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Abstract

The knowledge acquisition bottleneck strongly af-
fects the creation of multilingual sense-annotated
data, hence limiting the power of supervised sys-
tems when applied to multilingual Word Sense Dis-
ambiguation. In this paper, we propose a semi-
supervised approach based upon a novel label prop-
agation scheme, which, by jointly leveraging con-
textualized word embeddings and the multilingual
information enclosed in a knowledge base, projects
sense labels from a high-resource language, i.e.,
English, to lower-resourced ones. Backed by sev-
eral experiments, we provide empirical evidence
that our automatically created datasets are of a
higher quality than those generated by other com-
petitors and lead a supervised model to achieve
state-of-the-art performances in all multilingual
Word Sense Disambiguation tasks. We make our
datasets available for research purposes at https:
//github.com/SapienzaNLP/mulan.

1 Introduction

Recent years have witnessed an increasing ubiquity of Deep
Learning, with state-of-the-art performances being steadily
pushed up across virtually every branch of Artificial Intelli-
gence, and Natural Language Processing (NLP) has been no
exception. The Deep Learning paradigm, however, presents a
major limitation that often hinders its applicability: it requires
daunting amounts of data. In NLP this constraint is particu-
larly cumbersome, especially when taking into account mul-
tiple languages: indeed, each language has to be manually
annotated independently.

This situation is, moreover, aggravated still further in tasks
where the high level of annotation expertise required poses
an additional burden. A case in point is Word Sense Dis-
ambiguation (WSD), i.e., the task of associating a word in a
context with its sense chosen from a fixed inventory [Nav-
igli, 2009]. The fact that each word has its own set of senses
increases both the sparsity of the problem and, as a conse-
quence, the amount of manually annotated data required to
reach satisfying performances, making the overall annotation
process extremely demanding. Therefore, it comes as no sur-
prise that, even in high-resource languages (i.e., English), we
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are still far from having large corpora of manually labeled
data available [Pasini, 2020].

In order to cope with this shortage, a number of mitigation
strategies have been devised. Some of these leverage paral-
lel corpora, either by projecting annotations from English to
lower-resourced languages [Lefever ef al., 20111, or by using
them to ease sentence disambiguation [Delli Bovi ef al., 2017,
Camacho-Collados et al., 2016]. Others drop the parallel cor-
pora requirement by relying, either upon already annotated
data and label propagation techniques [Yuan er al., 2016],
or solely upon knowledge bases [Pasini and Navigli, 2020].
On the other hand, carefully chosen heuristics have also been
shown to be capable of yielding high-quality sense-annotated
data in multiple languages [Scarlini er al., 2019].

An interesting alternative to silver datasets such as these
comes from the so-called zero-shot framework. Thanks to
underlying cross-lingual representations, classifiers can be
trained on a language we do have labeled data for, and then
tested on another language for which annotations are scarce
[Bevilacqua and Navigli, 2020]. This framework has been
drawing a considerable amount of interest thanks to the latest
unsupervised deep multilingual models, such as Multilingual
BERT [Devlin et al., 2019] and XLLM [Conneau and Lam-
ple, 2019; Conneau et al., 2019], which in several tasks have
attained performances almost on a par with their classic fully-
supervised counterparts.

Even though these models are being studied extensively
by the research community, to the best of our knowledge, no
attempt has been made to use them to transfer sense annota-
tions across languages. This paper frames itself in this very
landscape and introduces a Multilingual Label propagatioN
technique (MuLaN) tailored to WSD and capable of auto-
matically producing sense-tagged training datasets in multi-
ple languages. Our contributions are therefore as follows:

1. We present an alignment scheme that links together
words of different corpora if they are used with the same
meaning, regardless of their respective languages;

2. Leveraging such alignments, we project sense annota-
tions and produce sense-annotated datasets;

3. We show that MuLaN achieves state-of-the-art perfor-
mances on multilingual WSD. We also provide insights,
identifying the possible reasons behind its success.
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2 Related Work

The systems that tackle Word Sense Disambiguation are usu-
ally divided into two broad categories: knowledge-based
and supervised. On the one hand, knowledge-based sys-
tems [Moro et al., 2014; Agirre et al., 2014; Scarlini et
al., 2020] were presented as a possible solution towards the
paucity of sense-tagged corpora. Indeed, they infer senses
by leveraging lexical-semantic resources such as dictionar-
ies and graph-based knowledge bases [Miller et al., 1990;
Navigli and Ponzetto, 20121, or proximity-based algorithms
such as the K-Nearest Neighbors. On the other hand, super-
vised systems rely on semantic annotations, either to learn
sense embeddings [Loureiro and Jorge, 2019; Scarlini et al.,
20201, or to train neural architectures [Raganato et al., 2017,
Vial et al., 2019; Kumar et al., 2019; Huang et al., 2019;
Bevilacqua and Navigli, 2020] to model the probability of a
sense given a word in its context.

While knowledge-based systems gracefully scale to rare
senses and low-resource languages, their supervised alterna-
tives have been consistently outperforming them whenever
enough training data is available [Pilehvar and Navigli, 2014].
However, producing such data is utterly demanding as each
and every word has its own set of labels, i.e., senses, hence
making it time-consuming to create large amounts of exam-
ples for so many different concepts. Indeed, SemCor [Miller
etal., 1993], i.e., the largest manually-annotated corpus avail-
able, does not cover even half of the WordNet senses [Miller
et al., 1990] and is limited to English only. Other languages
find themselves in an even worse spot as no gold standard
training datasets are available.

To cope with this situation, several methods have been
proposed over the years to automatically produce sense-
annotated data in English, as well as in other languages
[Pasini, 2020]. Taghipour and Ng [2015] and Yuan et al.
[2016] focused on English only and, by exploiting parallel
data and SemCor, respectively, produced new annotations for
English sentences. However, while being useful for provid-
ing annotated examples for rare words and senses, these ap-
proaches did not address the paucity of data in other lan-
guages. To this end, parallel corpora have also been exploited
to ease the disambiguation of words in parallel sentences
[Delli Bovi et al., 2017; Camacho-Collados et al., 2016].
More recently, Pasini and Navigli [2017] and Scarlini er al.
[2019] made progress towards relieving the burden of par-
allel corpora, producing large-scale sense-annotated data by
leveraging knowledge bases and the structure of Wikipedia.
Nevertheless, both these approaches focused on nominal con-
cepts only, hindering as a consequence their applicability to
all-words Word Sense Disambiguation tasks. None of the
aforementioned approaches, however, leveraged the repre-
sentational power of deep multilingual neural models, even
though these latter were applied effectively to retrieve similar
sentences across languages [Artetxe and Schwenk, 2019].

MuLaN stands out from current work as it is the first, to
the best of our knowledge, to take advantage of contextual-
ized word embeddings in order to transfer sense annotations
across languages. Moreover, it does not require parallel cor-
pora, nor does it have any restriction on either part-of-speech

tags or the target corpus upon which the annotations are pro-
jected. Finally, its reliance on a knowledge base is limited
solely to the multilingual lexicalizations contained therein.

3 MuLaN

In this Section we describe our proposed approach for au-
tomatically producing multilingual sense-annotated datasets
along with the resources required.

Preliminaries. Our approach relies on a multilingual inven-
tory D of synsets, i.e., sets of synonyms' in different lan-
guages. For example, D may contain the synset correspond-
ing to the fountain meaning of spring, which has lexicaliza-
tions in different languages, including: Quellepg, springgn,
fountaing, manantialgs, brolladorgg, sourcerpr, fonterr
and sorgente;r. We build this inventory by leveraging Ba-
belNet? [Navigli and Ponzetto, 2012], a large multilingual
semantic network whose nodes are concepts containing lex-
icalizations coming from various heterogeneous resources,
including, inter alia, WordNet and Wikipedia. Thus, we
define D as the set of synsets in BabelNet which con-
tain at least one sense from WordNet and one or more
senses in languages other than English. Then, we de-
fine D[s, 1] as the set of senses in language ! contained in
the synset s, e.g., with s being the fountain meaning of
spring, D[s, EN] = {spring,, fountaing}, while D[s, ES] =
{manantialgs, brolladorgs}.

For ease of reading, we also define a labeled corpus I as the
set of instances y; = (w, 0, s), i.e., a text span w in the con-
text o that has been manually-tagged with the synset s; and
an unlabeled corpus © as the set of text spans §; = (w', 0’),
i.e., the context ¢’ containing the text span w’ with this latter
appearing as lexicalization of at least one of the meanings in
D.

Propagating the Labels. We propose a Multilingual La-
bel PropagatioN (MuLaN) approach which, by leveraging the
semantic properties encoded in contextualized word embed-
dings [Reif et al., 2019] and the unified inventory of concepts
D, aims at building a sense-annotated dataset in a given target
language. To do this, MuLaN takes as input a labeled dataset
I in the source language I, and an unlabeled corpus ©3 in the
target language /5 and applies the following steps:

e Vectorization, which projects each instance ; € I" and
each text span §; € O into a shared latent space (Section
3.1);

e Candidate Production, which associates each instance
v; € I" with the closest text spans #; € © according to
the cosine similarity of their projected vectors (Section
3.2);

e Dataset Generation, which finally, given a synset s,
collects all the sentences in © containing a text span that

"In what follows, we use lexicalization and sense interchange-
ably when referring to a word with a specific meaning.

Zhttps://babelnet.org

3Both corpora are preprocessed by applying a sentence splitter,
a POS tagger, a lemmatizer and an additional module that takes care
of removing duplicate sentences.
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I've seen her go running in the park.

The essay needs to be 5 pages.

T've been to Spain recently.

The team gave us the report.

Mi hanno consigliato di andare a correre.

P ————

O—|

(a) Corpus vectorization.

Correre fa bene alla salute.

Sto imparando lo spagnolo.

Un rapporto molto dettagliato.

correre correre correre
running ¢~ running ¢~ running ¢~
rapporto rapporto rapporto
correre - correre - correre -
report R report R report A
Spain essay Spain essay Spain essay
spagnolo spagnolo spagnolo
(b) K-NN retrieval. (c) Knowledge-base filtering. (d) Backward test.

Figure 1: The MuLaN process: (a) gold annotations y (+) are projected in the same space as raw candidates 6 (0); (b) k1 nearest 0s of
each ~ are retrieved (in the example, k&1 = 1); (c) invalid instances are discarded with support coming from the knowledge base (e.g.,
(Spain, spagnolo)); (d) (v, 0) pairs failing the backward test are removed (e.g., (essay, rapporto)).

was previously associated with an instance tagged with
s, and retains only the top-ranked ones according to the
marginalized cosine similarity measure (Section 3.3).

3.1 Vectorization

This first step aims at creating comparable representations for
the instances y; € I' and the text spans f; € ©. To this
end, we used a multilingual contextualized word embedding
model, i.e., Multilingual BERT [Devlin et al., 2019] (hence-
forth m-BERT), which has been pretrained on the concatena-
tion of Wikipedia in 104 languages*. Formally, we compute
the representation v, of a word w in the context o as follows:
v = m-BERT(0,w) where w uniquely identifies the cor-
responding word in o and m-BERT (o, w) returns the hidden
vector of the last layer of m-BERT corresponding to the word
w. In the case that w is split into multiple sub-words, we take
their average and, if w is a multi-word, we first average the
sub-words of each word within the compound and then take
their average as representation for w.

As illustrated in Figure 1a, given the instances in I" and the
text spans in ©, we project them into the same shared space
by leveraging the contexts they appear in.

3.2 Candidate Production

The second step aims at associating each ~; € I' with a list
of text spans §; € © that might express the same meaning.

*While other multilingual models could have been used, our aim
is to show that multilingual contextualized representations can be
utilized to transfer semantic labels from one language to another
rather than to provide an extensive evaluation of pretrained models
for contextualized embeddings.
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To this end, we leverage cosine similarity between a given ~;
and any ¢; € © as an indicator of whether or not 8, is used
with the same synset of ;. More formally, given an instance
v € T, we compute its k;° nearest neighbors Ny, (v;) =
07, ..., Hz; among all the ; € © according to the cosine

similarity®. As shown in Figure 1b, we select the text span
correre from the sentence “Mi hanno consigliato di andare
a correre.”” as the closest candidate for the instance running
from the sentence “I’ve seen her go running in the park.”.
However, since no constraint is imposed on the neighbors
of an instance, we might end up having a non-negligible
amount of noise. For example, consider the instance v =
(Spain, “T've been to Spain recently.”, {Spain, Kingdom of
Spain, Espana}) in Figure 1b: its closest text span in © is
(spagnolo, “Sto imparando lo spagnolo.”®), however, spag-
nolo and Spain refer to two different meanings, i.e., the Span-
ish language and the country, respectively. We cope with this
issue by considering as valid text span candidates for a given
instance v; = (w, o, s) only those text spans 6, = (w’,0")
such that w’ € DJ[s,ls], i.e., w' is a possible lexicalization
in language [, for synset s. Hence, in our example, we can
discard spagnolo from the list of candidates for . At the end
of this step, each instance v; = (w,o,s) € T is associated
with a filtered list N*°(;) = {67, ..., 0%} with m < k; of
candidates containing text spans that are likely to express the

We set k1 = 1000.

®We used FAISS [Johnson ef al., 2019] in order to cope with the
large number of comparisons to perform.

"They encouraged me to go running.

81 am learning Spanish.
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same meaning s of ;.

3.3 Dataset Generation

The third step aims at producing the final sense-annotated
dataset featuring examples in the target language l5. To
this end, we further refine the list of candidates N'**(;) =
{07",...,07:} by applying a backward compatibility test.
That is, we retain a candidate §° only if ~; €’ N, (67,
i.e., the instance +y; is among the k; nearest neighbors of 0]7

We therefore define the new list of candidates A" (;) as
the list of neighbors 0;’ of ; that have passed the backward
compatibility test. Intuitively, consider the example in Figure
1d. As can be seen, while essay from the sentence “The essay

needs to be 5 pages.” has rapporto'® from the sentence “Un
rapporto molto dettagliato.”!! as closest neighbor, rapporto
1s closer to report than to essay. Thus, since in the example
k1 = 1, we remove rapporto from the candidate list of essay.

Once we have further refined the candidate lists, we pro-
ceed to create the final dataset in language [5. For each synset
s that appears in I', we create C(s) = {0]",..., 05} ie.,
the union of the text-span candidates 0; for each instance
vi = (w,o,s) € T that is tagged with s. In order to select
the most suitable sentences for the synset s from C(s), we
score each element 9;’ by means of the marginalized cosine
similarity (mcos) [Artetxe and Schwenk, 2019] calculated ac-
cording to its corresponding instance ;. Formally, given ~;
and 0]7 , we compute mcos as follows:

cos(7:.07")
M) + M)

M= Y )

zENk2 (x)

meos(v;,0]") =

where Ny, (z) is the list of the k2!? closest candidates for =
without applying any filtering. The intuition behind this mea-
sure revolves around contextualizing the cosine similarity by
taking into account how close the nearest neighbors of both
arguments are.

Finally, once the elements in C(s) have been ranked, we
compute tg, i.e., the number of occurrences of s in I', se-
lect the top 5 text spans ¢]° = (w',0’) in C(s), collect
their corresponding sentences o7, ..., o7 and tag the words
w}, ..., w;_ therein with s. Should a candidate be associated
with two instances ; and ;, we retain the association with
the instance that maximizes the marginalized cosine similar-
ity score. As the outcome of this last step, we have a new
dataset with examples in language /-, each containing at least
one word tagged with a synset from the inventory D.

4 Experimental Setup

We assess the quality of our corpora in the Word Sense
Disambiguation task by comparing the performance of a

“We extend the € operator to work with lists as well.
!"Report, technical report.

A very detailed report.

2By following the original paper, we use ky = 4.
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transformer-based architecture [Vaswani et al., 2017] trained
on MuLaN with several competitors.

4.1 Reference WSD Model

In order to carry out the evaluation, we employ a transformer-
based classifier as our WSD reference model. Specifically,
we use m-BERT to encode the input word pieces into latent
vectors'® which, in their turn, are fed into a fully-connected
layer with a softmax activation function. When a text span is
split into multiple word pieces, we follow Devlin et al. [2019]
and use the first word-piece hidden vector as the representa-
tion for the whole text span. During training, rather than fine-
tuning all the model parameters, we keep the BERT weights
fixed and let the gradient flow through the last layer only.

The model is trained for 50 epochs, with early stopping
technique set with a patience parameter of 3; we used the
Adam optimizer with learning rate fixed at 2 - 107° and a
cross-entropy loss criterion. As validation set, due to the lack
of any publicly available sets in the languages being consid-
ered, we reserved a small random percentage from the train-
ing set for this purpose only. We note that we also applied
this same strategy when training the classifier on the data pro-
duced by our competitors.

4.2 Test Bed

We report the performances on multilingual datasets for all-
words WSD which were made available in the context of the
past SemEval competitions, namely, SemEval-13 [Navigli et
al., 2013], containing nominal instances in French, German,
Italian and Spanish, and SemEval-15 [Moro and Navigli,
2015], comprising Italian and Spanish datasets. We perform
the evaluation using the same SemEval-13 and SemEval-15
versions used by our competitors in their respective original
papers; we will refer to these versions as SemEval-13* and
SemEval-15*. Furthermore, we also use the revised version
of the evaluation datasets'* (WordNet split), which is updated
to be consistent with the 4.0.1 release of BabelNet. As a re-
sult, we can test on a larger number of instances than was
previously possible.

Following the literature, we show Precision, Recall and F1
scores, i.e., the harmonic mean of Precision and Recall. Fur-
thermore, we report the statistical significance as computed
by the McNemar’s test [McNemar, 1947] over the Precision
measure with & = 0.01 between the results attained by the
reference WSD model trained on each of our datasets and the
best possible competitor in the same setting.

4.3 Comparison Systems

We compare MuLaN with the following alternative corpora
(marked with ) and models (marked with ©):

e Most Common Sense (MCS)®: a baseline in Word
Sense Disambiguation where each pair (lemma, part of
speech) is tagged with its most common sense (note that,
compared to the traditional Most Frequent Sense base-
line, we do not have sense frequencies for non-English

3We use the concatenation of the last 4 layers’ outputs to repre-
sent each word piece.
*https://github.com/SapienzaNLP/mwsd- datasets.
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SemCor+WNG MuLaN
EN 1T ES FR DE 4L
# instances 723k 415k 452k 310k 245k 1424k
# senses 91k 44k 57k 29k 22k 141k
# synsets 70k 33k 43k 25k 19k 50k

Table 1: Number of annotated instances, unique senses and unique
synsets contained in the concatenation of SemCor and WNG and in
the MuLaN datasets.

languages, therefore we follow the BabelNet ranking,
which is based on the reliability and frequency within
the underlying resources);

e OneSeC' [Scarlini et al., 2019]: a fully automatic
knowledge-based method for creating sense-annotated
corpora for nominal instances only (OneSeC). We also
consider for comparison OneSeC,, i.e., the concatena-
tion of its datasets created for Italian, Spanish, French
and German. In what follows, we report the results at-
tained by the reference WSD model when trained on
each of the aforementioned datasets;

e ()-Shot°: we test our reference WSD model in the #-Shot
setting, i.e., when trained on English data and tested on
other languages. We compare against the WSD model
trained on the following two English datasets: i) SemCor
[Miller er al., 1993], i.e., the de facto standard training
set for WSD, which features roughly 40K sentences and
more than 200K annotations, and ii) SemCor+WNG,
i.e., the concatenation of SemCor and the Princeton
WordNet Gloss Corpus [Langone ef al., 2004], which
contains glosses and examples for WordNet synsets that
were disambiguated both manually and automatically;

e SensEmBERT® [Scarlini et al., 2020]: a knowledge-
based approach for producing BERT-based embeddings
of senses by exploiting the lexical-semantic information
in BabelNet and Wikipedia. It currently attains state-of-
the-art results in multilingual WSD for nouns;

e UKB+SyntagNet® [Maru er al, 2019]: a pre-BERT
knowledge-based approach which applies Personal-
ized PageRank to the WordNet graph enriched with
manually-annotated free association and collocation
edges between WordNet senses (SyntagNet!?).

4.4 Source and Target Corpora

As labeled corpus I', we use the concatenation of SemCor and
WNG since it is the largest available corpus annotated with
senses. As unlabeled corpus O, on the other hand, we use
Wikipedia, since it covers most domains of human knowledge
and is available in several languages, with the additional ben-
efit that it maintains the same writing style across languages,
i.e., a descriptive one. Thus, we use MuLaN to generate
a sense-annotated dataset (see Section 3) for each language
used in the test sets under consideration, i.e., Italian, French,
Spanish and German, and we show their statistics in Table 1.

http://syntagnet.org
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4.5 Test Configurations

Together with the results attained when training the refer-
ence model on MuLaN monolingual datasets, we also report
its performance when trained on: i) our datasets restricted
to the nominal instances only, i.e., MuLaN® , 1) MuLaN
datasets in all the four languages together, i.e., MuLaNy,
and iii) when considering all the languages and focusing on
the nominal instances only MuLaN?, . The variants where
we restrict to nouns only are needed in order to compare
fairly with OneSeC and SensEmBERT. Indeed, we recall
from Section 4.3 that OneSeC cannot provide annotations to
anything but nouns, hence reducing the overall task complex-
ity. On the other hand, as shown in Table 1, each monolin-
gual corpus covers, on average, less than half of the synsets
originally available in SemCor+WNG. This phenomenon is
largely caused by, either language-specific shortcomings in
BabelNet and m-BERT, or the simple fact that some senses
are harder to project towards some languages rather than
towards others. The 4L variants cope with this issue by
concatenating all monolingual datasets together, providing a
wider coverage of synsets, as shown in Table 1 (last column).

5 Results

5.1 Multilingual Word Sense Disambiguation

In this Section we compare the results attained by the WSD
reference model (see Section 3) when trained on MuLaN
datasets with those achieved by our competitors.

As a first result, we show the performance of the WSD
reference model in the zero-shot setting. As one can see
in Table 2, both (-shot-SemCor and (-shot-SemCor+WNG
achieve competitive performance in comparison to the
other supervised and knowledge-based approaches, i.e.,
UKB+SyntagNet, OneSeC and SensEmBERT. Specifically,
(J-shot-SemCor+WNG outperforms all our competitors in
most datasets, with the additional advantage of not having
to rely on language-specific sense-annotated data or on large
multilingual knowledge bases. This result highlights, for the
first time in the context of Word Sense Disambiguation, the
multilingual capabilities of m-BERT and its ability to encode
the semantics of words regardless of their language.

When considering MuLaN, instead, we note that it is
the only approach surpassing (-shot-SemCor+WNG on most
datasets, while beating the other alternatives in all but
two benchmarks, i.e., the French and German test sets of
SemEval-13*, where it is surpassed by SensEmBERT and
OneSeC, respectively. However, both these latter approaches
are inherently restricted to performing WSD on nominal in-
stances only.

When moving our focus to the best setting of our approach,
we note that MuLaNyy, leads the WSD reference model to
surpass the state of the art in all tasks but German, where it
lags behind OneSeC by 3.4 F1 points. However, as we will
show in more detail in Section 5.2, this difference is in the
main due to a bias towards the most common sense that both
OneSeC and the German SemEval-13* test set have, and not
to a better quality of the training data. Furthermore, while
MuLaN provides tagged instances for all the open-class part-
of-speech tags, OneSeC covers only nouns. In this regard, we
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SemEval-13*

SemEval-15*

1T ES FR DE IT ES
Model P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
MCS 69.25 6692 68.07 7026 6797 69.09 7239 66.84 69.50 7570 74.60 75.14 60.77 60.05 6041 56.25 55.81 56.03
(-shot-SemCor 74.03 7264 7333 7577 75.17 7547 70.70 7035 70.52 74.05 7355 7380 69.13 68.72 6893 64.82 64.17 6449
(O-shot-SemCor+WNG  77.40 7594 76.66 75.07 7470 7488 7497 7460 7478 7447 7411 7429 70.69 7027 7048 67.64 66.96 67.29
UKB+SyntagNet 7420 7420 7420 7340 7340 7340 7270 7270 7270 6690 6690 6690 6500 6500 6500 6120 6120 61.20
SensEmBERT 69.60 69.60 69.60 74.60 7460 74.60 78.00 78.00 78.00 78.00 78.00 78.00 - - - - - -
OneSeC 7326 7188 7257 74.67 7408 7437 7447 7440 7459 81.02 8047 80.75 - - - - - -
OneSeCyy, 7692 7547 76.19 7756 7695 7725 7735 7697 77.16 81.82 8127 81.54 - - - - - -
MuLaN 7913 77.64 7838 7736 76.75 77.06 78.15 7776 7795 79.31 7877 79.04 71.41 7098 71.19 66.85 66.18 66.51
MuLaN" 79.32 7783 7856 77.67 771.15 7740 7836 77.81 78.08 79.54 79.00 79.26 - - - - - -
MuLaNy,, 7971 7820 7895 79.76 79.12 7944 79.84 7944 79.64 7840 7786 7813 7212 7170 7191 68.88 68.19 68.53
MuLaN3}, 8240 80.84 81.61 8205 8140 8172 81.13 80.73 80.93 8297 8240 82.68 - - - - - -

Table 2: Comparison of MuLaN against its competitors on SemEval-13* and SemEval-15* multilingual WSD datasets. Underlined results
are statistically significant with respect to their best performing competitor according to McNemar’s test, « = 0.01.

SemEval-13 SemEval-15
Model 1T ES FR DE 1T ES
MCS 4420 37.10 53.20 70.20 44.60 39.60
()-shot-SemCor 7493 76770 79.54 81.13 69.41 65.68
()-shot-SemCor+WNG  76.70 77.10 79.64 81.64 70.54 68.67
UKB+SyntagNet 7214 7412 7032 7639 6895 63.37
SensEmBERT 69.80 73.40 77.80 79.20 - -
OneSeC 63.45 61.59 65.10 75.84 - -
OneSeCyy, 60.26 64.13 64.87 76.30 - -
MuLaN 7745 77.70 80.12 82.09 70.31 68.73
MuLaN" 7715 7745 78.00 80.10 - -
MuLaNy,;, 7785 81.11 81.64 8234 7180 69.42
MuLaNflVL 77.65 8095 8095 82.09 - -

Table 3: Comparison of MuLaN against its competitors on the new
versions of SemEval-13 and SemEval-15 multilingual datasets.

recall from Section 4.5 that comparing MuLaN with OneSeC
is unfair with regard to our approach, as providing annota-
tions solely for nouns inevitably leads to a lower level of con-
fusion in the training data and, consequently, in the super-
vised model as well. Therefore, in order to set a level playing
field between the two systems, we computed the nouns-only
version of MuLaN, i.e., MuLaN flVL, and tested it along with
the other datasets. As shown in Table 2, MuLaNflVL attains
the best results across the board, surpassing its closest com-
petitor, i.e., OneSeCyy,, by an overall significant margin.

When testing the systems on the latest available versions
of SemEval-13 and SemEval-15 (Table 3), MuLaN remains
the best performing model across the board. OneSeC has a
large drop in performance, which is mainly due to limitations
of the resource it draws on, i.e., NASARI. Indeed, OneSeC
cannot provide annotated examples for several synsets that
appear as gold answers within the datasets because they are
not associated with any NASARI vector. For future compar-
isons, we strongly encourage the community to consider the
results reported in Table 3 as they are computed on the latest
and updated versions of the datasets.

5.2 Most Common Sense Analysis

In this Section we investigate the ability of MuLaN to also
produce examples for Least Common Senses, i.e., for all but
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SemEval-13* SemEval-15%*

Model ITLrs EBESprs FRprs DEprps I1Tprs ESprs
OneSeC 31.12 27.30 27.75 14.40 - -
OneSeCy;,  38.20 33.84 37.14 16.00 - -
MuLaN 57.14 51.51 45.74 27.34 56.69 48.94
MuLaNyy, 59.09 55.30 53.44 29.23 55.76 51.58
MuLaNiVL 63.00 59.69 54.87 40.62 - -

Table 4: Results of the WSD reference model trained on both
OneSeC and MuLaN and tested on the instances of each dataset that
are tagged with one of their Least Common Senses.

the most common sense for each word, and compare its per-
formance with OneSeC. Indeed, senses are known to follow
a Zipfian distribution [McCarthy er al., 20071, hence making
it easy to achieve competitive results in Word Sense Disam-
biguation by simply tagging each word with its Most Com-
mon Sense (MCS). Therefore, in order to analyze the extent
to which MuLaN is biased towards the Most Common Sense,
we create the datasets IT;rs, ESprs, FR,rs and DELpg
for each dataset in SemEval-13* and SemEval-13* by retain-
ing only those instances of the original test sets that are tagged
with one of their Least Common Senses, and then use these
datasets to carry out the evaluation. As shown in Table 4, Mu-
LaN proves to be considerably less biased towards the MCS
than OneSeC. Most importantly, Table 4 provides interest-
ing insights on the German dataset of SemEval-13*, that is,
the only setting where OneSeC outperforms MuLaN (Table
2). Indeed, as one can see, when focusing on Least Common
Senses, OneSeC’s performance drops to 14.4 points, i.e., the
lowest score across the board. Therefore, by considering the
performance reported in Table 2, we note that OneSeC is very
effective in providing sense annotations for the most common
senses in German, whereas it is considerably less accurate in
modeling other senses. Thus, when also taking into account
the unusually high results of the MCS baseline in German,
we argue that the lower performances of MuLaN compared
to OneSeC are most likely due to the strong bias towards the
Most Common Sense of both OneSeC and the test set, rather
than to the lower quality of our dataset.

This difference is even more marked when comparing
OneSeC, 1, and MuLaN in a fair setting, i.e., when we restrict
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SemEval-13* SemEval-15%*
Model ITUS ESUS FRUS DEUS ITUS ESUS
MuLaN 72.07 7196 76.66 67.61 66.61 63.49
MuLaNy; 74.64 7449 7847 68.81 68.12 65.80

Table 5: Precision on synsets in the test sets with a lexicalization
that is not present in the training set.

our dataset to its nominal instances only (MuLaNfIVL). In this
scenario, while consistently achieving results that are on av-
erage 20 points higher than those of OneSeCyz,, MuLaN®,
also shows an unmatched ability to provide examples for in-
frequent senses across different languages.

5.3 Unseen Senses

Finally, we move our focus to analyzing how different lan-
guages can help our WSD reference model to generalize over
unseen senses. To this end, we create siXx new datasets,
namely, ITys, ESys, FRys and DEyg for SemEval-13%,
and ITygs and ESyg for SemEval-15*. Each of these con-
tains all the tagged instances (/, s) from the original datasets
in SemEval-13* and SemEval-15%*, where [ is a lemma and
s is a synset, such that [ never appears tagged with s in the
MuLaN training set of the corresponding language and s ap-
pears as the label for at least another lemma [’ therein. We
then leverage these datasets to compare the performance of
our WSD reference model when provided with either mono-
lingual or multilingual training data. As shown in Table 5,
providing data in multiple languages always proves to be ben-
eficial. Indeed, MuLaN,;, leads the WSD reference model
to attain on average 2 F1 points higher on all test sets than
its counterpart trained on monolingual corpora, i.e., MuLaN.
This is mainly due to the multilingual nature of the sense in-
ventory of our reference model. Indeed, this model exploits
synsets lexicalized in different languages in the output vocab-
ulary, which enables it to effectively leverage the annotations
available for a given meaning regardless of their language.

6 Conclusion

In this work, we presented MuLaN, a novel Multilingual
Label propagatioN technique for creating sense-annotated
datasets in multiple languages. Our approach enables the an-
notation effort to be focused on English-only, while at the
same time automatically projecting the manually-produced
sense labels to corpora in other languages. Our experiments
show that MuLaN outperforms all its competitors by several
points on the multilingual WSD tasks when jointly leverag-
ing its automatically produced data in all languages. Fur-
thermore, when considering instances tagged with their Least
Common Senses only, MuLaN also shows an unmatched abil-
ity to provide high-quality examples for rare synsets — one
that is out of reach for its alternatives.

At https://github.com/SapienzaNLP/mulan we release
about 800K sentences with more than 1.4M sense-tagged
instances in Italian, Spanish, French and German. As future
work, we aim at extending the sense coverage of our approach
to those meanings not included in the source corpus, and at
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generalizing MuLaN so as to enable it to transfer labels for
other tasks as well.
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