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Abstract

We consider the problem of planning with arith-
metic theories, and focus on generating optimal
plans for numeric domains with constant and state-
dependent action costs. Solving these problems ef-
ficiently requires a seamless integration between
propositional and numeric reasoning. We pro-
pose a novel approach that leverages Optimization
Modulo Theories (OMT) solvers to implement a
domain-independent optimal theory-planner. We
present a new encoding for optimal planning in this
setting and we evaluate our approach using well-
known, as well as new, numeric benchmarks.

1 Introduction
In this work we focus on numeric planning [Fox and Long,
2003], an extension of classical planning where preconditions
and effects of actions may require reasoning on fragments of
arithmetic theories. Despite being undecidable in the gen-
eral case [Helmert, 2002], admissible heuristics have been
extended to handle simple numeric planning problems [Scala
et al., 2016a] in which actions have linear conditions and
may only increase or decrease numeric variables by a con-
stant – see, e.g, [Scala et al., 2016a; Scala et al., 2017;
Piacentini et al., 2018b]. Several heuristics have been pro-
posed also for numeric planning problems where both con-
ditions and effects are expressed as linear expressions over
numeric state variables [Hoffmann, 2003; Illanes and McIl-
raith, 2017; Li et al., 2018]. However these are inadmissi-
ble and cannot be used in the cost-optimal setting. Notably,
cost-optimal planning with both simple and linear effects can
be handled by [Piacentini et al., 2018a] via a compilation to
mixed-integer linear programming (MILP) that proved to be
competitive with heuristic search approaches.

We propose a new planning approach that can solve to op-
timality numeric problems for which (integrated) algorithmic
solutions have not been proposed yet. We focus on extend-
ing cost-optimal numeric planning to problems where con-
ditions may be simple or linear and actions are equipped
with constant and state-dependent costs, i.e., costs are en-
coded by arithmetic expressions over numeric state vari-
ables. Previous works have studied state-dependent action

costs (SDAC) [Ivankovic et al., 2014] in the classical set-
ting [Geißer et al., 2015; Geißer et al., 2016] and in the pres-
ence of global numerical state constraints [Ivankovic et al.,
2014; Haslum et al., 2018; Ivankovic et al., 2019], but did
not explore extensions towards numeric planning.

Support and scalability are challenging in the setting we
target, but we show that such challenges are met by our ap-
proach leveraging recent advances in Optimization Modulo
Theories (OMT) [Sebastiani and Tomasi, 2015], an extension
of SMT that combines efficient propositional reasoning with
dedicated procedures for theory-optimization. After a brief
review of background notions in Section 2, Sections 3 and 4
detail our contributions summarized as follows:
• A novel SMT encoding of numeric planning that enables

an efficient relaxed reachability analysis. We extend
standard encodings with a suffix that performs a Boolean
abstraction of the transition function of the planning
problem. Reasoning on this abstraction, we can con-
clude whether a goal is reachable only with a modest
increase in the size of the formula and without resorting
to expensive decision procedures for theory-reasoning.
• An extension of this construction that leads to Optimal

Planning Modulo Theories. We show how our encoding
needs to be modified in the OMT setting and provide op-
timality guarantees for our approach. While this is not
the first application of OMT to planning – see, e.g., [Le-
ofante et al., 2019; Leofante et al., 2018] – this work
presents the first domain-independent results based on
OMT.
• An empirical analysis of our planner on domains pre-

viously reported in the literature [Scala et al., 2017;
Li et al., 2018], and on a new numeric domain featur-
ing SDAC which state-of-the-art tools struggle to solve.

2 Background
Numeric planning. We consider a fragment of numeric
planning expressible in PDDL2.1 level 2 [Fox and Long,
2003]. A (numeric) planning problem is a tuple Π =
〈VB,VQ, A, I,G〉 where VB and VQ are finite disjoint sets
of propositional and numeric variables of Π, respectively;
for a variable v ∈ VB ∪ VQ let dom(v) denote the domain
of v; we use Boolean B for propositional variables and for
numeric variables the rationals Q equipped with the usual
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order and arithmetic operations. A state of Π is a func-
tion s : (VB ∪ VQ) → (B ∪ Q) assigning to each vari-
able v ∈ VB ∪ VQ a value s(v) ∈ dom(v) from its corre-
sponding domain. Let S denote the set of all states of Π.
A propositional constraint is either a propositional variable
v ∈ VB or its negation ¬v. Arithmetic expressions e are
composed from numeric variables and constants using arith-
metic operators. An arithmetic expression is linear iff for
each multiplication operator in it, at least one of the operands
contains no variables. A numeric constraint e1 ∼ e2 com-
pares two arithmetic expressions using a comparison operator
∼∈ {<,≤,=,≥, >}. A constraint ϕ is either a propositional
or a numeric constraint. A condition Φ is a (possibly empty)
set of constraints. The evaluation function J·Ks and the satis-
faction relation |= for expressions, constraints and conditions
are as usual.

A propositional assignment has the form v := e, where
v ∈ VB is a propositional variable and e ∈ {>,⊥}. A nu-
meric assignment has the form v := e, where v ∈ VQ is a
numeric variable and e is an arithmetic expression; we say
that v := e is an assignment to v. An assignment is either a
propositional or a numeric assignment. An effect Ψ is a set
of assignments that contains at most one assignment v := e
for each variable v ∈ VB∪VQ; we say that v is assigned in
Ψ iff there is an assignment v := e in Ψ. For any v ∈ VQ,
d ∈ dom(v), and e a linear arithmetic expression, we call
v := v+d a constant increment, v := v-d a constant decre-
ment, v := v+e a linear increment, and v := v-e a linear
decrement. Given a state s ∈ S and an effect Ψ, the successor
of s and Ψ is the (unique) state s′ ∈ S such that s′(v) = JeKs
for each v := e in Ψ, and s′(v) = s(v) for each v ∈ VB ∪ VQ
that is not assigned in Ψ; we write s, s′ |= Ψ.
A is the set of actions a = (prea, effa, ca), where prea is

a condition, effa is an effect and ca : S → Q≥1 is a state-
dependent positive cost function, specified by a numeric ex-
pression. An action a = (prea, effa, ca) is applicable in state
s iff (i) s |= ϕ for each ϕ ∈ prea and (ii) JeKs is defined for
each assignment v := e in effa. A numeric constraint e ∼ 0
is simple iff e is linear and for each assignment in ∪a∈Aeffa,
either the assigned variable does not appear in e or the as-
signment is a constant increment or a constant decrement. A
numeric constraint e ∼ 0 is linear iff e is linear and for each
assignment in ∪a∈Aeffa, either the assigned variable does not
appear in e or the assignment is a linear increment or a lin-
ear decrement. A set MA ⊆ A of actions is independent if
any variable assigned in the effect of an action in the set ap-
pears in no other action in the set (neither in conditions nor
in effects nor in cost functions). I is a condition called the
initial condition which is satisfied by exactly one state called
the initial state; G is a condition called the goal condition;
states satisfying G are called goal states.

A (sequential) plan πn = 〈a0, . . . , an-1〉 is a sequence
of actions a0, . . . , an-1 ∈ A such that there exist (unique)
states s0, . . . , sn ∈ S with s0 |= I , si-1 |= preai-1

and
si-1, si |= effai-1

for each i = 1, . . . , n, and sn |= G.
The cost of πn is C(πn) =

∑n-1
i=0 cai

(si). A parallel plan
πn = 〈A0, . . . , An-1〉 is a sequence of independent action
sets Ai = {ai,1, . . . , ai,ki

} ⊆ A, for i = 0, . . . , n-1,

such that 〈a0,1, . . . , a0,k0 , . . . , an-1,1, . . . , an-1,kn-1〉 is a plan
for Π. The cost of a parallel plan πn is C(πn) =∑n-1

i=0

∑
a∈Ai

cai(si). A plan πn is optimal for Π iff
C(πn) ≤ C(π′) for all plans π′ of Π.

Planning as satisfiability. Given a planning problem Π =
〈VB,VQ, A, I,G〉, planning as satisfiability [Kautz and Sel-
man, 1992] tries to solve Π by encoding plans of bounded
length as the solutions of a logical formula. We con-
sider state-based encodings to SAT [Rintanen et al., 2006;
Rintanen, 2009] and SMT [Shin and Davis, 2005]. To en-
code the existence of parallel plans of length up to n, we en-
code a sequence of n ground action sets as well as the seman-
tics of their parallel execution. This requires n variable sets
A0, . . . , An-1, where eachAi consists of a unique proposition
ai for each action a ∈ A (stating whether or not a is executed
in step i), and also n+1 copies Vi = {vi | v ∈ VB ∪ VQ},
i = 0, . . . , n of the propositional and numeric variable sets,
storing the initial variable values in V0 and the values after
the ith step in Vi.

For each constraint ϕ in the plan specification, we denote
by ϕi the formula obtained from ϕ by replacing each variable
v ∈ V with vi ∈ Vi. The same renaming applies to effects.
Thus in formula (1) below, I0 is the initial condition with each
variable v replaced by v0, and similarly Gn results from the
goal condition G after replacing each v with vn.

Furthermore, let Ti,i+1 be a formula describing how actions
executed in the ith step of a plan affect states, i.e., Ti,i+1 en-
forces that each action implies its preconditions over Vi and
its effects over Vi+1. With Ti,i+1 we also encode explanatory
frame axioms and mutual exclusion (mutex) axioms. The for-
mer state that variables not affected by actions do not change
their values; the latter enforce that multiple actions can be
performed simultaneously if and only if they are independent.

For a given planning problem Π, now we can encode
bounded plans for horizon n with the following formula Πn:

Πn : I0 ∧
n-1∧
i=0

Ti,i+1 ∧Gn (1)

Example 1. Assume a planning problem with one proposi-
tion VB = {b} and one numeric variable VQ = {x}), ini-
tial condition b ∧ (x = 0), goal condition x = 1, and
two actions A = {a+, a-}, a+ = (∅, {x := x+2}, x) and
a- = ({b}, {x := x-1, b := false}, x). Without considering
costs, the encoding uses the following constructs:

I0 : x0 := 0 ∧ b0 Gn : xn = 1

T +i,i+1 : a+i ⇒ xi+1 := xi+2

T -i,i+1 : a-i ⇒ (bi ∧ xi+1 := xi-1 ∧ ¬bi+1)

Ti,i+1 : (a+i ⊕ a-i ) ∧ T +i,i+1 ∧ T -i,i+1 ∧ (bi ∧ ¬bi+1 ⇒ a-i )
∧(¬bi ∧ bi+1 ⇒ ⊥) ∧ (xi = xi+1 ∨ a-i ∨ a+i )

where ⊕ denotes mutual exclusion. The formulas Π0 and
Π1 are unsatisfiable, but Π2 yields a plan executing both a-i
and a+i once, in arbitrary order.
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3 Optimal Planning Modulo Theories
When dealing with unit costs, the standard encoding above
can be adapted to find plans with a minimal number of actions
by enforcing that exactly one action is executed in each step.
If Π0, . . . ,Πn-1 are unsatisfiable and Πn has a solution, then
the shortest plan has length n. However, for constant and
state-dependent costs the shortest plan is not necessarily cost-
optimal, therefore new conditions are needed to determine
when to stop searching. To put a bound on this cost-optimal
search, we need at least a sufficient condition to detect that
no plans longer than a certain bound exist. The idea is that if
after n steps no future action can modify any of the variables
in the goal any more, then the problem does not admit any
solution.

3.1 A Novel SMT Encoding
To formalize such a sufficient condition Πbound

n for a given
horizon n, we enforce the initial condition and transitions as
per formula (1) and extend it with requirements T abs

n andGabs
n

as explained below:

Πbound
n : I0 ∧

n-1∧
i=0

Ti,i+1 ∧ T abs
n ∧Gabs

n (2)

Having executed n steps, a necessary condition for satisfy-
ing the goal condition G at n or in the future is that for each
constraint ϕ in G, either ϕ is true in n or at least one variable
in ϕ will be modified by further steps. To express a neces-
sary condition for the latter, we introduce for each variable
v ∈ VB ∪VQ a fresh proposition mod v, and we ensure that if
mod v is false then there exists no plan that is able to modify
the value of v after the first n steps:

Gabs
n :

∧
ϕ∈G(ϕn ∨

∨
v∈ϕ mod v) (3)

To achieve such a result, we observe that having executed
n steps, a necessary condition for executing an action a in
the future is that for each precondition of a either it is true
in state n or at least one of its variables will be modified by
further executions. Since executing an action might in turn
enable further actions, we encode fixed points for this chain
to obtain an over-approximation of all variables whose value
could still be potentially changed if a longer horizon were
given:

T abs
n :

∧
a∈A

(
aabs ⇒

( ∧
ϕ∈prea

(ϕn ∨
∨
v∈ϕ

mod v)
))

∧
∧
v∈V

(
mod v ⇔

( ∨
a∈A, v:=e∈effa

aabs)) (4)

Note that aabs represents only a necessary condition for ex-
ecuting a in the future, on a path starting in the nth state.
However, this condition is not sufficient for the existence of
plans with length n or longer, because after the first n steps
we disregard the concrete effects of actions. Those steps can
be seen as executing abstract actions, where for each concrete
action a ∈ A we define one abstract action aabs by

• relaxing each constraint ϕ ∈ prea in the precondition of
a to ϕ ∨

∨
v∈ϕ mod v and

• relaxing each assignment v := e in the effect of a by
mod v := true,

assuming that mod v are initially false for all v ∈ V . Note
that, since all abstract action effects set a subset of the mod v
variables to true, they are not conflicting, therefore we do not
encode mutex axioms.
Example 2. Consider the planning problem of Example 1.
Without considering costs, the encoding of Πbound

n uses the
following new constructs:

Gabs
n : (xn = 1 ∨ mod x)

T abs
n : a-,abs ⇒ (bn ∨ mod b) ∧ (mod b⇔ a-,abs)

(mod x⇔ a+,abs ∨ a-,abs)
Enforcing the smallest fixed point. Our encoding should
express the existence of a plan of length n or longer when af-
ter the first n steps we switch from executing concrete actions
to executing abstract actions. However, there is one remain-
ing problem: formula (4) does not yet enforce the smallest
fixed point. For example, consider an action a with a single
precondition constraint that refers to a variable v ∈ V and a
single assignment in its effect that assigns v. Then a solu-
tion which evaluates both aabs and mod v to true satisfies the
corresponding formulas in formula 4, but this way aabs might
“enable itself”. Though the encoding is already correct in its
current form, in order to make it efficient, we compute the
smallest fixed point of all facts that are true in n under the
abstract transition relation to obtain all valid reachable states.

We borrow ideas from Answer Set Programming
(ASP) [Gelfond and Lifschitz, 1988] to perform this compu-
tation in our framework1. Consider a program P correspond-
ing to formula (4) where, for each abstract action aabs, a set of
rules is built such that: (i) premises contain one of the disjunct
appearing in the precondition of aabs and (ii) conclusions of
each rule contain all mod v appearing in the effects of aabs.
Theorem 1. (closure) For any fixed truth values of con-
straints in action preconditions and the goal condition, the
smallest closure of the abstract transition relation corre-
sponds to the answer set of P .

Previous works on compilation from ASP to the satisfia-
bility setting can be leveraged to encode this computation in
our construction. Here we use an approach based on loop
formulas as proposed by [Lin and Zhao, 2002].

We start by constructing a dependency graph for abstract
actions as a directed graph D such that: (i.) the nodes of D
correspond to all concrete constraints and all mod v, v ∈ V in
action preconditions and (ii.) for each abstract action aabs and
each variable mod v assigned by aabs, there is an edge con-
necting mod v to nodes corresponding to aabs’s precondition.

1Our idea bears some similarities to the relaxed reachability
analysis of [Helmert, 2009], although here we propose a new con-
struction that can be embedded in the Planning as SAT framework.
Moreover, we use this construction with a different purpose: while
Helmert uses this to perform reachability analysis, we use this ab-
straction to provide termination guarantees for our planning algo-
rithm.
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From [Lin and Zhao, 2002] we know that strongly connected
components of D represent loops in the formula, i.e., circular
dependencies that hinder the computation of the smallest set
closed under action rules.

For each loop visiting nodes L, we forbid circular self-
enabling of corresponding actions with the formula

(
∨
l∈L

l)⇒ (
∨

l′∈R(L)

l′) (5)

where R(L) is a set of variables appearing in premises of
abstract rules such that: (i.) at least one variable in their con-
clusions intersect L but (ii.) none of the variables in their
premises intersects L.

Example 3. Consider the planning problem of Example 1,
where action a+ is now removed, i.e., A = {a-}. The depen-
dency graph for a-,abs is

bn mod b

mod x

The graph contains one loop L = {mod b} and the corre-
sponding loop formula writes mod b⇒ bn

Correctness. In the following let Aabs = {aabs ∈ B | a ∈
A} be the set of variables modelling (the execution of) ab-
stract actions. Furthermore, let Πbound+

n be the conjunction of
Πbound

n and the axioms (5) for each loop in the dependency
graph D. We can formulate the following correctness state-
ment for Πbound+

n .

Theorem 2. (unsolvability) For any n ≥ 0, if Πbound+
n is un-

satisfiable then the planning problem Π does not admit solu-
tion.

Proof sketch. The full proof of Theorem 2 is complex. Due
to space constraint we only provide an intuition of the proof.
Assume Πbound+

n is unsatisfiable while Π admits a plan πm =
〈A0, . . . , Am−1〉 of length m ≥ n. By construction the se-
quence 〈A0, . . . , An-1〉 satisfies Πn. Abstraction-enabling
axioms ensure that the abstract counterparts of the actions
An are still applicable in the nth state and their effects en-
able the execution of subsequent abstract action sets in place
of 〈An, ..., Am-1〉. Since Am-1 achieves the goal in Π, the
abstract goal can be reached in Πbound+

n as well, leading to a
contradiction.

3.2 Extension to OMT
In the first part of this section we introduced a new encoding
that enables relaxed reachability analysis. In the following we
show how to leverage the properties of this encoding to pro-
vide termination conditions and optimality guarantees for our
planning algorithm. The main result can be informally stated
as follows: if, for a given horizon, the OMT solver finds a
solution that does not require abstract actions, this solution
is also a globally optimal plan. To achieve this we extend
formula Πbound+

n as follows.

First, in the encoding T abs
n of abstract actions aabs we re-

move the abstraction of effects on cost variables and add in-
stead a metric for plan quality: for each concrete action a
with cost function ca, the abstract action aabs has the minimal
value of ca over all states, i.e. caabs := min

s∈S
ca(s).

With the extensions above, we ensure that abstract actions
always have a cost that is lower than or equal to the one of
their concrete counterpart. Under this cost schema, the solver
will favour the execution of abstract actions to achieve the
(abstract) goal as these have minimum cost. While this is
needed to ensure optimality of our solutions as we will show,
we must make sure the solver does not abuse this and push
the execution of all actions to the suffix. Not only this would
affect optimal reasoning, but would also affect termination of
bounded planning procedures. Indeed we would need to in-
crease the planning horizon indefinitely hoping to find a valid
plan (i.e., containing only concrete actions), but this would
never happen. Hence to ensure termination, we augment the
OMT encoding with the following axioms. For each action
a ∈ A let Ma ⊆ A be the set of actions that are not inde-
pendent from a. For each action a ∈ A and for each step
0 < i < n we add

ai ⇒

ai-1 ∨
 ∨

ϕ∈prea

¬ϕi-1

 ∨( ∨
a′∈Ma

a′i-1

) (6)

With axioms (6) an action a can be executed at step i only if:
(i.) a was already performed at step i-1 or, (ii.) a was not
applicable at step i-1 or, (iii.) another action a′, mutex with
a, was performed at i-1. We then ensure that abstract actions
are executed only if all previous steps (i.e., < n) are filled
with at least one action:( ∨

aabs∈Aabs

aabs

)
⇒

∧
0≤i<n

∨
a∈A

ai (7)

Let Πopt
n denote the planning formula Πbound+

n extended
with the axioms above, the following result holds.
Lemma 1. For any n ≥ 0, Πbound+

n and Πopt
n are equisatisfi-

able.
With the addition above we can formulate the following

theorem.
Theorem 3. (optimality) For any n ≥ 0, let µ be the optimal
solution of Πopt

n . If µ |= Gn then µ is a valid optimal plan.

Proof sketch. The intuition behind this proof is based on the
fact that the goal state could be reached without resorting
to abstract actions. Assume µ |= Gn but a cheaper plan
πm = 〈A0, . . . , An−1, . . . , Am−1〉 exists at horizon m > n.
If a cheaper solution existed form > n then a relaxed version
of it would be encoded by a model µ′ of Πopt

n where action sets
A0, . . . , An−1 appear as in πm and actions in An, . . . , Am−1
are abstracted by actions in Aabs which have lower (or same)
cost by definition, i.e., C(µ′) ≤ C(πm). We can now distin-
guish three cases: (i) C(µ′) < C(µ), which contradicts the
assumption that µ is optimal, (ii) C(µ) = C(µ′) ≤ C(πm)
and (iii) C(µ) < C(µ′) ≤ C(πm) which contradict the as-
sumption that πm is optimal.
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Algorithm 1 Optimal Planning Modulo Theories

1: procedure OMTPLAN(Π, ub)
2: set initial horizon n := 0
3: while n ≤ ub do
4: build formula Πopt

n
5: if Πopt

n is UNSAT then
6: return Π does not admit solution;
7: else
8: extract model µ for Πopt

n ;
9: if µ satisfies Gn then

10: return µ
11: else
12: increase horizon n;
13: return no plan found within bound ub

Informally, Theorem 3 states that if a goal can be achieved
within a given horizon without using abstract actions, then the
plan computed for said horizon is also a global optimum. This
condition, in combination with the cost schema we adopt,
guarantees optimality of our solutions. As an example, con-
sider a problem where the goal could be achieved by a single,
costly action or by a sequence of cheaper actions. Under such
circumstances, Πopt

n would be satisfiable for n = 1, however
our cost schema forces the solver to satisfy the formula by
using abstract actions which have lower costs. This, in turn,
causes Theorem 3 to be violated and our planning algorithm
to continue its search using longer horizons. These ideas are
formalized in the following paragraph.

Planning algorithm. We embed our encoding in the OMT-
PLAN procedure shown in Algorithm 1. Given a planning
problem Π and a user-specified upper bound ub, our proce-
dure builds bounded encodings for increasing horizons (lines
2 − 4). At each iteration, we check if formula Πopt

n is satis-
fiable. If it is not the case, the procedure terminates accord-
ing to Theorem 2 and signals that the planning problem does
not admit a solution (lines 5 − 6). Notice that, for the pur-
pose of checking reachability, this check could be done only
once for n = 0. If formula Πopt

n is satisfiable instead, we ex-
tract a model µ for it in line 8. Notice that µ has minimum
cost among all possible models of Πopt

n , being the result of an
OMT check. We then check the condition expressed in The-
orem 3: if µ does not contain abstract actions (i.e., µ |= Gn,
the goal can be achieved within the given horizon without re-
sorting to abstraction) we return the optimal plan represented
by µ, otherwise we increment the horizon for the next itera-
tion (lines 9− 12). Notice that the strategy used to increase n
does not affect the optimality results of OMTPLAN as The-
orem 3 holds for any n ≥ 0. Finally, if no solution can be
found within the given upper bound ub, the procedure termi-
nates signalling this fact in line 13.

4 Empirical Evaluation
To evaluate OMTPLAN, we developed a prototypical im-
plementation in Python2. Our implementation leverages the
modules developed in [Eyerich et al., 2009] for parsing, and

2OMTPlan is available at: https://github.com/fraleo/OMTPlan.

Domain # ĥrmax CSC OMTPlan
C T C T C T

COUNTERS 15 6 28.22 15 1.36 7 524.59
DEPOTS 20 3 1050.02 1 4.9 1 78.48
FARMLAND 30 30 193.68 28 32.86 1 211.57
GARDENING 63 63 599.85 63 887.33 18 3031.23
SAILING 20 16 2101.13 17 2813.55 5 345.23
SATELLITE 20 2 293.1 4 459.8 1 17.85
ROVER 20 4 25.91 4 10.93 4 61.5
ZENOTRAVEL 20 6 579.3 7 699.65 4 107.74
Total 213 130 4871.21 139 4910.38 31 4378.19

Table 1: Coverage (C) and total solving time (T) in seconds for do-
mains with simple conditions.

uses the Python API3 of νZ [Bjørner et al., 2015] to build and
solve OMT formulas. Our experimental analysis compares
with search based approaches implemented in the ENHSP
planner [Scala et al., 2016b] and with the MILP compilation
(CSC) of [Piacentini et al., 2018a]. Experiments are carried
out using a timeout of 30 minutes and 4 GB memory limits
on a machine running Debian 3.16 with processor Intel(R)
Xeon(R) CPU E5-2640 v4 @ 2.40GHz. Our analysis con-
siders numeric problems with simple and linear conditions,
and also numeric domains with SDACs: simple numeric do-
mains are taken from [Scala et al., 2017]; linear domains are
from [Li et al., 2018], with two additions, ROVER-METRIC
and FO-ZENOTRAVEL, developed starting from their simple
counterparts; finally, planning problems with SDACs are de-
veloped specifically to test OMTPLAN.

Simple and linear numeric domains. For domains with
simple effects we compare against the ĥrmax heuristic of
[Scala et al., 2017] and the MILP compilation (CSC) of [Pi-
acentini et al., 2018a]. Table 1 shows coverage and the total
solving time. Results confirm the efficiency of CSC on sim-
ple numeric problems, outperforming other approaches on
almost all instances. On the other hand, our approach suf-
fers from two main drawbacks. The first one is that domains
like FARMLAND, GARDENING and SAILING feature optimal
plans with relatively many steps and little parallelism. Such
“long and narrow” plans force us to produce large encodings
that exceed the capabilities of νZ before finding optimal so-
lutions. The second drawback has to do with axioms (6), and
affects OMTPLAN adversely even in domains, e.g., COUN-
TERS, where optimal plans are “short and wide”, i.e., featur-
ing relatively few steps and lots of parallelism. Indeed, while
(6) tries to make sure that actions are taken before entering
the suffix, it may still happen that the optimal solution for a
fixed horizon is an abstract solution which also satisfies (6).
In such cases, we are still forced to increment the horizon un-
til we exceed the capability of the underlying solver. Note
that the interaction between abstraction and axioms (6) is not
always harmful as the adverse effect depends on the structure
of the domain and the associated costs.

In domains with linear effects we compare our encodings
with CSC and with a blind search using a simple goal sensi-
tive heuristic (hblind) that returns 0 if the state is a goal state
and 1 otherwise. Table 2 reports results obtained in linear do-

3https://github.com/Z3Prover/z3/wiki/Documentation
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Domain # hblind CSC OMTPlan
C T C T C T

FO-COUNT 20 4 339.84 3 223.83 9 2104.71
FO-COUNT-INV 20 3 77.29 2 48.82 6 937.41
FO-COUNT-RND 60 14 1411.79 10 520.29 23 2835.46
FO-FARMLAND 50 13 1035.09 2 47.07 1 6.21
FO-SAILING 20 2 610.85 0 - 1 71.56
ROVER-METRIC (1-10) 10 4 151.69 4 14.02 5 303.39
TPP-METRIC (1-10) 10 5 20.51 n.a. n.a. 3 524.12
ZENOTRAVEL-LINEAR 20 4 145.5 2 1.55 4 888.24
Total 220 49 3792,29 23 855.58 52 7671.10

Table 2: Coverage (C) and total solving time (T) in seconds for do-
mains with linear conditions. Entries reporting n.a. indicate that the
planner could not be run on the corresponding domain.

mains. Solving 52 problems, OMTPLAN outperforms other
approaches, still leaving room for improvement on specific
domains. The overall results is probably due to the increased
complexity in the numerical part which OMTPLAN handles
comparatively better than the other approaches, except on do-
mains like TPP-METRIC, a variant of the Travelling Salesman
Problem with no parallelism.

A new SDAC domain. We introduce a numeric planning
domain with SDACs called SECURITY CLEARANCE. In this
domain, an intelligence agency has to manage clearance au-
thorizations for several documents across different security
levels. The agency can authorize a level to read a document,
but doing so changes the clearance of the document: autho-
rizations at lower levels are revoked, while those at higher
levels remain unchanged. Authorizing a level has a cost
which directly corresponds to the level involved, e.g., autho-
rizing level 2 costs 2. Since some documents may be more
important than others, each document is initially assigned a
priority. When needed, the agency can increase its priority
incurring in a cost proportional to the current one. If a doc-
ument has high priority, the agency can decide to authorize
all levels at once by paying the appropriate price. Starting
from an initial state where no level is authorized, the goal is
to authorize all levels to read all documents while minimizing
expenses.

Experiments on SDACs. For our experiments we gener-
ated 36 instances of the domain, varying the number of doc-
uments (from 2 to 10) and the number of levels (from 2 to 5).
Exploring this domain both in depth and breadth, we can in-
vestigate weaknesses of constraint and search-based methods
respectively. Here, CSC cannot be considered for our anal-
ysis as it does not provide support for state-dependent cost
structures. Hence, we compare only with hblind. Figure 1
shows a cactus plot of the result obtained: for each plan-
ner, we sort the instances according to the run time of the
planners and we plot them. In this arrangement, two sam-
ples on the same abscissa are not necessarily the result of
the same sample, but they correspond to the same percentile.
The domain is challenging for both approaches, with OMT
being able to solve 26 instances and hblind solving 16. The
performance of hblind degrades when the number of docu-
ments is increased, incurring in what could be explained as
a worst-case behaviour of A∗. Indeed, the planner produces
timeouts for almost all instances having strictly more than 5
documents, while already failing to solve some problem with

0 5 10 15 20 25
0

100

200

300

400

500

600
OMTPLAN

hblind

Solved instances

C
PU

tim
e

(s
)

Figure 1: Cactus plot for the SECURITY CLEARANCE domain. In-
stances are ordered by increasing CPU time, reported in seconds.

less documents. OMTPLAN’s performance is comparable to
hblind for instances with up to 4 documents (all levels), while
a considerable difference can be noticed for instances with
higher number of documents. In particular, OMTPLAN al-
ways manages to solve instances with 2 or 3 levels, even in
domains with 10 documents. Still, domains having 4 or 5 lev-
els proved challenging and could not be solved for instances
having 6 documents or more.

5 Conclusion
We considered the problem of generating optimal plans for
numeric domains with constant and state-dependent action
costs. Since solving these problems requires an efficient in-
terplay between propositional and arithmetic reasoners, we
proposed Optimization Modulo Theories as the framework of
choice. We presented a novel encoding of planning problems
that enables efficient reasoning about optimality via OMT and
abstraction. We further provided empirical evidence of the
usefulness of our approach, demonstrating state-of-the-art re-
sults on some expressive classes of numeric problems.

Our future work will focus on extending the Optimal Plan-
ning Modulo Theories framework to problems dealing with
other theories, such as that of structured data types. OMT
solvers support reasoning over such theories, and we intend
to leverage these capabilities to extend our approach. This
step could be seen both as a straight-forward implementation
of the Planning Modulo Theories framework of [Gregory et
al., 2012] and its extension to the optimal setting.
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