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Abstract

Gaussian Embedding of Linked Documents
(GELD) is a new method that embeds linked doc-
uments (e.g., citation networks) onto a pretrained
semantic space (e.g., a set of word embeddings).
We formulate the problem in such a way that we
model each document as a Gaussian distribution
in the word vector space. We design a generative
model that combines both words and links in a con-
sistent way. Leveraging the variance of a document
allows us to model the uncertainty related to word
and link generation. In most cases, our method out-
performs state-of-the-art methods when using our
document vectors as features for usual downstream
tasks. In particular, GELD achieves better accuracy
in classification and link prediction on Cora and
Dblp. In addition, we demonstrate qualitatively
the convenience of several properties of our
method. We provide the implementation of GELD
and the evaluation datasets to the community
(https://github.com/AntoineGourrt/DNEmbedding).

1 Introduction

Linked documents are everywhere, from web pages to bib-
liographic networks (e.g., scientific articles with citations)
and social networks (e.g., tweets in a Follower-Followee net-
work). The corpus structure provides rich additional semantic
information. For example, in Scientific articles, page limita-
tion often leads to short explanations that become clear if we
read the linked papers (i.e., citations).

Many recent approaches propose to use low-dimensional
document representation as a proxy for solving downstream
tasks [Yang ez al., 2015]. These methods learn the representa-
tions using both textual and network information. They have
many advantages: it accelerates the computation of similari-
ties between documents and it drastically reduces the storage
space needed. Moreover, they can significantly improve ac-
curacy in information retrieval tasks, such as document clas-
sification [Yang et al., 2015] and link prediction [Bojchevski
and Giinnemann, 2018]. TADW is the first approach that em-
beds linked documents [Yang et al., 2015]. Subsequent meth-
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ods are mainly based on matrix factorization [Brochier et al.,
2019; Huang et al., 2017] and deep architectures [Liu et al.,
2018; Tu et al., 2017; Kipf and Welling, 2016].

Most of those techniques learn documents as points in the
embedding space. However, considering a measure of disper-
sion around those vectors brings useful information, as shown
on corpus with no link between documents [Nikolentzos et
al., 2017]. In Graph2Gauss [Bojchevski and Giinnemann,
2018], each document is associated with a measure of uncer-
tainty along with its vector representation. However, the ob-
jective function optimizes the uncertainty using the network
information and it does not model the dispersion at the word
level. Additionnaly, variational methods such as [Kipf and
Welling, 2016; Meng et al., 2019] introduce gaussian poste-
riors, but the generative process uses the dot product between
documents’ mean only to model the adjacency and attribute
matrix entries. Hence it is not clear what the uncertainty ob-
tained from the variational variance captures.

Finally, none of earlier methods represents both documents
and words in the same semantic space, as opposed to text-
based methods such as [Le and Mikolov, 2014]. LDE [Wang
et al., 2016] and RLE [Gourru et al., 2020] both build a joint
space for embedding words and linked documents. However,
these approaches do not take the uncertainty into account.

In this paper, we propose an original model that learns both
a vector representation and a vector of uncertainty for each
document, named GELD for Gaussian Embedding of Linked
Documents. The uncertainty reveals both network and text
variance. It will be higher if the document cites very different
document sets and if it uses semantically distant words. In
addition, documents and words lie in the same space: one
can compute similarities between documents and words in
this semantic space, enhance queries or describe document
clusters by using close words.

After a review of related works in Section 2, we present our
model in Section 3. We show that our representations outper-
form or match most of the recent methods in classification
and link prediction on three datasets (two citation networks
and a corpus of news articles) in Section 4. Additionally, we
provide semantic insights on how to use the variance, and the
shared latent space. We conclude and propose extensions of
GELD in Section 5.
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Figure 1: A document is represented as a Gaussian distribution (here, the blue circles). The blue squares represent the means. Words are in
red. Docz and Docs are sharing words. In that case, Docs cites Doca but Doce may not cite Docs. Doci does not share any word with

Docs and Docs and it does not cite them.

2 Related Works

In this section, we present recent approaches for embedding
documents organized in a network.

2.1 Document Embedding

Since Word2vec models from [Mikolov et al., 2013], rep-
resentation learning for text has focused attention as it can
improve many downstream tasks. Document embedding fol-
lowed: many methods propose to represent documents as
vectors. For example, [Le and Mikolov, 2014] extends the
word2vec formulation. More precisely, the doc2vec mod-
els represent documents and words in the same space. One
can therefore compute similarities between words and docu-
ments.

In many real-life problems, documents are organized as a
network: the corpus forms an attributed network. Documents
are nodes, citations are edges and the textual contents of the
documents are the attributes. In the next section, we present
several methods that take this network information into ac-
count when learning document representations.

2.2 Document Network Embedding

TADW is the first approach that embeds linked documents
[Yang et al., 2015]. It extends DeepWalk [Perozzi et al.,
2014], originally developed for network embedding, by for-
mulating the problem as a matrix tri-factorization that in-
cludes the textual information. Subsequently, authors of
GVNR-t [Brochier et al., 2019] propose to extend Glove
[Pennington et al., 2014] in a similar way. AANE [Huang
et al., 2017] applies Laplacian Eigenmap to attributed net-
work using Alternating Direction Method of Multipliers to
accelerate the learning phase. Recent works mainly use deep
architectures: STNE [Liu et al., 2018] adapts the seq2seq ar-
chitecture, CANE [Tu et al., 2017] uses an attention mecha-
nism.

These methods do not learn representations for both docu-
ments and words, as opposed to LDE [Wang ef al., 2016] and
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RLE [Gourru et al., 2020]. LDE uses an extended formula-
tion of [Mikolov et al., 2013]. Nevertheless, it requires labels
associated with nodes, which makes it a supervised approach.
RLE [Gourru et al., 2020] uses both text and network to build
a vector that projects documents onto a pretrained word em-
bedding space.

All these methods learn a single vector by document. This
assumption is limited as documents, especially long ones,
might be semantically rich. To this end, several methods pro-
pose to learn a vector of uncertainty associated to the vector
representation.

2.3 Gaussian Document Embedding

Variational methods such as VGAE [Kipf and Welling, 2016]
and CAN [Meng et al., 2019] approximate the posterior of
the latent variables (the document embedding) by gaussians.
Nevertheless, the generative process uses the dot product be-
tween posterior means (the latent variables) to model the ad-
jacency and attribute matrix entries. Hence, the variational
variance is not an explicit measure of the document seman-
tic and neighborhood uncertainty. The only method that ex-
plicitly model uncertainty is Graph2Gauss [Bojchevski and
Giinnemann, 2018]. A feed-forward neural network embeds
the textual content and maps it to a mean and a variance, fol-
lowing an optimization process based on energy-based learn-
ing. The negative Kullback-Leibler divergence used as en-
ergy allows them to model the proximity between nodes. It
should be higher between connected nodes than unconnected
nodes. Therefore, Graph2Gauss does not explicitly model the
semantic uncertainty of a document.

Another modeling assumption allows to learn documents
as Gaussian Distributions. Documents are regarded as bag
of word embeddings (see Figure 2), i.e. a multiset of vec-
tors in the latent semantic space. Starting from this assump-
tion, [Das et al., 2015] proposes a new way to extract topics
from document sets. Topics are Gaussian distributions that
generate word vectors in a semantic space, and therefore a
bag of word embeddings for each document. In [Nikolentzos
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FEverybody loves  four cheese pizza
—0.36 —-0.38 034 —0.05 0.62

Dy { —0.01 0.68 045 —0.31 —0‘49}
0.21 —-0.54 0.55 —-1.32 —-0.69

Figure 2: The bag of word embeddings of a document.

et al., 2017], authors propose to model documents as Gaus-
sians that generate bag of word embeddings. With pretrained
word embeddings, they show that the optimal solutions for
the means and variances are the empirical means and em-
pirical variances of the vector representations of documents’
words. Unfortunately, this solution does not hold with linked
documents.

None of the above can, in the same time: i) represent docu-
ments and words in the same space, ii) learn a measure of un-
certainty associated to the document embedding. We there-
fore propose a novel method, GELD, that has these proper-
ties.

3 GELD: Gaussian Embedding of Linked
Documents

3.1 Data and Notations

We consider a corpus of n linked documents and a vocabulary
of size v. We also consider a fixed representation in R” for
each word of the vocabulary. We write u;, € R" the vector
representation of the k-th word wy, of the vocabulary, uy, , its
r-th element. We note f the function that maps the word wy,
to its pretrained representation f(wy) = u, € R". The user
can either learn the word embeddings on the studied corpus
with most recent methods [Devlin et al., 2019; Mikolov et al.,
2013] or use a pretrained set of word embeddings built on a
broader corpus! to reduce the computation time.

Each document d; is then associated with the bag of word
embeddings DY = {f(w"!), f(w"?),...}. In our notations,
wh! is the first word used in the document ;.

Our aim is to learn document representations as Gaussian
distributions. Each document has two parameters: a mean j;
in R” and a diagonal variance 021, with 02 € R", that re-
veals the document uncertainty. We can use the document
mean as vector representation when it is needed, e.g., in clas-
sification tasks. We note g the function that maps the doc-
ument d; to its mean g(d;) = p; € R". Using the net-
work information, we therefore have, for each document, a
bag of document embeddings cited by the document d;, noted
D! = {g(d"1), g(d"?), ...}, where d** is the first document
cited by the document 4.

We introduce two notations: ¢; , the number of times the -
th document d; uses the k-th word of the vocabulary and a; ;
the number of times it cites the [-th document of the corpus.

By taking the union of these multisets, the corpus becomes
n bags of vectors D; = D¥ U DL:

D; = {f(w"), f(w"?),...,g(d""),g(d"?),...} (D)

whose j-th element is noted D; ; € R".

'e.g., https:/fasttext.cc/
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3.2 Model and Optimization
Similarly to [Das er al., 2015; Nikolentzos et al., 2017], we

posit that the vectors in D; are independently drawn from an
isotropic Gaussian distribution, meaning that

Dij ~ N (i, 0} 1) )

The Gaussian is parametrized by a mean and a diagonal
variance characterizing the document embedding and its un-
certainty. The parameters to learn for each document are
o? € R" and p; € R".

The log-likelihood of the proposed model is, with |D;| the
cardinality of D;:

n |Dil
L(D;p,0%) = ZZlog/\/’(Di,ﬁMz‘,Uz‘QD &)

i=1 j

where D = {D;}1 1, 0> = {o7}i_ and = {pi}7;.
We split this log-likelihood between the drawing regarding
words (L,,) and documents (Lg).

L(D;p,0?) = Z Z log N'(f (w); pi, 071)
i=1 f(w)eDy

> log N(g(d); i, o1

>
i=1

g(d)eD}
:Z cix log N (ug; pui, 02 1) @
i=1 k=1
Loy
+ Zza“ log N (puy; i, 021)
i=1 =1
L

As citation and term frequencies are on different scales, we
can observe imbalanced £, and L. This problem is frequent
when modeling heterogeneous data using the same generative
process [Wang, 2001]. We therefore optimize an alternative
weighted likelihood. By defining n € [0, 1] denoting the im-
portance given to the network information, we write the alter-
native function to optimize:

L=(1=n)Ly+nL 5)

Computing and annealing the gradient, we get the optimal
solutions 117 and (07 ,.)*:

TS (L) T, e+ (L) T,
My = Cik ai @4, .

’ UDI g;?k+(1_77)2j (,—;,21—"_(1_7])2]' o

J

(6)

g (i — une)? + (1 =) 3 @i (pir — pr)®

2 *
(o0r)" = Ny ek + 1=, ai;
@)
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Cora Dblp Nyt

Train/Test ratio 10% 50% 10% 50% 10% 50%
DeepWalk | 70.6 (2.0) | 81.0(0.7) || 52.3(0.4) | 53.5(0.2) || 66.9 (0.7) | 68.7 (0.9)
LSA | 72.3(1.9) | 80.6 (0.7) || 73.5(0.2) | 74.2(0.2) || 71.6 (1.0) | 76.7 (0.7)
Concatenation | 71.4 (2.1) | 84.0(1.1) || 77.5(0.2) | 78.2(0.2) || 77.9(0.3) | 81.1 (0.7)
TADW | 81.9(0.8) | 87.4(0.8) || 74.8(0.1) | 75.5(0.1) || 75.8(0.5) | 79.4 (0.4)
AANE | 79.8(0.9) | 84.4(0.7) || 73.3(0.1) | 74.2(0.2) || 71.7(0.5) | 76.9 (1.1)
GVNR-t | 83.7(1.2) | 87.0(0.8) || 69.6(0.1) | 70.2(0.2) || 74.3(0.4) | 76.7 (0.6)
RLE | 84.0(1.3) | 87.7(0.6) || 79.8(0.2) | 81.2(0.1) || 77.7 (0.7) | 80.0 (0.6)
VGAE | 723 (1.7) | 81.1 (0.7) Memory Overflow 68.1 (0.8) | 70.1 (0.6)
G2G | 79.0(1.5) | 84.8(0.7) || 70.8 (0.1) | 71.5(0.2) || 69.0(0.5) | 71.5(0.8)
STNE | 79.4 (1.0) | 86.7(0.8) || 73.8(0.2) | 74.5(0.1) || 75.1(0.7) | 78.1 (0.6)
GELD | 84.3(1.1) | 88.3(0.4) || 81.63(0.1) | 82.3(0.1) || 78.5(0.8) | 81.2 (0.3)

Table 1: Comparison of Micro-F1 results on a classification task for different train/test ratios. We provide the standard deviation in parenthe-
ses. GELD outperforms most recent methods on every dataset train/test ratio. On Dblp, it outperforms TADW by 7 points.

We maximize £ in each parameter and repeat the process
until convergence. The optimization is iterative, and each pa-
rameter update depends on current values of the other param-
eters. Because of this dependency, we propose to adopt the
Robbins-Monro method [Robbins and Monro, 1951] to pre-
vent going too fast to a mediocre local solution. It yields good
results in our experiments. The updated value of parameter
1; at epoch k, given the optimal values at epoch k computed

using Equation 6 we note uf(k), is:

) = B (1 A ®)

We update o similarly. We propose to use A(*) = (§k)~7,
~ < 1 as done in [Barkan, 2017] to ensure convergence con-
ditions. 4 € [0, 1] is the importance given to the optimal solu-
tion at the beginning of the optimization. In our experiments,
we obtain higher results with low values of §. In other words,
we do not frust the first optimal solutions as the optimization
is iterative.

The initial means and variances, noted by ¢ and (02)°,
are the empirical means and variances computed on the bag
of word embedding only:

J(w)eDyY
2 \0 1 0 \2 (9)
(Ui,r) = |Dw| Z (f(w)T - :u‘i,r)
Pl f(w)eDw

4 Experiments

4.1 Datasets and Evaluation Tasks

We experiment on three datasets. Cora [Tu ef al., 2017] and
Dblp [Tang et al., 2008; Pan er al., 2016] are two citation
networks. Cora contains 2,211 abstracts of tagged scientific
documents (7 classes) with 5,001 edges. Dblp has 60,744
documents titles (4 classes) and 52,914 edges between them.
Additionally, we use the Nyt dataset from [Gourru er al.,
2020] containing press articles from January 2007. It has
4 classes, 5,135 documents and 3,050,513 edges. For each
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Algorithm 1 GELD Algorithm

Input: D, U
Parameters: 7, \, k
Output: 1, 02
1: for each: document i do
2: initialize ¢ and (0?)° according to Equation 9
3: end for
4: k=1
5: repeat
6: for each: document i do
7: compute 1 and (¢7)*(*) using Eq. 6 and 7
8: update ,uz(-k) and (¢2)(®) with Equation 8
9:  end for
100 k=k+1
11: until convergence

\®}

: return i, 02

dataset, we filter the vocabulary by withdrawing stop words
with the scikit-learn package? and we remove common and
rare words (i.e., words appearing less than 4 times and in
more than 25% of the documents). We obtain vocabulary
size of 4,390 on Cora, 3,763 on Dblp and 6,407 for the Nyt
dataset. Our method learns a mean and a variance for each
document. In many real-world scenarios, downstream tasks
require a single vector representation for a document. We
therefore evaluate the relevance of using documents’ mean
in standard evaluation tasks: classification in Section 4.3 and
link prediction in Section 4.4. We also provide qualitative
insights on the variance possible use in Section 4.5. Besides,
we also demonstrate the benefit of embedding documents and
words in the same space.

4.2 Parameters Tuning

We compare our approach to recent baselines. We use
four matrix factorization-based approaches: TADW, AANE,
GVNR-t and RLE, and three deep neural network mod-
els: VGAE, Graph2Gauss and STNE. We also compare our
method to DeepWalk, that considers the network information

*https://scikit-learn.org/
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Cora Dblp Nyt

% edges hidden 50% 25% 50% 25% 50% 25%
DeepWalk | 73.2(0.6) | 80.9 (1.0) | 89.7 (0.0) | 93.2(0.2) | 88.1(0.0) | 88.1 (0.0)
LSA | 87.4(0.6) | 87.2(0.8) | 54.2(0.1) | 54.8 (0.0) | 54.9 (0.0) | 54.9 (0.1)
Combination | 77.9 (0.3) | 83.7(0.8) | 88.8 (0.0) | 92.6 (0.3) | 88.2(0.0) | 88.3 (0.0)
TADW | 90.1 (0.4) | 93.3(0.4) | 61.2(0.1) | 65.0(0.5) | 88.5(0.0) | 88.5(0.0)
AANE | 83.1(0.8) | 86.6(0.8) | 67.4(0.1) | 66.5(0.1) | 58.9(0.2) | 61.2(0.2)
GVNR-t | 83.9(0.9) | 91.5(1.1) | 88.1(0.3) | 91.4(0.1) | 61.2(0.2) | 61.3(0.3)
RLE | 94.3(0.2) | 94.8(0.2) | 89.3(0.1) | 91.2(0.2) | 77.5(0.3) | 77.8 (0.2)
VGAE | 87.1(0.4) | 88.2(0.7) Memory Overflow 88.4(0.0) | 88.4(0.0)
Graph2Gauss | 92.0 (0.3) | 93.8 (1.0) | 88.0 (0.1) | 92.1(0.5) | 88.3(0.0) | 88.2 (0.0)
STNE | 83.1(0.5) | 90.0(1.0) | 45.6 (0.0) | 53.4(0.1) | 88.4(0.0) | 88.4(0.0)
GELD | 95.3(0.1) | 95.8(0.1) | 92.6 (0.2) | 94.7 (0.3) | 88.3(0.0) | 88.3(0.0)

Table 2: Comparison of mean AUC on a link prediction task for different percentages of edges hidden. We randomly remove the edges and
repeat this procedure 3 times. We provide the standard deviation in parentheses. GELD outperforms most recent methods, up to 40 points for

STNE on Dblp. On Nyt, it is comparable to TADW that achieves the best performance.

Cora Dblp
90 T T T T T T 85 T T T T T T
gg| o —a—t—1t —8 | W
_ 7 _ 80| .
= 86| B
2 e
g 84l —o— GELD | |2 —e— GELD
> & RLE |® 75| —& RLE
82| TADW | | TADW
G2G NC
80 | | | | | I 70 | | | | | I
50 100 150 200 300 500 50 100 150 200 300 500

Figure 3: Accuracy with 50% test/train ratio by embedding dimension for the four best methods on the classification task on Dblp and Cora.
NC stands for Naive Combination. GELD performs constantly better than competitors, even in low dimension.

Class1 | Class2 | Class3 | Class4 | Class5 | Class6 | Class7
network reinforcement | posterior pac genetic casebased ilp
networks rl bayesian | schapire ga knowledge clause

neural barto gibbs error mutation | reasoning kira

feedforward qlearning models | queries gp experiences | literals
multilayer multiagent model set search design relational

Table 3: Class descriptions on Cora. We show the top 5 words closest to the class centroids.

Title Variance | Class
Collective Latent Dirichlet Allocation 545 3
Spatial Latent Dirichlet Allocation 605 1
Distributed Inference for Latent Dirichlet Allocation 590 1
Fast collapsed gibbs sampling for latent dirichlet allocation 513 3
Latent Dirichlet Co-Clustering. 398 3
A perceptual hashing algorithm using latent dirichlet allocation 604 2

Table 4: Six Nearest Neighbors in the embedding for the article “Latent Dirichlet Allocation” by Blei et al., obtained on Dblp. We provide
the total variance summed by axes.
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only, LSA [Deerwester et al., 1990], that embeds the docu-
ment with regard to the textual information, and a concatena-
tion of embeddings obtained with those two methods we call
“Concatenation” as done by [Yang er al., 2015]. We use all
the original implementations provided by the authors.

We use hyper parameters recommended by the authors,
for those who use similar datasets, and grid-search hyper-
parameters using the document classification task otherwise.
For TADW, we use A = 0.2 [Yang et al., 2015] and dimen-
sion 200 for the reduced representation of documents’ con-
tent. For AANE, we use optimal )\ and p obtained via grid-
search, as Z,,;, for GVNR-t. For RLE we use A\ = 0.7 and
build the word vectors as specified by the authors. For VGAE,
we use the author architecture, and K = 1 for Graph2Gauss.
VGAE could not handle DBLP on our machine in reasonable
time. For STNE, we determine depth using grid-search. For
DeepWalk, we perform 40 walks of length 40 by nodes, and
we set the window size to 10. We run all the experiments in
parallel with 20 physical cores (Intel® Xeon® CPU E5-2640
v4 @ 2.40GHz) and 96GB of RAM. We use r = 160 as em-
bedding dimension for every method following [Yang et al.,
2015].

Similarly, we report the optimal parameters for GELD ob-
tained via grid-search on the classification task: § = 0.1,
v = 0.2, n = 0.99 for Cora, n = 0.8 for Dblp and n = 0.95
for Nyt. To learn word vectors, we adopt Skip-gram with neg-
ative sampling [Mikolov et al., 2013] implemented in gen-
sim?. We use window size of 15 for Cora, 10 for Nyt, 5 for
DBLP (depending on documents size), and 5 negative exam-
ples for both. It only takes 46 seconds on Cora, 84 on DBLP
and 42 on Nyt.

4.3 Classification Results

We adopt standard evaluation tasks following similar works
[Yang et al., 2015; Bojchevski and Giinnemann, 2018]. We
perform classification with a SVM classifier with L2 regular-
ization. The optimal regularization is fixed, for each method
and dataset, using grid search. We run the algorithms 10 times
and report the mean Micro-F1 and standard deviation in Ta-
ble 1.

Our method outperforms every competitor on each dataset
(Table 1). To the exception of VGAE, linked document meth-
ods demonstrate higher accuracy than Deepwalk and LSA on
Cora but they fail to outperform the Combination on Dblp
and Nyt. GELD performs consistently better, possibly due to
the impact of the variance during the learning phase: by in-
specting Equation 6, we can see that the optimal value gives
less weight to documents with high variance (i.e. uncertain
or too general documents). Interestingly, with optimal L2
regularization, TADW yields better results than more recent
baselines on every dataset with 50% train/test ratio. Figure 3
presents results with 50% train/test ratio with different dimen-
sions for the four best models. GELD performs better in each
dimension. TADW outperforms RLE in dimension 100, but
adding dimension seems to deteriorate the results until con-
vergence.

3https://radimrehurek.com/gensim/
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4.4 Link Prediction Results

For the link prediction task, we hide a random set of edges
to learn the representations. Then, a random set of uncon-
nected pairs of documents is drawn as negative examples. We
compute cosine similarity between pairs of documents in the
hidden edge set and the negative example set. We then report
Area Under the Curve (AUC) in Table 2, obtained with 3 runs
and different percentages of hidden edges.

GELD outperforms baselines on Cora and Dblp, but is
beaten by TADW on Nyt (Table 2). Nevertheless, every
method except LSA, AANE and GVNR-t obtains AUC be-
tween 88.2 and 88.5, for %25 and %50 of edges hidden. This
is due to the nature of the network: mean degree is around
500, i.e. 11% of the network. Even with 50% of edge hidden,
the network information is well represented. Furthermore,
TADW fails to produce good representations for link predic-
tion on Dblp which is less dense while GELD performs con-
stantly for different network topologies.

4.5 Qualitative Insights

As stated earlier, GELD represents words and documents in
the same space. To demonstrate the interest of this property,
we compute, for each annotated class of Cora, the average
vector of document means ; inside this class. We present
the five closest words to these class centroids in Table 3. It
is easy to grasp the class content by looking at these descrip-
tors. For example, Class 3 contains documents on Bayesian
models and Class 1 on neural networks.

In Table 4, we present the six closest documents to “La-
tent Dirichlet Allocation”, along with their variance (the sum
of each axis variance). The papers “A perceptual hashing al-
gorithm using latent Dirichlet allocation” and “Spatial Latent
Dirichlet Allocation” both apply LDA to images. Therefore,
they have a greater variance as they must cite papers from
different areas. Meanwhile, “Latent Dirichlet Co-clustering”
is in the same class than LDA, and it is more likely to cite
documents from this class. Interestingly, papers with lower
variance are all in the same class than “Latent Dirichlet Allo-
cation” (Class 3).

5 Conclusion

We presented Gaussian Embedding of Linked Documents
(GELD), a generative model that represents a document as
a Gaussian Distribution in a word vector space. Learned
through maximum likelihood estimation, it outperforms ex-
isting methods on Cora and Dblp, and it matches baselines
on a New York Times dataset. Adding the variance during the
learning phase seems to provide better vector representations
since it gives less importance to documents with high vari-
ance when updating parameters. In further studies, we will
focus on: 1) integrating the variance in downstream tasks,
2) developing a fully Bayesian version of our model to add
priors on mean and variance.
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