice
of resource snapshot J , b and s, it creates a new possible re-
source snapshot J ′. If any entry of the constructed J ′ is neg-
ative, it is not a resource snapshot and hence not added to
Ji+1; otherwise J ′ is added to Ji+1.

If the algorithm A results in a set Jn+1 that is non-empty,
we can reconstruct a solution from the run of the algorithm
by standard means; otherwise we conclude that I is a NO-
instance. Note that each combination of mode, starting time
and resource snapshot is considered at most once when up-
dating the resource snapshots. Hence time complexity lies in
O(|B| · Cmax · (c+ 1)Cmax·m) ⊆ O(|I|Cmax·m+1).

Our last algorithm can be viewed as an extension of Theo-
rem 5 to instances of larger makespan, by replacing the bound
on the makespan by a weaker restriction, bounding t. This
comes at a cost of requiring a bound on c.
Theorem 6. MRCPSP〈m, c, t,¬P 〉 is in P.
Proof Sketch. We may assume w.l.o.g. that the image ofQ is
a subset of [c]m (modes mapped by Q outside of this range
are irrelevant because of resource constraints).

Define the type of an activity ai ∈ A, denoted τ(ai), as
{ (Q(b), T (b)) | b ∈ Mi }. Observe that the property of hav-
ing the same type describes an equivalence relation between
activities, which has at most 2c

m·t many equivalence classes,
each of which we refer to as an activity type. Let T be the set
of non-empty activity types.

If there is a solution, there is a solution (ω, α) such that
maxi∈[n] α(ai) + T (ω(ai)) ≤ t · n and any activity with a
mode b with T (b) ≤ Cmax which requires no resources is
scheduled to start at time 0 using mode b. In such a solution
at any time point between 0 and t · n at most c · m of the
remaining activities are being processed concurrently as they
have to be assigned to modes using at least some resource.

For the remaining activities we build up partial solutions
((ω′, α′) where ω′ and α′ are defined on a subset ofA instead
of A satisfying all constraints on that subset) along the time
steps. We do so by backtracking on the choice of a multiset
of at most c ·m activity types and modes conforming to these
activity types such that activities of these type may be sched-
uled using these modes in each time step. More formally,
we iterate through i = 0 . . .min{t · n,Cmax} − 1. Within
this iteration we iterate through the activity types (with mul-
tiplicities) that can be scheduled at time step i. To deter-
mine these activity types and their multiplicities we main-
tain, for each partial solution constructed in each iteration,
the resource snapshot J ∈ ([c] ∪ {0})Cmax·m (defined as in
the proof of Theorem 5) induced by this partial solution and
a vector s ∈×τ activity type([|τ |] ∪ {0}), describing how many
activities of each activity type are not yet in the domain of the

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1744

partial solution. A multiset {τ1, . . . , τz} of z ≤ c ·m activity
types, can be scheduled at time step i if the multiplicity with
which each activity type occurs in the multiset is bounded by
the corresponding entry in s and there are (Qj , Tj) ∈ τj such
that subtracting allQj from the (i+1)-th through (i+1+Tj)-
th rows of J does not result in negative entries in J . For each
such choice of {(Qj , Tj) ∈ τj | j ∈ [z]}, we find an unsched-
uled activity a with τ(a) = τj and can set ω(a) = b such that
(Q(b), T (b)) = (Qj , Tj) and α(a) = i. Appropriate mod-
ifications for J and s are straightforward. If we complete
iteration min{t · n,Cmax} − 1 without having scheduled all
activities in any encountered solution, we can conclude that
no schedule for the instance exists.

The described approach is an iterative branching procedure
which is exhaustive modulo activity type equivalence. Hence
correctness follows from the fact that activities of the same
type can easily be interchanged in a schedule by an easy trans-
formation. The complexity lies inO((min{t ·n,Cmax}− 1) ·
(2c

m·t · |B|)c·m · |I|) ⊆ O(|I|cm·t+2).

3.2 Lower Bounds
We now turn towards hardness results for fragments of MR-
CPSP. First, we state a few previously known lower bounds:
Fact 7 (Uetz [2011], Lemma 5.1.1). RCPSP〈c, rdeg, t,
¬P,Cmax, U〉 is NP-hard.
Fact 8 (Blazewicz, Lenstra and Kan [1983], Theorem 7).
RCPSP〈m, c, t, S, U〉 is NP-hard.

The third and last known NP-hardness result that we need
concerns the fragment RCPSP〈m, c, S,¬P,U〉. Du and Le-
ung (1989, Theorem 2) proved that a scheduling problem
equivalent to this fragment is NP-hard (one merely needs to
represent the identical machines used in their reduction by
capacity units of a single resource).
Fact 9. RCPSP〈m, c, S,¬P,U〉 is NP-hard.

Moreover, it is easy to observe that a trivial reduction from
BIN PACKING [Garey and Johnson, 1979] yields:
Observation 10. RCPSP〈m, t, S,¬P,U〉 is NP-hard.

Our following three new reductions complete the complex-
ity map for MRCPSP in terms of explicit restrictions.
Theorem 11. RCPSP〈c, rdeg, t, S, Cmax, U〉 is NP-hard.
Proof Sketch. We give a reduction from 3-SAT by construct-
ing an instance I from a 3-CNF formula F as follows. I has
Cmax = 3 and all processing times of activities 1. For each
variable x in F we create a resource rx with capacity one and
two activities xT , xF , each requiring one of rx. Moreover,
for each clause C we create a resource rC with capacity 3,
and for each literal ` in C we create one activity C` which
requires one rC . If ` = x for some variable x (i.e., ` is a posi-
tive literal), we create the precedence constraint requiring C`
to start after xT is completed; otherwise we create the prece-
dence constraint requiring C` to start after xF is completed.

For each clause C, we now create three new activities C0,
C1 and C2, where C0 <P C1 <P C2 and which require 0, 2
and 1 resources of type rC , respectively. This completes our
construction. To complete the proof, it suffices to verify that
I is a YES-instance iff F is satisfiable.

Theorem 12. RCPSP〈m, t, S, Cmax, U〉 is NP-hard.
Proof Sketch. We give a polynomial-time reduction from the
NP-hard CLIQUE problem, which asks whether a given graph
contains a clique of a certain size. Given a graph G = (V,G)
and a natural number k (i.e., the desired clique size), we con-
struct an RCPSP-instance I as follows. We create an activity
av for every vertex v of G and an activity avw for every edge
vw ofG, and we then set av <P avw and aw <P avw. All ac-
tivities require one time step to process, and we fix Cmax = 3.

The idea of the set-up we describe in the following is to
restrict the activities that can be scheduled to start at the first
time step to exactly k activities that correspond to vertices.
These k vertices should correspond to the vertices of a clique
in G. In the next time step, the k·(k−1)

2 activities correspond-
ing to the edges of that clique and the remaining vertex activi-
ties can be scheduled, allowing for the remaining edge activi-
ties to be scheduled in the last time step that Cmax = 3 allows
for. For this to work, all we need to do is to restrict the num-
ber of vertex activities that can be scheduled to start in the
first time point to be exactly k, the number of vertex activities
which can start in the second time point to be exactly |V | − k
and the number of edge activities that can be scheduled to
start in the third time point to be exactly |E| − k·(k−1)

2 .
We do this by setting up the resources and resource require-

ments as follows and introducing ‘filler’ activities. We con-
sider two resources r1 and r2 with capacities |V | and |E|,
respectively. Each av will require one of r1 and each avw
will require one of r2. We introduce three further activi-
ties a1, a2, a3, each requiring one time step, and set a1 <P
a2 <P a3; a1 requires |V | − k of r1, a2 requires k of r1, a3
requires k·(k−1)2 of r2. It is easy to verify that I has a solution
iff G has a clique of size k.

Theorem 13. RCPSP〈m, t, S,¬P,Cmax〉 is NP-hard.
Proof. This time, we start from the weakly NP-hard PARTI-
TION problem [Garey and Johnson, 1979]: decide whether a
given multiset S = {m1,m2, . . . ,mn} of positive integers
such that

∑
mi∈S = 2b can be partitioned into two subsets

S1, S2 such that
∑
mi∈S1

=
∑
mi∈S2

= b.
Given an instance of PARTITION as described above, we

create an instance I of RCPSP with a single resource of ca-
pacity b. For each number mi ∈ S, we now create an activ-
itiy ai with duration 1 which requires mi-many units of our
resource. It is now easy to see that the PARTITION instance
has a solution iff I has a makespan of 2: indeed, there is a
one-to-one correspondence between the activities scheduled
at time 0 (in a schedule with makespan 2) and the numbers
assigned to S1 (in a solution to PARTITION).

3.3 Summary and Discussion
Note that the following modifications leave instances invari-
ant with respect to polynomial-time solvability: (1) in sim-
ple instances without precedence constraints one can assume
m to be bounded (see the argument used for Corollary 2),
and (2) in instances with bounded Cmax one can assume t to
be bounded. These two simple observations together with a
complete enumeration of all combinations of flags yield that
the 6 polynomial-time algorithms, give rise to a total of 736

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1745

fragments of MRCPSP which are in P. Similarly, the 7 hard-
ness results imply a total of 288 NP-hard fragments of MR-
CPSP. This completely settles the complexity of all fragments
of the problem defined in terms of the 10 considered flags.

4 Solving (M)RCPSP via Structural
Restriction

Here, we use the structure of interactions between activities to
push beyond the frontiers of tractability delimited by the com-
plexity map based on explicit restrictions of instance parame-
ters. As mentioned in the introduction, this approach has been
very successful for many other prominent problems, and we
believe it is highly promising also for (M)RCPSP. However,
due to the sheer volume of possible cases and fragments to
consider, the result presented in this section should be viewed
primarily as a “proof of concept” and, perhaps, the tip of a
(potentially very large) iceberg. Indeed, a thorough investiga-
tion of how the structure of instances can be algorithmically
exploited is beyond the scope of this work.

Theorem 14. MRCPSP〈U〉 can be solved in time
O(|I|5tw(GI)), where I is the input instance.

We note that Theorem 14 is a generalization of Ob-
servation 1 when dealing with unary instances, since the
activity graphs of instances in the MRCPSP〈n,U〉 frag-
ment have boundedly-many vertices. Similarly, each con-
nected component in the activity graph of an instance in
MRCPSP〈rdeg, S,¬P,U〉 has boundedly-many vertices, and
so the result also generalizes Corollary 2 in the unary setting.

Proof Sketch of Theorem 14. We begin by computing a nice
tree-decomposition T = (T,X) of width k = tw(GI) [Arn-
borg et al., 1987]. Let a configuration β(t) of a node t in T
be a tuple (Mode,Time,Mkspan) where

• Mode is a mapping from each activity ai ∈ Xt to a mode
in Mi,
• Time is a mapping from Xt to [Cmax − 1], and
• Mkspan is an integer from [Cmax].

Intuitively, we use configurations to store possible ways of
assigning modes and starting times of activities in Xt that al-
low to schedule activities in X ↓(t) with makespan Mkspan.
For t ∈ V (T) we let the record R(t) consist of all admissi-
ble configurations of X ↓(t), i.e., (Mode,Time,Mkspan) ∈
R(t) iff there is an assignment (satisfying all precedence
and other constraints) (ω′, α′) of the activities in X ↓(t) with
makespan Mkspan such that Mode and Time are the restric-
tions of ω′ to Xt and α′ to Xt respectively.

As the total number of configurations is upper-bounded by
Cmax

k+1 · |B|k and the instance is unary, |R(t)| is bounded
by a polynomial in |I|. Moreover it is easy to compute R(t)
for any leaf t of T by brute-forcing over all assignments and
modes of the single activity in that leaf. I is a YES-instance
iff the recordR(r) for the root r is non-empty—moreover, in
this case it is easy to reconstruct a solution to I by backtrack-
ing from the root r to determine which entries in the records
lead to a non-empty R(r). Hence, in order to complete the
proof it suffices to show how to compute the records for for-
get, join and introduce nodes.

If t is a forget node with child t′ such that Xt′ \Xt = {ai},
then for each configuration β(t′) ∈ R(t′) we compute a con-
figuration β(t) by removing ai from the two mappings in
β(t′). We add each such computed configuration toR(t).
If t is an introduce node with child t′ such that Xt \Xt′ =
{ai}, then we branch over all mappings ω∗(ai) ∈ Mi and
α∗(ai) ∈ [Cmax − 1]. In each branch and for each record
(Mode,Time,Mkspan) ∈ R(t′), we check whether the in-
stance contains sufficient resources for the activities in Xt to
be scheduled at times α∗ ∪ Time and in modes ω∗ ∪ Mode.
Moreover, we check that ai satisfies the precedence con-
straints w.r.t. the other activities inXt. If both checks are suc-
cessful, we check when ai ends based on the current choice
of α∗ and ω∗, and we update Mkspan accordingly (naturally,
we discard records where ai ends after Cmax). We then add
the configuration with the new Mkspan and with the map-
pings ω∗ ∪ Mode, α∗ ∪ Time toR(t).
If t is a join node with children t′, t′′, then we check compat-
ibility (i.e., equality) of every pair of elements of R(t′) and
R(t′′) and add compatible elements toR(t).

The running time of these steps is dominated by the run-
ning time of the join node, which requires time at most
(Cmax

k+1 · |B|k)2 · |I|. Hence, the total running time of the
algorithm is upper-bounded by O(|I|5k).

5 Concluding Remarks
We introduced a series of new algorithmic upper and lower
bounds that together paint a complete picture of the clas-
sical complexity of (M)RCPSP in terms of explicit restric-
tions on its instances. An extension of RCPSP which we
did not directly address in this work is RCPSP/max, where
instead of simple precedence constraints one can specify a
desired maximum and minimum time gap between finishing
one and starting another activity. Naturally, all our lower
bounds also carry over to this more general problem. More-
over, the three positive results for fragments with precedence
constraints (Observation 1, Theorem 3 and Corollary 4) ex-
tend to the RCPSP/max setting with minimal changes.

It would be interesting to refine the obtained complexity
map from the parameterized complexity viewpoint [Downey
and Fellows, 2013; Cygan et al., 2015]. In particular, most
of the tractability results presented in this paper do not read-
ily translate to fixed-parameter tractability, and it would cer-
tainly be worthwhile to determine which parameterizations of
(M)RCPSP give rise to fixed-parameter algorithms.

Finally, we also indicated how one can algorithmically ex-
ploit the structural properties of activity interactions through
the use of graph representations and structural parameters.
We believe this is a promising direction for future research;
for instance, a similar approach could also be used to consider
graph representations of interactions between resources.

Acknowledgments
R. Ganian and T. Hamm acknowledge support by the Aus-
trian Science Fund (FWF, project P31336). T. Hamm also
acknowledges support by the FWF project W1255-N23.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1746

References
[Arnborg et al., 1987] Stefan Arnborg, Derek G. Corneil,

and Andrzej Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. Algebraic Discrete Methods,
8(2):277–284, 1987.

[Artigues et al., 2008] Christian Artigues, Sophie Demassey,
and Emmanuel Neron. Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Appli-
cations. ISTE/Wiley, 2008.

[Barrios et al., 2011] Agustı́n Barrios, Francisco Ballestı́n,
and Vicente Valls. A double genetic algorithm for the mr-
cpsp/max. Computers & OR, 38(1):33–43, 2011.

[Blazewicz et al., 1983] Jacek Blazewicz, Jan Karel Lenstra,
and A. H. G. Rinnooy Kan. Scheduling subject to resource
constraints: classification and complexity. Discrete Ap-
plied Mathematics, 5(1):11–24, 1983.

[Bodlaender et al., 2016] Hans L. Bodlaender, Pål Grønås
Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. A ck n 5-approximation
algorithm for treewidth. SIAM J. Comput., 45(2):317–378,
2016.

[Bofill et al., 2017] Miquel Bofill, Jordi Coll, Josep Suy, and
Mateu Villaret. An efficient SMT approach to solve mr-
cpsp/max instances with tight constraints on resources. In
CP 2017, pages 71–79, 2017.

[Cohen et al., 2015] David A. Cohen, Martin C. Cooper, Pe-
ter G. Jeavons, and Stanislav Zivny. Tractable classes of
binary csps defined by excluded topological minors. In
IJCAI 2015, pages 1945–1951, 2015.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Damay et al., 2007] Jean Damay, Alain Quilliot, and Eric
Sanlaville. Linear programming based algorithms for pre-
emptive and non-preemptive RCPSP. European J. of Op-
erational Research, 182(3):1012–1022, 2007.

[Downey and Fellows, 2013] Rodney G. Downey and
Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[Du and Leung, 1989] Jianzhong Du and Joseph Y.-T. Le-
ung. Complexity of scheduling parallel task systems.
SIAM J. Discrete Math., 2(4):473–487, 1989.

[Fu et al., 2010] Na Fu, Pradeep Varakantham, and
Hoong Chuin Lau. Towards finding robust execu-
tion strategies for rcpsp/max with durational uncertainty.
In ICAPS 2010, pages 73–80, 2010.

[Fu et al., 2016] Na Fu, Pradeep Varakantham, and
Hoong Chuin Lau. Robust partial order schedules
for rcpsp/max with durational uncertainty. In ICAPS
2016, pages 124–130, 2016.

[Ganian and Ordyniak, 2018] Robert Ganian and Sebastian
Ordyniak. The complexity landscape of decompositional
parameters for ILP. Artif. Intell., 257:61–71, 2018.

[Garey and Johnson, 1975] M. R. Garey and David S. John-
son. Complexity results for multiprocessor scheduling un-
der resource constraints. SIAM J. Comput., 4(4):397–411,
1975.

[Garey and Johnson, 1979] M. R. Garey and David S. John-
son. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

[Gehrke et al., 2018] Jan Clemens Gehrke, Klaus Jansen,
Stefan E. J. Kraft, and Jakob Schikowski. A PTAS for
scheduling unrelated machines of few different types. Int.
J. Found. Comput. Sci., 29(4):591–621, 2018.

[Gottlob et al., 2002] Georg Gottlob, Francesco Scarcello,
and Martha Sideri. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artif. Intell., 138(1-2):55–86,
2002.

[Kloks, 1994] Ton Kloks. Treewidth, Computations and Ap-
proximations, volume 842 of LNCS. Springer, 1994.

[Kolisch and Padman, 2001] R. Kolisch and R. Padman. An
integrated survey of deterministic project scheduling.
Omega, 29(3):249–272, 2001.

[Kuster et al., 2007] Jürgen Kuster, Dietmar Jannach, and
Gerhard Friedrich. Handling alternative activities in
resource-constrained project scheduling problems. In IJ-
CAI 2007, pages 1960–1965, 2007.

[Poppenborg and Knust, 2016] Jens Poppenborg and Sigrid
Knust. Modeling and optimizing the evacuation of hospi-
tals based on the MRCPSP with resource transfers. EURO
J. Computational Optimization, 4(3-4):349–380, 2016.

[Schwindt and Zimmermann, 2015] Christoph Schwindt and
Jürgen Zimmermann. Handbook on Project Management
and Scheduling Vol.1. Springer, 2015.

[Smith and Pyle, 2004] Tristan B. Smith and John M. Pyle.
An effective algorithm for project scheduling with arbi-
trary temporal constraints. In AAAI 2004, pages 544–549,
2004.

[Song, 2017] Wen Song. Project scheduling in complex busi-
ness environments. In AAAI 2017, pages 5052–5053,
2017.

[Thorup, 1998] Mikkel Thorup. All structured programs
have small tree-width and good register allocation. Inf.
Comput., 142(2):159–181, 1998.

[Uetz, 2011] Marc Uetz. Algorithms for Deterministic and
Stochastic Scheduling. PhD thesis, 2011.

[van Bevern et al., 2016] René van Bevern, Robert Bred-
ereck, Laurent Bulteau, Christian Komusiewicz, Nim-
rod Talmon, and Gerhard J. Woeginger. Precedence-
constrained scheduling problems parameterized by partial
order width. In DOOR 2016, pages 105–120, 2016.

[Varakantham et al., 2016] Pradeep Varakantham, Na Fu,
and Hoong Chuin Lau. A proactive sampling approach to
project scheduling under uncertainty. In AAAI 2016, pages
3195–3201, 2016.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1747

	Introduction
	Preliminaries
	A Complexity Map for (M)RCPSP
	Polynomially Tractable Fragments
	Lower Bounds
	Summary and Discussion

	Solving (M)RCPSP via Structural Restriction
	Concluding Remarks

