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Abstract
We investigate the problem of optimal route plan-
ning for massive-scale trips: Given a traffic-aware
road network and a set of trip queries Q, we aim
to find a route for each trip such that the global
travel time cost for all queries in Q is minimized.
Our problem is designed for a range of applica-
tions such as traffic-flow management, route plan-
ning and congestion prevention in rush hours. The
exact algorithm bears exponential time complexity
and is computationally prohibitive for application
scenarios in dynamic traffic networks. To address
the challenge, we propose a greedy algorithm and
an ε-refining algorithm. Extensive experiments of-
fer insight into the accuracy and efficiency of our
proposed algorithms.

1 Introduction
With the continued development of GPS-enabled devices
(e.g., vehicle navigation systems and smart phones) and on-
line map-based services (e.g., Google Maps), route search
and planning have attracted significant attention in recent
years (e.g., [Dumitrescu and Boland, 2003; Sharifzadeh et al.,
2008; Levin et al., 2010; Shang et al., 2013b; Li et al., 2013;
Zeng et al., 2015; Liang and Wang, 2018; Xu et al., 2017]).
Some studies on this topic aim to generate a route based on
an optimization goal (e.g., shortest distance, minimum travel
time) under user-defined constraints (e.g., source and desti-
nation) over traffic-aware road networks [Cao et al., 2012;
Shang et al., 2013a; Shang et al., 2015; Liebig et al., 2017;
Shang et al., 2016].

However, these studies find an optimal route only for a sin-
gle trip query. As online map-based services are becoming
increasingly popular, it is not uncommon that a great num-
ber of users may issue trip queries simultaneously or within
a short period of time, especially during rush hours. In such
case, recommending the optimal route based on each individ-
ual query may induce potential traffic congestion. Let us con-
sider Figure 1 as an example. Let trips 1–4 be four trip queries
that are issued simultaneously. Each trip query consists of a
source (marked with a circle) and a destination (marked with

∗Corresponding author

a diamond). Vertices v1, v2, v3, and v4 are the sources of trips
1–4. Vertices v5, v6, v7, and v8 are the destinations of trips 1–
4. Routes π1, π2, π4, and π6 are optimal travel routes for trip
queries 1–4, respectively. We see that all optimal routes will
travel between vertices v9 and v10, which may lead to traffic
congestion. In turn, the congestion may delay the travel times
of all routes that cover the segment between v9 and v10.

Consequently, given a large number of trip queries issued
simultaneously, we need to regard these queries as a whole
and generate a route planning for each query such that the
global travel time for all queries is minimized. In particular,
we can adjust the optimal routes of trip 2, trip 3, and trip 4
to π3, π5, and π7, respectively. Even if they are sub-optimal
results for individual queries, traffic congestion between v9

and v10 can be alleviated and the global travel time of all trips
1–4 is improved.

In this light, we study a novel Global Optimal Route
(GOR) problem: Given a traffic-aware road network and
a set of trip query Q, we generate a travel route for each
query such that the sum of travel times for all queries is min-
imized. In our settings, travel time of each edge depends
on both the edge’s minimum travel time and flow of vehi-
cles, the query finds a route combination (set of routes) such
that global travel time is minimized. The GOR problem has
a broad range of application, including traffic management,
route planning and congestion alleviation. By processing all
trip queries issued within a short period of time in a batch
mode, we are able to reduce the average travel time and avoid
traffic congestion, especially during commute hours and hol-

trip 1

trip 2

trip 3

trip 4

v1
v2

v3

v4

v5v6

v7

v8

v9

v10

traffic congestion

π1
π2

π3

π4

π5

π6

π7

Figure 1: Example of Global Optimal Route Problem.
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idays. The problem is challenging due to its high computa-
tional cost. The time complexity of our straightforward exact
algorithm is exponential to the number of queries. As a result,
it is impossible to find the optimal solution in interaction time.
To answer the problem efficiently, we first propose a greedy
algorithm. Based on the greedy algorithm, an ε-refining algo-
rithm and corresponding pruning techniques are developed to
further decrease the global travel time effectively. Based on
our experimental results, our proposal is capable of achieving
high efficiency and high efficacy when processing 10,000 trip
queries simultaneously.
Related work. A host of studies were developed to an-
swer optimal route queries under different settings [Nikolova,
2006; Li et al., 2007; Ding et al., 2008; Lim et al., 2009;
Shang et al., 2013a; Chen et al., 2020a; Chen et al., 2020b;
Chen et al., 2019]. These studies only consider the opti-
mization of individual route query. Existing studies of traffic-
based global optimization problems [Dafermos and Sparrow,
1969; Dafermos and C., 1972; Lim and Rus, 2012; Dotoli et
al., 2014; Babak et al., 2018] can be regarded as the flow as-
signment problem rather than real-time route planning prob-
lem, where the routes are pre-defined and they search for an
optimal flow assignment to each route. The queries proposed
by these studies are based on a singe trip. Hence, their so-
lutions cannot be used to answer our problem. Additionally,
time-dependent road network [Peeta and Mahmassani, 1995;
Cai et al., 1997; Ding et al., 2008; Wang and Ran, 2012;
Huang et al., 2017] is a representative dynamic network,
where each edge has different weight at different time, while
in our work the weight (travel time) depends on the real-time
flow, thus the optimization methods cannot be used in our
problem. To the best of our knowledge, none of the exist-
ing algorithms can address our problem as they either target
a single query or target different settings.

2 Preliminaries and Problem Statement
Traffic-aware road networks. We define a traffic-aware
road network by a connected and directed graphG(V,E, tm),
which consists of a set of vertices V representing road in-
tersections and a set of edges E representing road segments.
Each edge e(vi, vj) ∈ E connects two end-points vi and vj
where vi, vj ∈ V . Function tm : E 7→ R assigns a real-
valued weight tm(e)1 to edge e that denotes the minimum
travel time on road segment e (i.e., the travel time of e when
there are no vehicles).
Traffic flow. In this paper, traffic flow is defined as the num-
ber of vehicles on an edge e at a particular time t, denoted by
fe, is computed by Equation 1.

fe(t) = fe
′(t) + fe

′′(t) (1)

Here, fe′(t) denotes the number of non-query vehicles on
edge e at time t while fe′′(t) is the number of vehicles us-
ing our query system. Note that how to compute fe′(t) is be-
yond the scope of this paper, and the solutions we proposed
are independent of the initial traffic and the original number

1For ease of presentation, we use e to represent e(vi, vj) where
the context is clear.

of vehicles that traverse the segment but do not use the query
system.
Time-flow function. The time-flow function is used to
compute actual travel time of an edge if we take into ac-
count the traffic flow. Following existing studies [Lim and
Rus, 2012; Babak et al., 2018], we use two popular time-flow
functions (cf. Equations 2 and 3) to computer the actual travel
time of segment e, which is denoted by t(e).

t(e) = tm(e)× (1 + α× fe) (2)

t(e) = tm(e)× (1 + σ × (
fe
ϕ

)
β

) (3)

Here, fe denotes the number of vehicles on segment e, α, σ,
ϕ, and β are road-specific parameters, which are determined
by segment attributes (e.g., speed limit, road width). Note that
our proposal is independent of the values of these parameters.
How to set appropriate values for these parameters is beyond
the scope of our study.
Route and travel time. A route π is defined by a finite se-
quence of vertices 〈v1, v2, . . . , vk〉. Denoted by T (π) the ac-
tual travel time of π is the sum of actual travel times of each
road segment in π (cf. Equation 4). Similarly, the minimum
travel time of a route π, denoted by Tm(π), is the sum of min-
imum travel times of each road segment in π (cf. Equation 5).

T (π) =
k−1∑
i=1

t(e(vi, vi+1)) (4)

Tm(π) =

k−1∑
i=1

tm(e(vi, vi+1)) (5)

Problem definition. Given a traffic-aware road network
G(V,E, tm) and a set of trip queries Q = {q1, q2, . . . , qn}
where each query qi = {si, di, τi} consists of a source loca-
tion si, a destination location di, and a departure time τi, the
Global Optimal Route (GOR) problem finds an optimal route
πi from si to di for each trip qi ∈ Q such that the global travel
time for the route combination Π (i.e., Π = {π1, π2, ..., πn})
is minimized. Note that the global travel time of Π, denoted
by GT(Π), is computed by Equation 6.

GT(Π) =

|Π|∑
i=1

T (πi) (6)

3 Solutions for GOR Problem
3.1 Exact Algorithm
Given a GOR query Q, a straightforward method is to eval-
uate all possible route combinations and select the combina-
tion that has the minimum global travel time. Specifically,
for each trip query qi ∈ Q we run Depth-First Search (DFS)
on the road network to find all possible routes from si to di.
Here, we employ a pruning technique [Shang et al., 2015]
that enables early termination of DFS. Next, for each route
combination we compute its exact global travel time. We re-
turn the route combination with the minimum global travel
time as the result.
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Complexity analysis. The exact algorithm evaluates ev-
ery route combination. Assume that the number of possible
routes of a trip is p and the number of vertices of each route
is |π|. The total number of route combinations is p|Q| and we
need to visit |π||Q| vertices to compute the global travel time
of each route combination. For each vertex, we have to tra-
verse each qi ∈ Q to count current flow on the edge. Hence,
the time complexity of exact algorithm is O(p|Q||π||Q|2).

3.2 Greedy Algorithm
From Section 3.1 we see that the exact algorithm is compu-
tationally prohibitive for answering the GOR problem when
|Q| is large. Hence, a greedy algorithm is proposed to an-
swer the GOR problem efficiently. The high-level idea is to
generate a global optimal route for each trip query qi ∈ Q
concurrently through network expansion.
Route label. To enable concurrent network expansion of
routes, we maintain a route label l(qi) = 〈va, τa, πa〉 for each
trip query qi that records its evaluation progress. The label
l(qi) consists of three elements: va, currently arrived vertex;
τa, the time arriving at va; πa, the up-to-date route from qi.s
to va. Initially, the currently arrived vertex for each trip query
qi is the source location and arrival time is the departure time
of qi (i.e., τi).
Network expansion strategy. Given a route label l(qi) =
〈va, τa, πa〉, we select an optimal subsequent vertex based on
network expansion. In particular, we select an adjacent vertex
vj of va that has the minimum estimated global travel time.
Here, the estimated global travel time for route label l(qi),
denoted by EGT(l(qi)), is computed by Equation 7.

EGT(l(qi)) = T (πa) + t(e(va, vj)) + tm(e(vj , qi.d)) (7)

Algorithm details. Algorithm 1 presents the pseudo code
of our greedy algorithm. Initially, we initialize our route com-
bination set Π and priority queue H that sorts trip queries in
ascending order based on l(q).τa (line 1). Then we insert
all initial route labels of trip queries from Q to H (lines 2–
5). During the search and update process, in each iteration
we select a route label l(q) from H and expand its route to
next vertex until H is empty, namely all trip queries are pro-
cessed to destinations (lines 6–25). To be specific, each time
we get the l(q) with minimum l(q).τa on the top of H (line
7), for currently arrived vertex l(q).va, we select one of its
adjacent vertices v with minimum EGT(l′(q)) for expansion
(lines 8–18). For each adjacent vertex we check whether it
conflicts two thresholds: it cannot appear twice in the trip’s
planned route l(q).πa and its minimum travel time to destina-
tion d cannot be larger than that of l(q).va (line 10). If it satis-
fies both thresholds, we compute the traffic flow for the edge
e(l(q).va, v) and the expected travel time EGT(l′(q)) (lines
11–12). In the next, if EGT(l′(q)) is the currently minimum,
we update l′(q).τa and l′′(q) is used to store the l′(q) with
minimum EGT(l′(q)) (lines 13–16). Once the greedy selec-
tion is completed, l(q) has to be updated (line 19). At the end
of each iteration, if the trip query is processed to its destina-
tion d, we add l(q).πa to Π, else we insert the up-to-date l(q)
into H again waiting for next expansion (lines 20–24).

Algorithm 1 Greedy Algorithm
Input: Traffic-aware road network G(V,E, tm);

A set of trip queries Q = {q1, q2, . . . , qn};
Output: A route combination Π =

{
π1, π2, ...π|Q|

}
;

1: H ← ∅; Π← ∅;
2: for each trip query qi in Q do
3: Initialize l(qi);
4: H .push(l(qi));
5: end for
6: while H 6= ∅ do
7: l(q)← H .pop();
8: for each adjacent vertex v of l(q).va do
9: l′(q)← 〈v, l(q).τa, l(q).πa.add(v)〉;

10: if v /∈ l(q).πa and tm(v, d) < tm(l(q).va, d) then
11: Compute the traffic flow on edge e(l(q).va, v);
12: Compute EGT(l′(q));
13: if EGT(l′(q)) is the minimum then
14: l′(q).τa ← l(q).τa + t(e(l(q).va, v))
15: l′′(q)← l′(q)
16: end if
17: end if
18: end for
19: l(q)← l′′(q)
20: if l(q).va == d then
21: Π.add( l(q).πa);
22: else
23: H .push(l(q));
24: end if
25: end while
26: return Π

3.3 ε-Refining Algorithm
To improve the result quality, we develop an ε-refining al-
gorithm that refines the route combination generated by our
greedy algorithm. The high-level idea works as follows: Af-
ter generating the result route combination Π, we perform a
particular refining operation, including add, drop, and swap,
on each route if the operation can decrease the global travel
time of Π at least by a factor of 1 + ε. Specifically, for each
route πi ∈ Π we select a refining operation that produces the
maximum decrease of global travel time and check if it is im-

proved by a factor of 1 + ε (i.e., GT(Π)

GT(Π′)
is no less than (1+ε)

where Π′ denotes the route combination after performing the
selected refining operation).

Refining Operations
We detail three refining operations: add, drop, and swap. The
ε-refining algorithm reuses the results of greedy algorithm
and refines each route π ∈ Π from the source vertex. We
evaluate each route sequence of π (i.e., ∀(vi−1, vi, vi+1) ∈ π
where i ∈ [1, |π| − 1]) and perform the following refining
operations if possible.

• drop (vi): drop a vertex vi ∈ π if |π| >3 and an edge
exists between vi−1 and vi+1.
• add (v): add a vertex v ∈ (V \π) to π if v is an interme-

diate vertex between vi and vi+1.
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(a) drop (b) add (c) swap

Figure 2: Examples of drop, add, and swap operations

• swap (vi, v): swap a vertex vi ∈ π with another vertex
v ∈ (V \ π) if more than one alternative intermediate
vertices exist between vi−1 and vi+1.

Figure 2 exemplifies drop, add, and swap operations. The
blue edges are the primitive route π = 〈v4, v1, v2, v6〉 gen-
erated by the greedy algorithm. The red edges in Fig-
ures 2(a), 2(b), and 2(c), are the refined segments after per-
forming drop, add, and swap operations, respectively.

Consider the drop operation in Figure 2(a), if an edge be-
tween v4 and v2 exists, the decrease of global travel time
is ∆GTdrop = t(e(v4, v1)) + t(e(v1, v2)) + t(e(v4, v1))′ +
t(e(v1, v2))′ - t(e(v4, v2)) -t(e(v4, v2))′, where the front part
is the reduced travel time of e(v4, v1) and e(v1, v2), and the
latter is the increased travel time of e(v4, v2), t(·) denotes the
changed travel time of the adjusting trip while t(·)′ denotes
the changed travel time of other trips that are influenced by
the refinement. For the add operation in Figure 2(b), where v3

can link v2 and v6 as an intermediate vertex, if we adjust the
route using v3, the decrease of global travel time is ∆GTadd
= t(e(v2, v6)) + t(e(v2, v6))′ - t(e(v2, v3))- t(e(v2, v3))′ -
t(e(v3, v6)) -t(e(v3, v6))′. For swap operation in Figure 2(c),
where v5 can take place of v1 as an intermediate vertex link-
ing v4 and v2, if we adjust the route using v5, the decrease of
global travel time is ∆GTswap = t(e(v4, v1)) + t(e(v4, v1))′

+ t(e(v1, v2)) + t(e(v1, v2))′ - t(e(v4, v5)) - t(e(v4, v5))′ -
t(e(v5, v2)) - t(e(v5, v2))′.

However, in order to update the travel time of each trip, we
need to compute the current flows of all altered edges each
time we perform a refining operation, which is very time-
consuming. To improve the efficiency of refining operations,
we develop pruning strategy for each type of operation by
computing the corresponding upper bound of decreased travel
time. In particular, the upper bounds of decreased travel time
for drop, add, and swap, denoted by UBdrop , UBadd , and
UBswap , respectively, are computed as follows.

UBdrop = t(e(v4, v1)) + t(e(v1, v2))+

t(e(v4, v1))′ + t(e(v1, v2))′ ≥ ∆GTdrop
(8)

UBadd = ce(v2,v6) + c′e(v2,v6) ≥ ∆GTadd (9)

UBswap = t(e(v4, v1)) + t(e(v4, v1))′+

t(e(v1, v2)) + t(e(v1, v2))′ ≥ ∆GTswap
(10)

Thus, for each operation we first compute UB (i.e.,
UBdrop, UBadd, and UBswap) to determine whether the op-
eration is valid. If UB cannot decrease the global travel time
by a factor of 1+ε (i.e., GT/(GT−UB) ≤ 1+ε), the operation

Algorithm 2 ε-Refining Algorithm
Input: Traffic-aware road network G(V,E, tm);

A route combination Π =
{
π1, π2, ...π|Q|

}
;

Parameter ε;
Output: A refined route combination Π′;

1: Init: Let H = ∅;
2: for each trip query qi in Q do
3: Initialize l(qi);
4: H .push(qi);
5: end for
6: while H 6= ∅ do
7: q ← H .pop();
8: compute ∆GT of each valid operation;
9: select the operation with maximum ∆GT ;

10: if GT
GT−∆GT > (1 + ε) then

11: GT← GT−∆GT;
12: update the route label l(q);
13: update q′s route in Π;
14: end if
15: if l(q) isn’t adjusted to destination then
16: H .push(l(q));
17: end if
18: end while
19: return Π′

is invalid, else we further compute the exact decreased global
travel time ∆GT (i.e., ∆GTdrop, ∆GTadd, and ∆GTswap) to
compare with other operations.

Algorithm details. Algorithm 2 presents the pseudo code
of our ε-refining algorithm. The query input includes a traffic-
aware road network G(V,E, tm) and the results of greedy al-
gorithm, a refining factor ε is selected as parameter, while the
output is the refined route combination. Initially, we main-
tain a dynamic priority heap H for selecting the route label
l(q) with minimum l(q).τa (line 1). Then, we insert all ini-
tial route labels of trip queries from Q to H based on l(q).τa
(lines 2–5). During the refining process, we apply a valid op-
eration with maximum decrease of global travel time to up-
date global travel time and corresponding route labels. The
process terminates when no new operation is valid to produce
a better result, namely all routes’ adjusting progresses are fin-
ished (lines 6–18). To be specific, in each iteration, we select
the route label l(q) on the top ofH (line 7). Consider the cur-
rent route sequence of l(q).va, we compute the correspond-
ing upper bound of decreased travel time first to determine
whether the operation is valid. If an operation is valid, we
further compute the exact decrease (line 8). After selecting
the operation with the maximum global travel time decreased
(line 9), we apply the operation with maximum decrease to
update global travel time GT, the route label l(q) and corre-
sponding route in Π respectively if the global travel time is
improved at least by a factor of 1+α (lines 10–14). At the
end of each adjustment, if l(q) is adjusted to its destination, it
doesn’t need to be refined any more, else we insert up-to-date
l(q) into H again for next adjustment. Finally, we return the
refined Π as the result, denoted by Π′.
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Complexity analysis. AssumeGT0 is the global travel time
of the obtained results of greedy algorithm and GT ′ is the
global optimal travel time. By utilizing the small constant ε,
the maximum number of operations in ε-refining algorithm
m depends on the ratio of GT0 to GT ′. The value of m is
computed as follows.

GT0 · (1 + ε)−m ≤ GT ′

⇒ m = blog(1+ε)

GT0

GT ′
c

(11)

To find a valid operation, we check all cases of drop, add,
and swap operations in each adjustment. The time com-
plexity is O((n11 + n12 + n13)|Q|) + O((n21 + n22 +
n23)|Q|)+O((n31 +n32 +n33 +n34)|Q|) = O(|Q|2). Here,
n11,n12,...,n34 are the number of other influenced trips on al-
tered edges and they are up to |Q|. Assume the maximum
number of vertices of all routes is k and the number of influ-
enced trips by this adjustment is n, then updating routes and
progress records requires time complexityO(kn). Here, m is
a constant. Thus, the time complexity of the ε-refining algo-
rithm is O(mkn|Q|2) = O(|Q|3) for k is much smaller than
|Q| and n is up to |Q|.

4 Experimental Study
4.1 Experimental Settings
Compared algorithms. We study the performance of the
following proposed algorithms: the greedy algorithm (Sec-
tion 3.2) and the ε-refining algorithm (Section 3.3). And
to evaluate the result quality of the two algorithms, we im-
plement an individual-based search algorithm. Specifically,
given a set of trip queries Q, for each query qi ∈ Q we de-
rive a route π with the minimum travel time (i.e., Tm(π)).
Note that the exact algorithm requires at least 1 day with de-
fault setting, thus we do not report its performance. In re-
maining parts of this paper, the greedy algorithm is denoted
by ”Gre-Alg.”, the ε-refining algorithm is denoted by ”Ref-
Alg.”, and the individual-based search algorithm is denoted
by ”Ind-Alg.”.
Data and queries. We use two road networks in our ex-
perimental study, namely San Joaquin County Road Network
(TG)2 and the New York Road Network (NYN)3, which con-
tain 18,263 vertices and 23,874 edges, and 95,581 vertices
and 260,855 edges, respectively. The road networks are main-
tained by memory-based adjacency lists. We pre-compute the
all-pair minimum Tm(Π) using Dijsktra’s algorithm [Dijk-
stra, 1959] and store the results on disk. All algorithms are
implemented in Java and tested on a Windows 10 platform
with Intel(R) Core(TM) i5-9300H Processor (2.40 GHz) and
16GB memory. The sources and destinations are selected ran-
domly. The departure time of each trip is randomly generated
within a specific time range. The main performance metrics
are CPU time and the global travel time (GT). Unless stated
otherwise, the experimental results are averaged over 20 in-
dependent trials with different query inputs. We apply Equa-
tion 2 (cf. Section 2) as time-flow function by default. The
default parameter settings are listed in Table 1.

2https://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm
3https://publish.illinois.edu/dbwork/open-data/

TG NYN

Number of trip
queries |Q|

2,000-10,000
/default 10,000

4,000-20,000
/default 10,000

Refining factor
ε

0.02-0.10
/default 0.02

0.02-0.10
/default 0.02

α (Equation 2) 0.02-0.10
/default 0.02

0.02-0.10
/default 0.02

σ (Equation 3) 0.15 0.15

ϕ (Equation 3) 20-100
/default 20

20-100
/default 20

β (Equation 3) 2 2

Table 1: Parameter Settings

4.2 Experimental Results
Effect of query trip count. First, we investigate the effect
of the query trip count |Q| on the performance of the algo-
rithms with the default setting. Intuitively, a larger |Q| causes
more vertices to be processed (being selected or being ad-
justed). Thus, a larger |Q| leads to more computation effort
and the CPU time cost is higher for all algorithms. Addi-
tionally, a larger |Q| leads to the increment of traffic flows
on edges, and thus increases the travel time. In this case,
Gre-Alg and Ref-Alg may reduce the global travel time sub-
stantially. Figure 3 shows the CPU time and the global travel
time of the results of three algorithms in TG and NYN respec-
tively. As expected, when |Q| becomes larger, the CPU time
increases for all algorithms. Compare with Ind-Alg, the Gre-
Alg performs slightly slower. We also find that Ref-Alg re-
quires more CPU time than the other two algorithms due to its
update operations in each iteration of refinement. Neverthe-
less, we can see all algorithms are reasonably efficient. It is
clear that the route combination generated by Gre-Alg consis-
tently exhibits less global travel time compared with Ind-Alg.
Compared with Ind-Alg, Ref-Alg greatly decreases the global
travel time. It is worth noting that there are little traffic flow
on each edge when |Q| is small, in this case the improvements
of Gre-Alg and Ref-Alg are negligible (i.e., |Q|=2,000). This

(a) TG-time (b) TG-GT

(c) NYN-time (d) NYN-GT

Figure 3: Effect of |Q|

(a) TG-time

(b) TG-GT

Figure 4: Effect of ε
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(a) TG-time (b) TG-GT

(c) NYN-time (d) NYN-GT

Figure 5: Effect of Pruning

(a) Eq1-time (b) Eq1-GT

(c) Eq2-time (d) Eq2-GT

Figure 6: Effect of ce

(a) TG-time (b) TG-GT

(c) NY-time (d) NY-GT

Figure 7: Worst-Case Measurement

is because that the performance when traffic flow is large as
|Q| increased, the improvement of Gre-Alg and Ref-Alg is
significant (i.e., Gre-Alg can reduce over 30% global travel
time and Ref-Alg can reduce over 60% global travel time
compared with Ind-Alg when |Q| is 20,000 in NYN). These
results demonstrate that Gre-Alg and Ref-Alg are effective to
alleviate traffic congestion, especially when |Q| is large.

Effect of ε. Figure 4 shows the efficiency and efficacy per-
formance as we vary ε. The total number of operations is
inversely proportional to the value of ε (cf. Section 3.3). In-
tuitively, a larger ε means fewer valid operations, thus less
CPU time is required. However, a larger ε also results in more
global travel time. The minimum global travel time, denoted
by GT∗, is the global time of individual optimum when we
assume that fe = 0. Though the global optimal travel time
GT ′ is unobtainable, GT∗ can take place of GT ′ to com-
pute an approximation ratio upper bound for GT∗ is close to
GT ′. The upper bound of the approximation ratio, denoted by
”Approx-Ratio*”, is the ratio of GT to GT∗. Thus, the value
of ”Approx-Ratio*” is larger than that of actual approxima-
tion ratio for GT∗ is smaller than GT ′.

Effect of pruning techniques. We study the effect of prun-
ing techniques in Ref-Alg . The Ref-Alg without pruning
techniques is denoted by ”Ref-Alg*”. In Figure 5, With the
help of pruning techniques, the performance of Ref-Alg is
improved by about an order of magnitude when |Q| is large
(i.e. |Q| ≥10,000). And as expected, Ref-Alg* only reduce
little global travel time compared with Ref-Alg. These results
demonstrate the accuracy of our proposed pruning rules.

Effect of time-flow functions. To study the scalability of
our proposed algorithms, we apply two different time-flow
functions in Section 2 (Equations 2 and 3) and vary the cor-
responding parameters. Intuitively, a larger value of α and a
smaller value of ϕ will cause more congestion for increased
actual travel time, and the CPU time will increase accord-
ingly. Due to space limit, we only show the results in TG.
Figure 6 illustrates the CPU time and global travel time of
the three algorithms when we apply Equation 2 and Equa-
tion 3 as our time-flow functions, respectively. It is clear that

CPU time increases as we increase α or decrease ϕ as shown
in Figure 6(a) and Figure 6(c), respectively. In Figure 6(b),
when we vary α from 0.02 to 0.10, an increasing trend re-
garding global travel time is observed for all methods. How-
ever, the increasing trend of Ref-Alg is less significant than
the other two methods, demonstrating the stronger capability
of Ref-Alg in alleviating traffic congestion and reducing the
global travel time. In Figure 6(d), when we vary ϕ from 20
to 100 in Equation 3, the global travel time decreases. The
results demonstrate that our proposed algorithms are capa-
ble for handling the query for most of settings, and different
time-flow functions allow our proposed algorithms to apply
to diverse traffic models.

Worst-Case measurement. The worst-case measurement
is the worst experimental result with the default setting
among 20 independent experiments. Figure 7 reports worst-
case measurements. We observe that Gre-Alg and Ref-Alg
are both able to compute the query in interaction time. Gen-
erally, the CPU time is at most 1,200 ms in TG and 2,400
ms in NYN, respectively. Additionally, Ref-Alg can finally
reduce at least 42% global travel time and 45% global travel
time when |Q| = 10,000 in TG and |Q| = 20,000 in NYN,
which demonstrate the two proposed algorithms are both able
to effectively alleviate traffic congestion.

5 Conclusion
We proposed and investigated the problem of global optimal
route planning for massive-scale trips (GOR problem). To
address GOR problem, two algorithms were developed in
this paper, and some pruning strategies were established to
further enhance the efficiency. Extensive experiments con-
firmed that all the proposed algorithms are capable of achiev-
ing both high efficiency and high effectiveness.
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