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Abstract

Paraphrase generation is of great importance to
many downstream tasks in natural language pro-
cessing. Recent efforts have focused on generating
paraphrases in specific syntactic forms, which, gen-
erally, heavily relies on manually annotated para-
phrase data that is not easily available for many
languages and domains. In this paper, we propose
a novel end-to-end framework to leverage exist-
ing large-scale bilingual parallel corpora to gener-
ate paraphrases under the control of syntactic ex-
emplars. In order to train one model over the t-
wo languages of parallel corpora, we embed sen-
tences of them into the same content and style s-
paces with shared content and style encoders us-
ing cross-lingual word embeddings. We propose
an adversarial discriminator to disentangle the con-
tent and style space, and employ a latent variable
to model the syntactic style of a given exemplar in
order to guide the two decoders for generation. Ad-
ditionally, we introduce cycle and masking learn-
ing schemes to efficiently train the model. Experi-
ments and analyses demonstrate that the proposed
model trained only on bilingual parallel data is ca-
pable of generating diverse paraphrases with desir-
able syntactic styles. Fine-tuning the trained mod-
el on a small paraphrase corpus makes it substan-
tially outperform state-of-the-art paraphrase gener-
ation models trained on a larger paraphrase dataset.

1 Introduction

Paraphrase generation (PG) creates different expressions that
share the same meaning (e.g., “how far is Earth from Sun”
and “what is the distance between Sun and Earth™). It is
a crucial technology in many downstream natural language
processing (NLP) applications such as question answering
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x: we need to further strengthen the agency’s capacities.
z: the damage in this area seems to be quite minimal.

y: the capacity of this office needs to be reinforced even further.

x: his teammates’ eyes got an ugly, hostile expression.
z: the smell of flowers was thick and sweet.

y: the eyes of his teammates had turned ugly and hostile.

Figure 1: Illustration of generating syntactically-controllable para-
phrases with sentential exemplars, which transforms a given input x
to a new sentence y that is semantically similar to x but in a different
syntactic style like z.

[Dong et al., 2017], machine translation [Zhou et al., 2018],
and text summarization [Zhao et al., 2018].

Most recent state-of-the-art approaches to PG employ neu-
ral architectures [Prakash et al., 2016; Hasan et al., 2016;
Gupta et al., 2018], which normally depend on a large amoun-
t of manually annotated paraphrase corpus for training. As
constructing a large paraphrase corpus is inevitably not cheap
and time-consuming, quickly developing a high-quality PG
system on a small corpus mount a formidable practical chal-
lenge in many languages and domains. An effective solu-
tion to this problem is transferring knowledge from a high-
resource task with abundant annotated data to a low-resource
task with limited or even no annotated data.

Recent progress has also witnessed that learning control-
lable paraphrase generation (CPG) with desirable styles is e-
merging as an area of intense focus in the literature, e.g., satis-
fying particular sentiment, template or syntactic structure [Fi-
cler and Goldberg, 2017; John et al., 2018; Iyyer et al., 2018;
Chen et al., 2019]. This technique has benefited several NLP
tasks, such as generating diverse and adversarial samples to
improve model generalization capability and robustness [Iyy-
er et al., 2018]. However, CPG aggravates the requirement
of data annotation as guidance signals such as syntactic tem-
plates are needed [Chen et al., 2019].

In this work, following recent efforts, we focus on using
a sentential exemplar to control the syntactic realization of
generated sentences [Wang et al., 2019; Chen et al., 2019], as
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shown in Figure 1. But unlike existing CPG models that rely
on large annotated paraphrase corpora, we are interested in
developing a high-quality CPG model even without annotated
paraphrase data.

As there are plenty of large-scale bilingual parallel corpora
which can be regarded as paraphrases written in different lan-
guages, we propose to explore large-scale off-the-shelf bilin-
gual corpora for CPG. We find a way to transfer knowledge
in bilingual paraphrases into monolingual paraphrase gener-
ation and use sentences from bilingual corpora as syntacti-
cal exemplars, avoiding annotation work in manually creating
paraphrases and guiding exemplars. Our method is therefore
able to reduce the reliance of CPG on large paraphrase data.

Specifically, we propose to extend the widely-used
encoder-decoder model [Bahdanau er al., 2014] to include a
content encoder for meaning modeling, a style encoder for
style extraction from syntactical exemplars and two syntax-
guided variational decoders. By projecting input sentences
into the same space via cross-lingual embeddings, we share
both of the content and style encoder across different lan-
guages. This sharing mechanism enables the model to be
trained on bilingual parallel data and monolingual paraphrase
data simultaneously, allowing knowledge transfer from bilin-
gual sentence pairs to PG. To disentangle the content from
style space, we employ an adversarial loss over the learned
content and style representations. To provide global syntactic
guiding signal for the two decoders, we introduce a variation-
al latent variable to model style representation. Additionally,
we introduce a masking learning scheme to reduce the depen-
dence of the model on token representations of the syntactic
exemplar, and therefore to encourage the style encoder to ex-
tract more syntax-related information.

In order to enable our model to generate paraphrases by on-
ly learning from bilingual parallel data without using any an-
notated monolingual paraphrases, we further propose a cycle
learning scheme that uses the learned model to generate pseu-
do paraphrase and translation data, and updates the learned
model by training it on the generated data. The strategy al-
lows paraphrase generation and machine translation to benefit
each other in a cycle, which forms the basis for our proposed
multi-task learning framework for the two tasks.

In summary, our contributions are threefold as follows:

e We propose a new controllable paraphrase generation
framework with syntactical exemplars, which benefits
PG from bilingual parallel corpora.

o In order to enable the model to explore bilingual corpora
for paraphrase generation, we propose to equip the mod-
el with several vital components and learning strategies
in a new way: (1) two shared encoders for disentangled
content and style representations, enhanced by cross-
lingual embeddings to create the same space for differ-
ent languages and an adversarial discriminator to dis-
tinguish content and syntactic style; (2) syntax-guided
variational decoders that generate a sentence from both
the encoded content representation and a latent syntac-
tic variable learned by variational autoencoder; and (3)
a translation-generation cycle learning scheme that en-
hances PG from translation and vice versa.
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Figure 2: The proposed neural architecture for CPG.

e Experiment results show that our model can generate di-
verse paraphrases with desirable semantic content and
syntactic style. When the model is fine-tuned on a small
annotated paraphrase data, it substantially outperforms
previous state-of-the-art approaches.

2 Related Work

Neural paraphrase generation (PG) is often formalized
as a sequence-to-sequence (Seq2Seq) learning formalism.
Prakash et al. [2016] employ a stacked residual LSTM net-
work in the Seq2Seq model to enlarge the model capacity.
Hasan er al. [2016] incorporate the attention mechanism
[Bahdanau er al., 2014] to generate paraphrases. Gupta et al.
[2018] use a variational autoencoder framework to generate
diverse paraphrases. Despite their success, the performance
of their models suffers from small training data. Different
from their work, we substantially benefit PG from large-scale
bilingual corpora, and therefore alleviate the heavy reliance
of PG on annotated paraphrase data.

Our approach also relates to recent works on style trans-
fer and controllable text generation. Many previous methods
attempt to control the attributes of generated texts such as
sentiment and formality [Ficler and Goldberg, 2017; John et
al., 2018; Lample et al., 2018], and also to control the struc-
tural aspects of generated sentences [Wiseman et al., 2018;
Iyyer et al., 2018]. More recent works use sentences as exem-
plars to graft their syntax patterns to other sentences [Wang
et al., 2019; Chen et al., 2019]. Similar to them, we also use
a sentential exemplar to provide a syntax form for the gen-
eration. However, significantly different from them, we ex-
tend the model to use bilingual corpora so that our model can
generate paraphrases with the desirable syntactic styles even
without using any annotated paraphrase training data.

3 The Proposed Model

In this section, we elaborate our proposed model, including
its essential components and their working mechanisms.

3.1 Overall Architecture

Our model is illustrated in Figure 2. Its backbone is built
on the encoder-decoder architecture [Bahdanau et al., 2014].
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The model has two encoders: a content encoder Enc,. for en-
coding the content of a sentence and a style encoder Enc, for
modeling the syntactic style of the given exemplar. The two
encoders are shared across the two different languages in the
bilingual training corpora. We use cross-lingual word embed-
dings to bridge the two different languages, and introduce a
discriminator with adversarial loss on the two encoders to en-
force the separation of the style and content spaces. We also
have two syntax-guided variational decoders Dec” and DecY,
each of which is to generate sentences in one language with
the guidance of syntactic exemplars. In this work, we use a
two-layer bidirectional RNN in each encoder, and two-layer
unidirectional RNN in each decoder. All RNNs use LSTM
cells [Hochreiter and Schmidhuber, 1997].

We formulate the problem of syntactic-controlled para-
phrase generation as follows. Given two sentences x and z
as input, we want the generated sentence y from our CPG
model to inherit the meaning of sentence x and be in the syn-
tactic form of sentence z. We refer to x and z as the semantic
template and syntactic exemplar, respectively.

We can use bilingual parallel sentence pairs (X, y) to train
our model. z can be any valid sentence from the same lan-
guage of y, but we set z = y at training procedure to avoid
constructing additional syntactical exemplars. In this way,
we want our model to learn for y the meaning of x from the
content encoder and the syntactic style of y itself from the
disentangled style encoder.

Concretely, for the two languages X and Y in bilingual
training data, the model is trained in two directions X—Y
and Y—X. We use (x, z; y) to train X—Y, where x and z
are input to the content and style encoder and y is the ground
truth for the Y language decoder. Similarly, we use (y, z;
x) to train Y—X. To save space, we use the X—Y direction
to introduce our model thereafter and all computations in the
other direction can be derived accordingly.

3.2 Content and Style Encoders

As we use the two encoders Enc,. and Enc, for both X and
Y language, we project sentences from the two languages in-
to the same content and style spaces. For this, we use the
pre-trained cross-lingual embeddings that are kept fixed dur-
ing training as the input of the two encoders. Concretely, we
use word2vec to train word embeddings for each language on
monolingual corpus. After that, we employ the unsupervised
self-learning method [Artetxe et al., 2017] to obtain cross-
lingual embeddings in the same space.

3.3 Adversarial Discriminator

Inspired by previous work [John et al., 2018], we design a
discriminator to enforce the separation of the content from the
style space. In particular, the discriminator predicts a content
label when the input from the content space, while a style
label when the input from the style space.

Formally, for each sentence, let s be the vector representa-
tion learned by either the content or style encoder, we first use
the mean pooling operation to average across each position,
which is followed by a feed-forward neural network (FFN).
After that, a two-way softmax layer is applied to s, given by:

ys = softmax(Wa;s FFEN(s) + bais) (1)
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where 04,5 = [Wa;s, bais] are parameters, and y indicates the
probability that the input is from the content or style space.

The discriminator is trained with a cross-entropy loss a-
gainst the ground-truth distributions #4(-):

lossadv (eEncc70Encs) = - Z ts(l) log ys(l) (2)
l€labels

where 0. and 0y, are parameters of the two encoders,
1 € {content, style} and y,(1) is the predicted distribution.

3.4 Syntax-Guided Variational Decoders

We use two non-shared decoders (Dec”) and (DecV), one de-
coder per language. Each decoder generates sentences in the
corresponding language based on the semantic and syntactic
representations learned by the encoders. To bridge the de-
coders with the content encoder, we use the attention mech-
anism with bilinear product [Bahdanau et al., 2014] to com-
pute semantic representation h.. To incorporate information
from the style encoder into the decoders, we introduce a latent
variable z based on variational autoencoder (VAE) [Kingma
et al., 2014] to model the underlying syntactic style as a glob-
al signal for generation.

In particular, because of the nature of bilinguality in the
style encoder shared by the two languages, we make the la-
tent variable z have the same distribution across the two d-
ifferent languages in shared space. Following the setting of
VAE, we use KL-divergence to encourage the posterior dis-
tribution ¢(z|y) to be close to the prior p(z|z,y), where the
prior p(z|z,y) is modeled from two languages.

Formally, the joint training objective for a training instance
(X, y) is defined as follows:

T
T (0)=—KL(q(zy)llp(zlx, )+ ][ [ pwelyre—1, 2, 2) (3)

t=1

where K L stands for KL divergence between the posterior
q(z|y) and the prior p(z|z,y). The p(yt|y1.4-1, 2, x) is the
decoder with the guidance from z, where y; is the ¢-th word
of y and p(y¢|y1..—1, 2, x) is given by a softmax over a vocab-
ulary V. The details of the syntax-guided variational decoder
are given below.

Latent Syntactic Variable with VAE. We model the pos-
terior and prior with the multivariate Gaussian distribution,
which allows the latent syntactic variable to be in a contin-
uous space [Bowman er al., 2015]. We use two sentences x
and y to compute the posterior ¢(z|y) and prior p(z|z, y):

q(zly) = N(z; u(y), o (y)*I) 4)
p(2|$,y) :N(z;u(x,y),a(a:,y)QI) 5

where the mean p and s.d. o of the approximate posterior and
prior are the outputs of the style encoder.

Concretely, for the output of the style encoder, we use the
mean pooling operation to average across each position to get
hZ and hY. Then we use two FFNs to project the AZ and hY
into a latent space for computing the posterior and prior.

2, = FFN(Y) 6)
Zzy = FFN([hg; hi]) (7)
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where [-; -] refers to the concatenation operation.
In this latent syntactic space, we obtain the prior Gaussian
parameters u(x,y) and o(x,y) through a linear mapping:

,u(CL‘, y) = Wuzmy + bu (8)
logo(x, y)2 = Wozyy + bs 9)

where 0,qe=[W,,,b,,,Ws b, ] are parameters. We use the same
method as Eqs (8) and (9) to compute the posterior Gaussian
parameters ((y) and o (y), except that the input is z,.

Then we employ the reparameteried technique [Kingma et
al., 2014] for VAE training, setting h, = u(x,y)+o(x, y)Oe,
e ~ N(0,I). This facilitates its optimization since we can
apply the standard backpropagation to compute the gradient
in an end-to-end manner.

Decoding Stage. At each decoding step ¢, we use the latent
syntactic variable &, as a global signal to control the decoder
prediction, which enforces the generated sentence to satisfy
the given syntactic style. Specifically, we concatenate the la-
tent syntactic variable h, the attentional semantic represen-
tation h. and the previous word’s embedding as the input to
the decoder, for predicting the word at next time step.

4 Cycle Learning

In order to train our model in a true paraphrase generation set-
ting, we exploit a “cycle” learning scheme to further improve
the model, by creating pseudo paraphrase training data.

Our model is also designed to be able to perform para-
phrase generation if we use the decoder that generates sen-
tences in the same language as that of the input of the content
encoder. Therefore, we can adopt the following two methods
to generate pseudo training data. We use the learned model in
an inference way to perform generation via greedy decoding.

Given a bilingual parallel sentence pair (X, y), we use the
learned model to translate sentence x from one language to
the other language. The generated translation y’ should be
very close to the original sentence y in terms of meanings.

y' = Dec*(Encc(x), Bnes(2)) (10)

where we set z = x. Specially, in order to generate diverse
sentences, we inject random noise into the latent variable in
the continuous syntactic space, where h, = u(z) + ¢, € ~
N (0, I). Thus we obtain pseudo paraphrase pairs (y’, y).

We also enhance translation by using the learned para-
phrase generation model. We use the learned model to para-
phrase a sentence x to another x’ in the same language. The
sentence X’ can be translated back to the original sentence y
in the other language.

x" = Dec”(Enc.(x), Encs(z)) (11)

where we set z = x. We also use noise in the syntactic vari-
able. In this way, we generate pseudo bilingual pairs (X', y).

S Training and Inference

Training Procedure. Given two bilingually aligned sen-
tences x in X language and y in Y language, we use (X, y) to
train the parameters related to the direction from X to Y (i.e.,
the two encoders, discriminator and the Y decoder), and (y, X)
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for the other direction from Y to X. Meanwhile, we also use
the generated pseudo parallel data (as described in Sect. 4) to
train the model. We take (X', y) as (X, y) to train the transla-
tion from X to Y, and (y’, x) as (y, X) to train the translation
from Y to X. Specially, we take (x’, X) to train the paraphrase
generation model for X language, and (y’, y) to train the para-
phrase generation model for Y language. We alternately use
the six types of sentence pairs to train the model.

Training Objectives. The training loss for a training in-
stance (X, z; y) (where z = y) is a combination of the gen-
eration loss, the KL-divergence penalty (Eq. 3), and the ad-
versarial loss (Eq. 2).

lossaq(0)=A1loss(y|z, x)+A2loss kr +A3l0osSaqn  (12)

where loss(y|z,x) = —Zle log p(yt|y1:4—1,2,2) is the
cross-entropy loss for generating sentence y given x and z,
and )\, are hyperparameters that balance these losses.

Masking on Syntactic Exemplars. During training, in or-
der to avoid additionally collecting syntactic exemplars, we
set z = y as the input of the style encoder. In order to en-
courage the model to capture more syntax-related information
through context and reduce the dependence on token repre-
sentations, we use the [MIASK] token as introduced in Devlin
et al. [2019] to mask the syntactic input of each training ex-
ample at the token level. We replace a chosen token with the
[MASK] 30% of the time, a random token 10% of the time
and do not change the chosen token 60% of the time.

Inference. Given a semantic template and syntactic exem-
plar from the same language, we input the semantic template
to the content encoder and the syntactic exemplar to the style
encoder, and then use the decoder corresponding to the lan-
guage of the inputs to generate a syntactically controllable
paraphrase.

6 Experiments

We conducted two groups of experiments, one for control-
lable paraphrase generation and the other for general para-
phrase generation without syntactic guidance. We used the
Chinese-English bilingual dataset CWMT (neu2017) to train
the proposed model, and the ParaNMT dataset for evaluating
controllable paraphrase generation, the Quora and MSCOCO
datasets for evaluating general paraphrase generation.

6.1 Datasets

CWMT Chinese-English Dataset. This dataset contains 2
million bilingual parallel pairs from news domain. It has
been originally released publicly for Chinese-English ma-
chine translation evaluation.!

ParaNMT Dataset. Following previous work [Chen ef al.,
2019], we used this paraphrase dataset [Wieting and Gimpel,
2018] to evaluate model performance for controllable para-
phrase generation. For fair comparison, we used the same
training data (500K sentence pairs) as Chen ef al. [2019].
The manually annotated 800 instances created by Chen et al.
[2019] were used as our test set, and 500 for development set.

'http://nlp.nju.edu.cn/cwmt-wmt/
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[ Model [ BLT [ R-TT | R-2f [ R-LT | METT | STV |

Baseline model |
Baseline (500K) [ 12.2 [ 44.8 [ 203 [ 46.8 | 23.8 | 8.6 |
The proposed model trained on bilingual parallel data

Ours (0.5M) 87 [ 393 | 149 | 41.7 | 205 9.8

Ours (1.0M) 11.0 | 43.1 | 182 | 455 | 228 8.9

Ours (1.5M) 116 | 437 | 19.1 | 462 | 233 8.4

Ours (2.0M) 12.0 | 443 | 193 | 46.6 | 23.6 | 82
Fine-tuning on paraphrase data

Ours (+50K) 129 | 458 | 19.6 | 46.8 | 239 8.1

Ours (+100K) 13.3 | 459 | 20.6 | 48.2 25.6 7.6
Ours (+200K) 13.6 | 463 | 21.2 | 489 259 7.3
Ours (+500K) 143 | 47.3 | 229 | 49.3 26.2 6.6

Previous work [Chen et al., 2019]
VGVAE 3.5 | 248 7.3 29.7 12.6 10.6
VGVAE + WPL | 45 | 26.5 8.2 31.5 13.3 10.0
VGVAE + LC 33 24.0 7.2 29.4 12.5 9.1
VGVAE + WN 13.0 | 432 | 20.2 | 47.0 23.8 6.8
VGVAE + all 13.6 | 447 | 21.0 | 48.3 24.8 6.7

Table 1: Results on controllable paraphrase generation. BL: BLEU,
R: ROUGE, MET: METEOR, ST: Syntactic tree edit distance.

Quora Dataset. This dataset is a paired paraphrase dataset
in question domain. It consists of 150K paraphrase pairs. Fol-
lowing previous work [Hasan et al., 2016; Gupta et al., 2018],
we used 100K and 4K pairs for training and testing, and the
remaining pairs as development set, respectively.

MSCOCO Dataset. This dataset [Lin et al., 2014] contains
human-annotated captions of over 120K images. Each image
contains five captions from five different annotators. Follow-
ing Prakash et al. [2016], we obtained a collection of 330K
instances for training and 20K instances for testing.

6.2 Model Configuration

We used Adam [Kingma and Ba, 2014] for optimization. We
set the initial learning rate to 5e-4. We set the mini-batch
size to 50 for each training corpus. The size of cross-lingual
word embeddings and the hidden states of the encoders and
decoders were set 512. The size of the latent syntactic vari-
able were 256. We trained the cross-lingual embeddings on
the CWMT dataset. For the VAE training, following Bow-
man et al. [2015], we set the weight Ay to zero at the start of
training, and gradually increased this weight to 1 as training
progressed. We set A; to 1 and A3 to le-5.

6.3 Automatic Evaluation Metrics

Semantic Accuracy. Following previous work [Prakash et
al., 2016; Hasan et al., 2016], we used well-known automatic
evaluation metrics: BLEU (BL), ROUGE (R) and METEOR
(MET). Pervious studies have shown that these metrics per-
form well in evaluating generated paraphrases.

Syntactic Similarity. To measure the syntactic similarity,
we reported the syntactic tree (ST) edit distance. We com-
puted the tree edit distance between constituency parse trees
after removing word tokens following Chen et al. [2019].

6.4 Controllable Paraphrase Generation

Experiment Settings. We trained the proposed model in
the setting that the input and output is the same language.
The model trained in this way was used as the baseline model.
We then trained our model on the bilingual corpus (CWMT
Chinese-English Dataset) to compare against the baseline
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[ Model | BLT | R-IT | R-2 | R-Lf | METT | STY |
MT ‘ 10.4 ‘ 416 ‘ 7.1 ‘ 433 ‘ 20.5 ‘ 9.6 ‘

Ours 110 | 43.1 | 182 | 455 | 228 | 89

Table 2: Comparison to CPG models trained on MT-generated para-
phrase data.

[Model | BLT | R-1T | R-2f | R-LT | MET{ | ST{ |
[Ous [ 110 ] 431 | 182 | 455 | 228 | 89 |
~KLloss | 6.7 | 343 | 109 | 359 | 178 | 18

-Advloss | 94 | 404 | 145 | 429 21.7 9.8
- Cycle 6.4 | 36.6 | 10.3 | 37.7 185 | 114
-Masking | 54 | 31.5 | 94 | 344 16.0 | 11.6

Table 3: Effect of each component.

model. We also analyzed the effect of using different amoun-
t of training data. Additionally, we investigated the perfor-
mance of fine-tuning our bilingually trained model on the
condition that a small paraphrase dataset is available. Finally,
we compared the proposed method with previous work.

Results. The results are shown in Table 1. It can be seen
that our model achieves competitive performance on the CPG
task, even without using any annotated paraphrase training
data. For the baseline model, please notice that we used the
same training data as the model VGVAE + WN [Chen e al.,
20191, but we did not use external POS tags to preprocess
syntactic inputs, and only used masking scheme.

Compared to the baseline model trained on paraphrase da-
ta, the performance of our model trained on bilingual data
is surprisingly promising, which is quite comparable to the
baseline model in terms of the six evaluation metrics. The
results with different amount of bilingual training data show
that our method can obtain a good performance even if the
training data is relatively small, and suggest that more train-
ing data can further improve the quality of generated para-
phrases. This validates that our proposed model is able to
learn to generate syntactically-controllable paraphrases from
bilingual parallel data.

Fine-tuning our model on a small amount of available para-
phrase data, we can gain further improvements. When com-
pared to the baseline trained on 500K paraphrase data, fine-
tuning our model on only 100K (20%) paraphrase data can
obtain the same performance. With more paraphrase data, the
performance of our model can be further steadily improved
on all evaluation metrics. Finally, when all 500k paraphrase
pairs are used to fine tune our model, it reaches the perfor-
mance level that is substantially better than the previous work
[Chen et al., 2019] on all evaluation metrics. For the chal-
lenging syntactically-controllable paraphrase generation task,
our initial success of using off-the-shelf bilingual data shows
a promising direction for paraphrase generation that does not
need a large scale of annotated paraphrase data.

Comparison to Model Trained on MT-Generated Para-
phrase Data. Following Wieting and Gimpel [2018], we
generated paraphrase data via neural machine translation (N-
MT). We spilt the bilingual data into two parts, 1M for train-
ing a Transformer NMT system [Vaswani et al., 2017], and
IM for using the trained NMT model to construct para-
phrase data. We translated Chinese sentences into English,
and paired the translations and original English sentences in-
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Sem | extensive consultation has taken place over the past year.

Syn | there are our own troops like little ants.

Ref | there have been extensive consultations over the past year.

Gen | there are many extensive consultations in the past year.

Sem | it is hard for me to imagine where they could be hiding it underground.
Syn | they ca n’t imagine when he "1l be able to walk.

Ref | ican’timagine where they could be hiding it underground.

Gen | ican’timagine where they could hide it from underground.

Table 4: Examples of generating controllable paraphrases from the
model trained only on bilingual parallel data. Sem: semantic input,
Syn: syntactic input, Ref: reference, Gen: generated paraphrase.

[ Model [ BL-17 [ R-17 | R-2 [ METT |
Baseline model |

[ 512 | 570 | 316 | 267 |

Baseline (100K)

The proposed model trained on bilingual parallel data
Ours (0.5M) 377 | 478 | 183 18.8
Ours (1.0M) 38.6 | 50.1 | 209 | 20.0
Ours (1.5M) 412 | 513 | 214 | 209
Ours (2.0M) 453 | 52.7 | 232 | 224
Fine-tuning on paraphrase data
Ours (+10K) 494 | 578 | 298 | 255
Ours (+30K) 50.8 | 59.8 | 323 26.7
Ours (+50K) 52.0 | 609 | 334 | 274
Ours (+100K) 539 | 62.2 | 352 | 285
Previous work
VAE-SVG (50K) 17.1 - - 21.3
EDD-LG (50K) 41.1 - - 20.1
VAE-SVG (100K) | 22.5 - - 24.6
EDD-LG (100K) 45.7 - - 23.1

Table 5: Results on the Quora dataset.

to paraphrases. The paraphrase data generated in this way
were used to train our model. As shown in Table 2, the model
trained on the bilingual corpus is better than the model trained
on MT-generated paraphrase data.

Ablation Study. To better understand the impact of each
component of our model on learning controllable paraphrase
generation from bilingual data, we conducted ablation study.
The results are shown in Table 3. In this experiment, we used
1M bilingual corpus as training data.

When the KL loss for building the syntactic space is re-
moved, the performance is obviously degraded. We also ob-
serve that disentangling the content and style space via the
proposed adversarial discriminator is important for the mod-
el to learn syntactically-controllable generation. Without the
cycle learning, the performance also substantially drops. The
masking technique has the largest impact on performance as
it successfully prevents the model from just copying.

Generated Examples. To take a deep look into the pro-
posed model only relying on bilingual data, we manually an-
alyzed some examples, as shown in Table 4.

We can see that the proposed model produces fairly good
samples in terms of both closeness in meaning and diversity
in expressions. Meanwhile, our model trained only on bilin-
gual data can effectively generate meaning-preserved para-
phrases in the syntactic form similar to syntactic inputs.

6.5 General Paraphrase Generation

In order to study our model in learning PG from bilingual da-
ta, we conducted the second group of experiments without the
controllable nature by omitting the part of the style encoder.
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[ Model [ BL-1T [ R-1T [ R-21 | METT |
\ Baseline model |
[ Baseline 300K) | 35.6 [ 389 [ 142 158 |
The proposed model trained on bilingual parallel data

Ours (0.5M) 6.0 188 | 5.0 6.1
Ours (1.0M) 8.5 209 | 54 6.3
Ours (1.5M) 102 | 21.1 | 5.6 6.8
Ours (2.0M) 11.2 | 221 | 6.2 7.4
Fine-tuning on paraphrase data
Ours (+50K) 346 | 384 | 139 15.1
Ours (+100K) 36.0 | 387 | 14.1 15.6
Ours (+200K) 375 | 392 | 146 16.2
Ours (+300K) 377 | 39.8 | 152 16.5

Table 6: Results on the MSCOCO dataset.

Results. The experiment results on the Quora dataset are
shown in Table 5. We compared our model with previous
methods VAE [Gupta et al., 2018] and EDD-LG [Patro et
al., 2018] that are built on large annotated paraphrase da-
ta (100K). As we can see, the proposed model obtains very
strong results that are comparable to the previous state-of-
the-art models trained on large paraphrase data. The fine-
tuning results on smaller paraphrase data show that our model
with only 30K (30%) paraphrase data outperforms the state-
of-the-art models trained on 100K paraphrase data. With the
increasing of the amount of paraphrase data, the performance
is further improved.

The experiment results on the MSCOCO dataset are dis-
played in Table 6. The MSCOCO is an image caption dataset.
Since different annotators may focus on different objects in
the same image, the descriptions created by them may be
quite different in meaning. Thus, the model trained on bilin-
gual data cannot capture these differences. However, our
model still obtains promising performance when it is fine-
tuned with a small annotated data.

As both the MSCOCO and Quora dataset are smaller than
the ParaNMT dataset, the results here further demonstrate the
effectiveness of our method in low-resource scenarios.

7 Conclusion

In this work, we have presented a novel method to learn con-
trollable paraphrase generation from bilingual data. We mod-
el semantic content and syntactic style via two shared en-
coders and one adversarial discriminator. Experiments and
analyses disclose that the proposed method can effectively
learn to generate high-quality meaning-preserved paraphras-
es in the syntactic forms controlled by given exemplars. This
allows us to significantly reduce the amount of needed manu-
ally annotated paraphrase data, and makes it easier to develop
a high-quality paraphrase generation system with large-scale
available bilingual corpora.
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