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Abstract

To reliably detect out-of-distribution images based
on already deployed convolutional neural net-
works, several recent studies on the out-of-
distribution detection have tried to define effective
confidence scores without retraining the model. Al-
though they have shown promising results, most
of them need to find the optimal hyperparame-
ter values by using a few out-of-distribution im-
ages, which eventually assumes a specific test
distribution and makes it less practical for real-
world applications. In this work, we propose a
novel out-of-distribution detection method termed
as MALCOM, which neither uses any out-of-
distribution sample nor retrains the model. Inspired
by an observation that the global average pooling
cannot capture spatial information of feature maps
in convolutional neural networks, our method aims
to extract informative sequential patterns from the
feature maps. To this end, we introduce a similar-
ity metric that focuses on shared patterns between
two sequences based on the normalized compres-
sion distance. In short, MALCOM uses both the
global average and the spatial patterns of feature
maps to identify out-of-distribution images accu-
rately.

1 Introduction

The distributional uncertainty refers to an uncertainty origi-
nated from the inconsistency between training and test distri-
butions [Malinin and Gales, 2018]. Recently, measuring the
distributional uncertainty of deep neural networks has gained
much attention, in order to detect out-of-distribution samples
which come from outside the training distribution. In contrast
to the existing belief that the softmax output of deep neural
networks is not an appropriate measure for the uncertainty, a
recent study found out that the softmax score can distinguish
out-of-distribution (OOD) samples from in-distribution (ID)
ones to a degree [Hendrycks and Gimpel, 2017].

Since then, several methods have shown promising results
for the OOD detection [Liang er al., 2018; Lee et al., 2018b;
Lakshminarayanan et al., 2017; Lee et al., 2018al, but most
of them still have limitations from a practical perspective in
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that they need to find the optimal values of hyperparameters
or retrain the model by using advanced objectives. For exam-
ple, [Liang et al., 2018] improved performance by tempera-
ture scaling and input perturbation that manipulate the soft-
max outputs; this kind of calibration technique requires a set
of OOD samples used for adjusting its hyperparameters, but
it results in assuming a specific test distribution. On the other
hand, [Lee et al., 2018a] defined an alternative loss function
to detect OOD samples better; it has to retrain the model due
to the newly designed loss function. In this sense, our moti-
vation is to see how far OOD detection can be done without
using the OOD set for validation while employing the already
deployed softmax classifier without retraining it.

The state-of-the-art method [Lee et al., 2018b] tries to de-
tect OOD samples based on the Mahalanobis distance from
class means instead of using the softmax output, by utilizing
the feature maps obtained from the convolutional neural net-
work (CNN). In particular, they estimate the class-conditional
probability, which is more appropriate and effective to detect
OOD samples than the softmax output which provides mere
relative confidence among classes. However, they obtain fea-
ture vectors of input images by averaging each feature map,
also known as the global average pooling (GAP). We notice
that the spatial information of input images disappears in the
process of averaging feature vectors, and this eventually leads
to limited performance in OOD detection.

To tackle this challenge, we introduce normalized com-
pression distance (NCD) [Li et al., 2004] to obtain the fea-
ture vectors of input images without the loss of spatial infor-
mation. The NCD is a general method to measure the intrin-
sic distance between two arbitrary objects using off-the-shelf
compression algorithms (e.g., 7-zip, bzip, and Izw), and it
evaluates how many shared patterns are eliminated when two
discrete sequences are compressed together. With its solid
theoretical backgrounds and general applicability, the NCD
is widely used in various domains, including brain diagno-
sis [Berek et al., 2014], spam filtering [Spracklin and Saxton,
20071, and malware classification [Borbely, 2016]. Based on
the NCD, we aim to accurately measure how similar the fea-
ture maps of a test sample are with those of training samples,
and use it to determine whether the test sample comes from
OOD or not.

In this paper, we present MALCOM, MAhaLanobis dis-
tance with COMpression complexity pooling, which effec-
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tively measures the confidence score (i.e., distributional un-
certainty) of an input image while capturing the spatial in-
formation within the feature maps. Specifically, we pro-
pose compression complexity pooling to compute the fea-
ture vector by using the NCD between the feature maps
of a test sample and the prototypical maps that summarize
the whole training set. Our extensive experiments demon-
strate that MALCOM shows better performances in detecting
OOD images than state-of-the-art methods in realistic sce-
narios where OOD images are not available for its validation.
MALCOM is also easily extended to adopt a calibration tech-
nique whose hyperparameters need to be tuned, and it suc-
cessfully achieves the best performance.

2 Preliminaries

2.1 Constrained Out-of-Distribution Detection

Before proceeding to describe notions closely related to our
method, we need to understand what we want to tackle in this
work: out-of-distribution detection without retraining net-
works and without sniffing out-of-distribution samples. Let
Duain = {(@n,yn)}_, be the training dataset and M(-; 9)
be the model trained on Dy,in. Then each sample x,, of Dyain
is assumed to be an observation from the in-distribution (ID).
The out-of-distribution (OOD) detection task is to obtain an
00D score function &(-; Dyin, €, ¢) for discrimination be-
tween ID and OOD. In other words, given a test instance x*,
the function x(x*) assigns a higher score to «* if it comes
from OOD than ID. There are many ways to define a score
function , but we work on the task under the following con-
straints:

e The score function parameter ¢ should be independent
from a distribution of test data x*, i.e., ¢ is determined
only by the training set. This is intuitive in that * does
not assume any test distribution. This requirement im-
plies that using OOD samples for hyperparameter tuning
is not allowed.

e The model parameter 6 should not be changed; i.e., the
model trained initially for classification should not be re-
trained for OOD detection. By doing so, a score function
is able to measure the distributional uncertainty of mod-
els that are already trained and deployed in real-world
applications.

There are few existing methods satisfying these conditions:
the softmax output detector [Hendrycks and Gimpel, 2017]
and the simplified Mahalanobis detector [Lee et al., 2018b].

2.2 Mahalanobis Detector

The Mahalanobis detector, one of the best-performing OOD
detectors, introduces an effective method to remove the cor-
relation among the feature maps of a hidden layer [Lee ef al.,
2018b]. We note that combining multiple layers does not al-
ways lead to the improvement of detection performances in
some cases.

Simplified Mahalanobis Detector

We factor out a simplified version of the Mahalanobis de-
tector, Mahalanobis-vanilla (MV), because the whole Ma-
halanobis detector method needs OOD samples to tune the
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Model 00D MV MA MALCOM
DenseNet SVHN 91.19 90.72 94.34
) TinyIm 95.78 96.83 96.93
ResNet SVHN 82.65 90.38 94.50
TinyIm 85.31 97.73 97.91

Table 1: Performance of different Mahalanobis detectors with the
models trained by CIFAR-100. The best and worst results are high-
lighted in boldface and underline for each setting (metric : AUROC).

hyperparameters of input preprocessing and layer weights
used for the weighted sum, which fails to satisfy our first re-
quirement discussed in Section 2.1. For more details about
the whole Mahalanobis detector, please refer to [Lee ef al.,
2018b].

MYV only uses the feature maps of the last hidden layer ob-
tained from a CNN. To be precise, we denote the output of the
[-th hidden layer of the network M by M, forl =1,... L,
where L is the number of hidden layers. For the [-th hid-
den layer M, let f; be the c-th feature map of its output for
¢ = 1,...,C;, where C; is the number of the feature maps
of the [-th hidden layer. Then, M;(x) is a 3D tensor of size
Ci x H; x W, and f](x) is a 2D matrix of size H; x W for
any c and [, where #; and W, are respectively the height and
the width of each feature map in the [-th layer. The global
average pooling (GAP) of the [-th layer is defined by a vector

m, of size C,
Hi: W

1 C
o 2 2 @ O

h=1w=1

c
my(z) = |1

where [M]; ; refers the (¢, j)-th entry in a matrix M, and ||
is the concatenation operation.

MYV utilizes only the last hidden layer (i.e., the L-th layer)
to obtain the OOD score function, so its class means f;, and

tied-covariance 3 are defined as follows:!

. 1
fu = myZ:k mp(zn), )

K
2= %Z Z (mp(zn) — fi)(mr(zn) — p‘k)Ta 3)

k=1yn=k

where K is the number of classes and N}, is the number of
samples in class k. Then, the OOD score function of MV,

denoted by &, is defined by
. ) . | o
f@®) = min (mp(z”) = uy)"S (my () = ). (4)

In this equation, MV computes centered data with respect
for each class then performs linear projection to the centered

data by using the inverse of ¥. Practically, the inverse of
an empirical covariance matrix is approximated by (Moore-
Penrose) pseudo-inverse, which uses the singular value de-
composition [Barata and Hussein, 2012]. For this reason,
computing the Mahalanobis distance of a sample from each
class mean becomes equivalent to computing the norm (i.e.,

'"To avoid notational confusion, we use different accents for dif-
ferent methods, except for our main method MALCOM: a, a, and &
for MV, MA, and MALCOM-++, respectively.
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the Euclidean distance from the origin) after performing the
principal component analysis where the origin is each class
mean, which eventually removes the feature correlations.

Degeneracy of Simply Extended Mahalanobis Detector
From the observation that MV has the power of removing the
correlation over feature maps, one may extend this concept
to all the other hidden layers. We define the Mahalanobis-
assemble (MA) detector, by concatenating the averages of the
feature maps (i.e., GAP) of all layers. Then, the class means
and the tied-covariance are defined as

mi@) =y mil@), = e Y mi).
K Yn=k

= 230 (mia) — ) () — )"
k=1yn=k

R(@) = mingor,.. e (m(@*) — ) TS (m(a®) - @) (5)

From the experiments, we find an interesting observation
that this simply extended MA detector, denoted by <, signif-
icantly improves the performance in many cases; however, in
some cases, MA performs worse than MV (see the DenseNet-
SVHN case in Table 1). This implies that concatenating GAP
vectors from all layers may result in the loss of information
about discrimination between ID and OOD samples because
GAP cannot extract useful information from relatively low-
level features (Details are discussed in Section 4.2).

2.3 Normalized Compression Distance

To address the degeneracy problem in MA, we focus on hin-
dering the loss of spatial information of feature maps caused
by GAP. To this end, we introduce normalized compression
distance (NCD), which is a compression-based metric, in or-
der to capture shared patterns between a test sample and the
training dataset. The high-level idea of NCD is measuring
how many repeated patterns commonly exist in two objects
by using a data compression technique. To make it easier,
we consider only binary strings. Formally, given a compres-
sion method Z and two binary strings x,y € {0,1}*, NCD
is defined as
min(Z(x Z x))—min(Z(x),Z

NCD [z,y] = (Z( llyha&(’g(;g,z(y)g (®),Z (1)) , (6)
where Z(x) is the compressed length of x, and ||y is the
concatenation of the two strings. Intuitively, if we assume
that Z(x|ly) = Z(yl||z) and Z(x) > Z(y) while fixing x,
we observe that the numerator of NCD becomes small in case
that the length of the compression bits of ||y and that of y
do not differ much; this means the compressor utilizes much
of the information about x to compress y, so the compressor
does not need many additional bits to compress y. A com-
pressor Z can be one of the off-the-shelf compressors, in-
cluding 7-zip, gzip, and bzip. Note that the better compressor
we choose, the closer NCD approximates a distance metric
[Cilibrasi and Vitdnyi, 2005].

3 Proposed Method

In this section, to resolve the degeneracy of MA discussed
in Section 2.2, we present MALCOM which adopts NCD to
measure the distance between the feature maps of a test sam-
ple and those of training samples.
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3.1 Compression Complexity Pooling

We propose compression complexity pooling (CCP) which is
able to capture the spatial information of a feature map. For a
hidden layer of size C x H x W, CCP first transforms each 2D
feature map of size H x W into a 1D string, then calculates
the NCD of the string from the other 1D string that is obtained
from a pre-selected feature map in the same way. Because
CCP generates a single value from each feature map of a hid-
den layer, it can be regarded as a global pooling operation
which measures the relative complexity from the pre-selected
sample.

Transformation of a Feature Map into a String. As the
NCD takes strings as its input, we need to transform a 2D fea-
ture map into a 1D string. The transformation is composed
of a quantizing function and a linearizing function. For the
number of quantization levels v € N, let T := {v1,...,7,}
be a set of quantization levels. Then, a quantizing function
q : R — T maps a continuous value into one of the quantiza-
tion levels. In addition, given a feature map of size H x W,
a linearizing function X : My, xyy (L) — 7" maps a 2D
matrix into a 1D vector by rearranging the order of the matrix
entries (i.e., a flatten function). Note that every feature map
S in the same layer M; has the same linearizing function A;,
whereas the quantizing functions g; are all different for each
feature map. Finally, the transformed 1D string can be repre-
sented as (A; o 7)(f7). The details about the transformation
of our method are discussed in Section 4.1.

NCD from a Random Sample

To explain how NCD works in the CCP, we consider a single
feature map f;. In the training process, we randomly select
a sample s from Dy, as a reference for computing the NCD
of an input image. For the fixed sample s and a test sample
x, we can calculate the NCD value df(x; s) by

di(x; s) := NCD [(Ar 0 g7)(fi (), (M o qf)(fi(s))] . (D)
For an image x, it is obvious that the distance becomes small
if @ is similar to s in some aspects, and it would be large
otherwise. Now, given a layer, the final output of CCP is
obtained by aggregating NCD values of all the feature maps
from the layer, i.e.,

pu(xs8) =ity di (). (8)
This can be interpreted as a distance-vector of x from s; the
compression of linearized 1D feature maps considers sequen-
tial patterns in them, and it consequently enables to capture
of the spatial information of the original 2D feature maps.
A remaining question here is how to choose a representative
sample from the whole training dataset.

NCD from Prototypical Maps

Because a randomly selected sample s has a high variance
as well as does not represent the entire training dataset, we
generate a prototypical map for each feature map. The proto-
typical map is obtained by averaging the feature maps of all
training samples. Precisely, we define the c-th prototypical
map z{ of the [-th layer as

1 N
2} = MEAN(f7; Diin) = 5 > fi(@n)- (9
n=1
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Figure 1: The overall process of compression complexity pooling.

We observe that if we use g; to quantize the prototypical map
zj of size H x W, only few quantization levels appear in the
output map. This is because most values are collapsed to the
average during the summarization of feature maps by Equa-
tion (9). Thus, we need to design an alternative quantizing
function pj for the prototypical map zj. Let RT; be the rate of
how many times the i-th quantization level v; appears among
all the quantization levels in the training dataset. Then we
quantize the prototypical map zj so that the appearance rate
RP; of the -th quantization level ~; observed from the quan-
tized prototypical map p{(z7) becomes similar to that from
the training set (i.e., RT;). In other words, the quantizing
function pj satisfies the following conditions:

1 H W . .
e RP; := W};U;IL {pl ([Zl}h,w) = 'Yi} ~ RT;,

* pi(x) < pi(y), forallz < y. (10)

The prototypical map is obtained for each feature map,
so the definition of the CCP should be revised accordingly.
For the c-th feature map of the I-th layer f;, Equations (7)
and (8) can be rewritten based on the prototypical maps
Z := {z{ for any [ and c}:

di(x; Z) := NCD [(A\; o q;)(fi (), (A o P})(2])],
pu(x; Z) =[S, df(x, Z). (11)

3.2 MALCOM: Mahalanobis Detector with CCP

Confidence Score for OOD Image Detection

To put it all together, we obtain twofold pooling vectors 7 that
encode the spatial information by concatenating two vectors
obtained by GAP and CCP.

r(z) :=m(z) || p(x; Z),
1 K Yn=k
DRSS N Z Z (r(zn) — ) (r(zn) — Hk)Ta 12)
k=1yp=k
where p(z; Z) :=|L_, p,(x). Based on the twofold pooling
vectors, we define a final OOD score function s based on

the Mahalanobis distance in order to remove the correlation
between feature maps.

K@) = min (r(@) = ) TS (r(@") — ). (13)
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Model CIFAR-10  CIFAR-100 SVHN
DenseNet 95.24(0.12)  76.99(0.33)  96.83(0.12)
ResNet 95.24(0.24)  78.20(0.41)  96.18(0.20)

Table 2: Test classification accuracy for each datasets.

Feature Ensemble

Even though we focus on the constrained OOD detection for
our main motivation (Sec 2.1), we additionally propose an
extended version of MALCOM, called MALCOM-++, for the
special case that some OOD samples are available for its vali-
dation and a specific OOD distribution can be assumed at test
time. To be specific, MALCOM++ adopts the feature ensem-
ble, which defines the final confidence score by the weighted
sum of the scores computed from multiple hidden layers, and
it turns out to be effective where we can infer the test dis-
tribution from a validation set of OOD samples [Lee ef al.,
2018b]. It is worth noting that MALCOM-++ summarizes the
scores directly from multiple layers based on hyperparame-
ters rather than utilizes concatenation.

- 1
rix) = mu(@) || pi(®; 2), = 5 > ri@a),
Yn=k

K
. 1 - ~
3= N Z Z (ri(zn) — Nz,k)(”l(wn) - Nl,k)T7
k=1y,=k
mi(a®) = min (@) — i) S (@) ).
R(x™) := Zaml(w*). (14)
l

4 Experiments

4.1 Experimental Settings

Models and Datasets. We choose two popular deep neu-
ral networks used for image classification: DenseNet [Huang
et al., 2017] with 100 layers and growth rate k=12, and
ResNet [He et al., 2016] with 34 layers. We train the net-
works with a softmax layer and cross entropy loss using
three datasets: CIFAR-10, CIFAR-100 [Krizhevsky et al.,
2009] and SVHN [Netzer ef al., 2011].2 In addition to the
three training datasets (i.e., ID), we use four additional image
datasets as OOD samples in test distributions: TinyImageNet
[Deng et al., 2009], LSUN [Yu et al., 2015], and iSUN [Xu
et al., 2015]. To train the networks, SGD with initial learning
rate 0.1 and Nesterov momentum 0.9 is used, and the weight
decay is set to 0.0001, 0.0005, and the batch size is set to 64
and 128, respectively for DenseNet and ResNet. We repeat
to train the models five times and report their average results
for all experiments. The test accuracy for the classification is
reported in Table 2.

Competing Methods. We compare the performance of our
method with that of the existing methods which detect OOD
samples using pretrained softmax classifier: ODIN [Liang et
al., 2018] and Mahalanobis detector [Lee et al., 2018b]. Both
the methods utilize OOD samples to find the optimal hyperpa-
rameters. In this sense, they do not satisfy our first constraint

2Our experiments follow most of the experimental settings
mainly used in previous work [Liang ef al., 2018; Lee et al., 2018b].
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Layer1  Layer--- Layer L DenseNet ResNet

Method GAP CCP GAP CCP GAP CCP SVHN Tinylm SVHN TinyIm
- v - - - 2832 6294 6273 88.16

- - v - - 8421 6358 8516 6276

- v v - - 6761 67.13 8339 8736
MV - v - 91.19 9539 8265 86.20

- - - v 8881 8751 8094 83.64

- - v v 9237 9546 8250 88.58
MA v v - v - 9072 96.85 90.38 97.75
- - v - v - v 96.03 89.19 95.00 93.46
MALCOM Vv vV v v v oV 9434 9693 9450 9791

Table 3: Performance changes w.r.t. different combination of GAP
and CCP from multiple hidden layers (ID: CIFAR-100, Metric: AU-
ROC). The best results are marked in boldface.

Model Index OOD Random sample Prototypical maps

5 0 SVHN 93.21(0.32) 93.59(0.08)
Z TinyIm 96.38(0.13) 96.33(0.03)

g : SVHN 94.35(0.37) 94.51(0.11)
A TinyIm 96.88(0.11) 96.92(0.01)
0 SVHN 92.74(0.91) 93.69(0.12)

E TinyIm 97.35(0.05) 97.58(0.02)

é 1 SVHN 94.68(0.55) 95.33(0.03)
TinyIm 98.14(0.06) 98.31(0.01)

Table 4: Performance comparison of using a random sample and the
prototypical maps for computing the NCD (Metric: AUROC).

describing that any test distributions should not be assumed.
Nevertheless, we loosen the constraint and report the results
to show relative performance compared to the state-of-the-art
methods. We utilize the publicly available codes of ODIN
and Mahalanobis provided by previous work.?

Evaluation Metrics. We adopt the three performance met-
rics the same with the previous work [Lee et al., 2018b]: true
negative rate (TNR) at 95% true positive rate (TPR), area un-
der the receiver operating characteristic curve (AUROC), and
detection accuracy.

Implementation Details

We employ the Lempel-Ziv-Welch (LZW) coding scheme
[Welch, 1984] for the compression algorithm Z used to com-
pute the NCD. The NCD only requires the lengths of com-
pression results, and the LZW coding scheme has an advan-
tage of computing the length of an input string in O(n); we
further accelerate the computation by using GPU.

We quantize the feature maps by using the Lloyd-Max
quantizer [Lloyd, 1982; Max, 19601, which effectively min-
imizes the information loss. We fix the number of levels
to 4, known to perform well for images when it used with
our compression scheme (i.e., LZW) [Pinho and Ferreira,
2011]. Specifically, we use Lloyd-Max quantizer to obtain
the thresholds for quantization after gathering all values of
each feature map of the training samples.

We adopt the Hilbert space-filling curve to linearize the 2D
feature maps. Among several linearizations, including sim-
ple row-wise (or column-wise) strategies, linearizing images
by Hilbert space-filling curve turns out to be effective when
using NCD for images [Liang ef al., 2008]. Note that each

3https://github.com/pokaxpoka/deep_Mahalanobis_detector
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feature map of I-th hidden layer has the same size of H; x W),
so the linearizing function J; is defined for each layer. Our
code is publicly available.*

4.2 Results

Effectiveness of the CCP

We ablate the components of our method to investigate the
effectiveness of GAP, CCP, and their combinations. For
rigorous analyses, we evaluate a wide range of Maha-
lanobis distance-based detectors, including MV, MA, and
MALCOM,; they apply either GAP or CCP, or both of them
to the feature maps obtained from a single or multiple hidden
layers. Table 3 presents the results of the ablation study.

In Table 3, the detector using only CCP or using both GAP
and CCP on all hidden layers performs the best in most cases.
More concretely, we observe that CCP brings more signifi-
cant improvements when CCP is applied to lower-level fea-
tures, especially the case that only the first hidden layer is
used. On the contrary, in the case of the high-level features
in the last hidden layer, CCP shows moderate performances
and does not seem to have superiority compared to GAP. In
this sense, the CCP which takes advantage of spatial informa-
tion becomes much helpful to accurately detect OOD sam-
ples, particularly for lower-level features encoding more spa-
tial information of input images. In conclusion, CCP greatly
contributes to performance improvement and becomes much
effective where GAP cannot derive meaningful information
from low-level features.

Effectiveness of the Prototypical Maps. To demonstrate
the effectiveness of the proposed prototypical maps, we com-
pare MALCOM that uses a randomly selected sample for
CCP (from Equation (8)) with the one that adopts prototyp-
ical maps for CCP (from Equation (11)). In Table 4, the
standard deviation of MALCOM with the prototypical maps
is consistently smaller than the one with a random sample,
which indicates that the robustness of our NCD is improved
as we intended. Furthermore, MALCOM with the prototyp-
ical maps also shows slightly better performances than the
other. This implies that the prototypical maps help NCD to
distinguish OOD samples by encoding the information of all
training samples in itself.

Main Results

The main comparison results are summarized in Table 5. For
each experiment, we leave out 1000 images from ID and
OOD test sets and use them for the validation; thus, these
2000 images are not used for MALCOM which does not need
to tune any hyperparameter.

In Table 5, our proposed methods (i.e., MALCOM and
MALCOM-++) outperform the state-of-the-art method in
most cases. From the extensive experiments, we conclude
that MALCOM is more effective to detect OOD samples
compared to existing methods while it keeps satisfying the
conditions for the constrained OOD detection. Furthermore,
it can be easily extended to adopt the calibration technique,
which further improves the performance by using OOD sam-
ples for its validation.

*https://github.com/hunu12/MALCOM
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AUROC

Detection Accuracy

ODIN / MAHALANOBIS / MALCOM (ours) / MALCOM-++ (ours)

89.99(0.34) / 63.58(4.30) / 70.78(0.41) / 70.96(0.45)
94.46(2.11) / 98.23(0.64) / 98.94(0.11) / 99.19(0.06)
98.90(0.03) / 99.88(0.14) / 99.91(0.03) / 99.93(0.03)
97.69(0.33) / 98.29(1.00) / 98.88(0.09) / 99.06(0.13)
98.52(0.17) /99.72(0.33) / 99.89(0.04) / 99.92(0.04)
98.85(0.15) /98.91(0.45) / 98.91(0.14) / 99.23(0.15)
98.40(0.19) /97.98(1.09) / 98.79(0.12) / 99.04(0.14)

82.81(0.48) / 60.10(2.53) / 64.80(0.36) / 64.80(0.37)
90.01(2.39) / 93.96(0.89) / 95.25(0.33) / 95.94(0.19)
95.02(0.19) 7 99.26(0.62) / 99.42(0.15) / 99.42(0.19)
92.34(0.75) / 94.38(1.14) / 94.91(0.20) / 95.33(0.33)
94.26(0.41) 7 98.59(1.26) / 99.29(0.23) / 99.30(0.25)
94.91(0.43) / 95.78(0.74) / 95.23(0.33) / 96.07(0.39)
93.82(0.46) / 94.17(1.17) / 94.71(0.33) / 95.41(0.35)

77.05(1.02) / 61.37(1.01) / 44.94(0.36) / 60.17(0.31)
92.87(2.50) / 91.61(3.50) / 94.34(0.39) / 96.76(0.23)
95.36(1.08) /99.66(0.19) / 99.43(0.14) / 99.87(0.04)
89.16(2.65) / 93.64(1.70) / 96.93(0.36) / 97.21(0.33)
95.89(0.78) /99.48(0.43) / 99.31(0.18) / 99.91(0.04)
92.06(1.94) / 95.82(0.74) / 96.94(0.43) / 97.61(0.38)
90.29(2.36) / 94.81(1.32) / 96.79(0.39) / 97.34(0.33)

70.78(0.86) / 58.49(0.65) / 50.76(0.10) / 57.62(0.34)
85.77(3.11) / 87.02(3.48) / 88.16(0.51) / 91.52(0.36)
88.51(1.57) /98.66(0.50) / 98.21(0.36) / 99.08(0.15)
81.32(2.72) / 88.40(1.53) / 91.10(0.59) / 91.65(0.58)
89.40(0.90) / 98.42(0.80) / 97.90(0.44) / 99.16(0.22)
84.51(2.50) / 90.85(0.85) / 91.66(0.73) / 92.87(0.74)
82.51(2.73) / 89.30(1.26) / 90.93(0.58) / 92.04(0.55)

96.81(0.24) /93.02(3.77) / 98.16(0.04) / 97.79(0.08)
96.08(0.33) / 96.83(0.48) / 98.34(0.07) / 97.99(0.08)
94.33(0.31) /99.83(0.11) / 99.98(0.00) / 99.95(0.01)
96.28(0.15) /97.93(1.33) / 99.46(0.02) / 99.21(0.04)
94.87(0.82) /99.75(0.10) / 99.98(0.00) / 99.95(0.01)
95.52(0.54) / 98.99(0.34) / 99.51(0.03) / 99.20(0.05)
96.38(0.27) / 98.94(0.22) / 99.46(0.04) / 99.13(0.05)

91.36(0.42) / 86.93(3.86) / 93.89(0.14) / 93.05(0.21)
90.42(0.53) / 91.42(0.69) / 94.28(0.13) / 93.39(0.23)
88.35(0.42) /98.97(0.39) / 99.83(0.02) / 99.71(0.02)
90.61(0.16) / 94.25(1.88) / 97.19(0.15) / 96.33(0.19)
88.81(0.97) / 98.64(0.41) / 99.81(0.02) / 99.65(0.04)
89.59(0.66) / 96.20(0.77) / 97.63(0.18) / 96.56(0.30)
90.71(0.46) / 95.68(0.55) / 97.25(0.16) / 96.15(0.20)

83.83(1.33) /89.27(0.37) / 89.81(0.25) / 89.62(0.18)
93.66(2.22) / 98.28(0.49) / 95.44(0.65) / 99.14(0.17)
91.67(1.33) /99.90(0.15) / 98.30(0.28) / 99.97(0.01)
91.88(0.54) /99.43(0.09) / 96.71(0.25) / 99.56(0.08)
94.32(1.21) /99.85(0.18) / 98.26(0.33) / 99.96(0.01)
95.55(0.45) /99.64(0.11) / 97.26(0.21) / 99.70(0.06)
94.26(0.50) / 99.47(0.08) / 97.01(0.27) / 99.59(0.05)

78.44(1.21) / 82.19(0.65) / 83.16(0.35) / 82.98(0.24)
87.56(2.87) /93.89(1.26) / 90.82(0.51) / 95.74(0.52)
86.79(1.11) / 99.43(0.16) / 94.59(0.34) / 99.72(0.07)
85.82(0.76) / 96.55(0.37) / 91.48(0.34) / 96.92(0.40)
89.17(1.04) / 98.97(0.27) / 94.27(0.38) / 99.63(0.12)
90.01(0.58) / 97.58(0.28) / 92.55(0.37) / 97.65(0.23)
88.40(0.67) / 96.66(0.27) / 92.05(0.38) / 96.94(0.25)

79.38(0.22) / 73.85(2.00) / 72.41(0.72) / 76.99(0.55)
96.01(0.90) / 97.85(0.52) / 94.50(0.62) / 97.84(0.46)
88.78(0.68) / 99.97(0.02) / 99.90(0.08) / 99.96(0.03)
93.06(1.19) / 98.28(0.18) / 97.91(0.28) / 98.54(0.19)
86.79(0.53) / 99.95(0.02) / 99.86(0.12) / 99.97(0.02)
93.39(1.89) / 98.81(0.13) / 97.98(0.54) / 98.71(0.16)
92.76(1.39) / 98.27(0.12) / 97.24(0.50) / 98.24(0.20)

72.90(0.22) / 68.73(1.84) / 68.62(0.68) / 71.56(0.51)
90.33(1.03) / 93.17(0.86) / 87.35(0.98) / 93.20(0.74)
80.92(0.71) /99.61(0.17) / 99.12(0.60) / 99.69(0.05)
85.77(1.47) / 93.56(0.38) / 92.50(0.72) / 94.10(0.35)
79.01(0.62) / 99.34(0.31) / 98.82(0.81) / 99.67(0.09)
86.09(2.17) / 95.22(0.38) / 92.92(1.25) / 94.92(0.40)
85.33(1.61) /93.76(0.21) / 91.45(1.09) / 93.81(0.41)

D 00D TNR at 95% TPR
CIFARIO00  51.09(2.16) / 17.91(3.61) / 24.08(0.29) / 18.70(0.86)
. SVHN 81.26(6.05) / 92.28(2.01) / 95.40(0.64) / 96.58(0.40)
~  TinyIm(C)  94.88(0.47) /99.79(0.32) / 100.0(0.00) / 99.73(0.14)
;MC TinyIm(R)  87.59(2.09) / 93.61(2.29) / 94.71(0.36) / 95.50(0.53)
& LSUN(C)  92.57(1.09) /99.31(1.00) / 100.0(0.00) / 99.64(0.19)
C  LSUNR) 94.53(0.87)/96.21(1.43) / 95.32(0.74) / 96.78(0.60)
iSUN 91.81(1.24)/93.21(2.36) / 94.12(0.66) / 95.59(0.72)
CIFARIO  20.29(1.38) / 08.80(1.11) / 01.33(0.08) / 13.13(0.47)
5 o SVHN 66.16(8.55) / 76.33(6.73) / 66.15(2.78) / 87.46(0.91)
Z if TinyIm(C)  76.49(3.79) / 99.31(0.42) / 99.85(0.10) / 99.57(0.14)
é % TinyIm(R)  53.88(4.71) / 80.37(2.47) / 82.67(2.29) / 87.12(1.48)
A &= LSUN(C)  77.12(4.58)/98.93(0.89) / 99.73(0.17) / 99.67(0.12)
O LSUN(R) 60.77(5.61) / 85.74(1.46) / 82.60(3.14) / 90.46(1.70)
iSUN 54.85(5.80) / 81.78(1.97) / 81.10(2.68) / 88.29(1.25)
CIFARIO  83.90(0.95) / 73.05(8.38) / 91.46(0.39) / 90.88(0.42)
CIFARI00  80.90(0.84) / 84.27(2.07) / 92.75(0.41) / 91.56(0.51)
7z TinyIm(C)  72.21(0.94) / 99.84(0.10) / 100.0(0.00) / 99.86(0.03)
E TinyIm(R)  81.02(0.97) / 93.28(3.78) / 98.65(0.24) / 97.04(0.23)
v LSUN(C)  78.11(2.71)/99.73(0.23) / 100.0(0.00) / 99.81(0.03)
LSUN(R)  77.80(2.60) / 97.02(1.36) / 99.25(0.19) / 97.14(0.29)
iSUN 82.17(1.53) / 96.24(1.09) / 98.81(0.15) / 96.61(0.32)
CIFARIO0  47.44(1.42)/47.64(1.16) / 47.57(1.26) / 58.96(0.92)
- SVHN 72.50(6.68) / 91.65(3.43) / 66.15(6.81) / 96.13(0.90)
= TinyIm(C) 71.68(3.18) / 99.93(0.15) / 89.92(2.60) / 99.92(0.03)
% TinyIm(R)  70.39(1.23) / 97.53(0.51) / 77.30(2.56) / 98.10(0.59)
B LSUN(C)  77.46(2.59)/99.89(0.19) / 89.15(2.77) / 99.87(0.05)
© LSUNR) 81.94(1.74)/98.83(0.38) / 81.36(2.51) / 99.04(0.17)
iSUN 77.89(1.76) / 97.64(0.47) / 80.11(2.71) / 98.25(0.32)
CIFARIO  20.93(1.00) / 18.07(0.73) / 10.39(0.89) / 26.34(1.80)
. o SVHN 79.34(5.16) / 89.65(2.84) / 71.93(3.38) / 91.08(1.73)
> = TinyIm(C) 48.22(3.18)/99.99(0.01) / 99.85(0.18) / 99.92(0.03)
3 % TinyIm(R)  64.48(5.98) / 91.76(0.88) / 89.41(1.61) / 92.88(0.79)
~ & LSUN(C)  49.51(1.58)/99.97(0.04) / 99.74(0.36) / 99.92(0.04)
O  LSUNRR) 64.95(8.58)/95.31(0.76) / 90.19(3.02) / 94.76(0.75)
iSUN 63.03(6.52) / 91.98(0.74) / 86.81(2.79) / 92.36(0.91)
CIFARIO  78.29(3.13) /93.94(1.07) / 87.53(1.02) / 95.53(0.56)
CIFARIO0 76.78(3.15)/94.05(1.17) / 87.88(0.94) / 95.65(0.66)
7z TinyIm(C)  94.08(1.52) / 99.96(0.05) / 100.0(0.00) / 99.97(0.04)
.E TinyIm(R)  78.68(3.32) / 98.71(0.35) / 95.18(0.45) / 98.53(0.42)
»  LSUN(C) 86.24(2.67)/99.86(0.14) / 100.0(0.00) / 99.97(0.04)
LSUN(R)  78.21(3.54) / 99.02(0.41) / 94.38(0.83) / 98.72(0.38)
iSUN 77.99(4.35) / 98.93(0.51) / 94.32(0.70) / 98.55(0.39)

94.14(2.24) / 98.59(0.18) / 97.82(0.14) / 98.90(0.16)
94.34(1.15) / 98.56(0.21) / 97.88(0.16) / 98.89(0.20)
98.32(0.65) / 99.94(0.07) / 99.98(0.03) / 99.97(0.04)
94.17(2.61) /99.47(0.14) / 98.95(0.09) / 99.60(0.15)
96.05(2.32) /99.84(0.14) / 99.97(0.04) / 99.98(0.03)
93.80(2.93) /99.53(0.12) / 98.82(0.13) / 99.62(0.11)
93.80(3.18) /99.50(0.13) / 98.79(0.12) / 99.61(0.12)

88.77(1.66) / 94.94(0.32) / 93.49(0.23) / 95.54(0.36)
88.91(0.61) / 94.87(0.41) / 93.38(0.23) / 95.52(0.40)
94.60(0.74) / 99.64(0.34) / 99.79(0.30) / 99.92(0.11)
88.93(1.86) / 97.16(0.34) / 95.30(0.21) / 97.60(0.40)
91.13(1.31) / 99.50(0.48) / 99.68(0.43) / 99.91(0.12)
88.64(1.98) / 97.50(0.36) / 95.05(0.29) / 97.77(0.35)
88.70(2.36) / 97.34(0.46) / 94.97(0.27) / 97.63(0.39)

Table 5: Performance comparison of different OOD detection methods. (C) and (R) denote “cropped” and “resized”, respectively.

5 Related Work

Most previous work on OOD detection with softmax classi-
fiers introduced parameters which help to enhance the per-
formance. ODIN [Liang et al., 2018] designed two calibra-
tion techniques (i.e., temperature scaling and input prepro-
cessing) to boost its performance by manipulating softmax
outputs. [Vyas er al., 2018] proposed an objective to de-
tect OOD samples based on an ensemble of classifiers, which
are trained by partitioned sets of samples.The state-of-the-art
method [Lee et al., 2018b] focuses on the internal features of
the CNNs, while it involves hyperparameters for input pre-
processing and logistic regression that aggregates confidence
scores from each hidden layer.

Another line of research closely related to ours is NCD ap-
plications in the image-specific tasks [Lan and Harvey, 2005;
Guha and Ward, 2014]. Since most compression methods
take two strings as the input, most work mainly focused on
quantization and linearization of input images. For example,
[Mortensen et al., 2009] studied the robustness of the NCD
for different linearizations on shifted or rotated images, and
[Liang er al., 2008] investigated the effects of different com-
pression methods for the NCD on medical images. Among
them, [Coltuc et al., 2018] pointed out that using the NCD
directly on raw images is not effective enough to measure the
similarity, so they aggregated NCDs based on several filters

2440

to improve its robustness. Our work differs in that MALCOM
applies the NCD to feature maps from CNNs rather than raw
images or simply smoothed images.

6 Conclusion

This paper proposes MALCOM, which accurately measures
the confidence score for OOD detection without using any
hyperparameters and without retraining the model. To ad-
dress the limitation of the existing methods that cannot ex-
ploit the spatial information of feature maps, we introduce
the CCP which computes the outputs based on the NCD be-
tween two feature maps. Our extensive evaluation over image
datasets shows that CCP leverages the spatial information of
the feature maps, especially when being applied to low-level
features, and this brings the performance improvement com-
pared to the existing GAP. In addition, by using both the pool-
ing techniques simultaneously, MALCOM achieves the best
performance among all competing methods.
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