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Abstract

Online portfolio selection (OLPS) is a fundamen-
tal and challenging problem in financial engineer-
ing, which faces two practical constraints during
the real trading, i.e., cardinality constraint and non-
zero transaction costs. In order to achieve greater
feasibility in financial markets, in this paper, we
propose a novel online portfolio selection method
named LExp4.TCGP with theoretical guarantee of
sublinear regret to address the OLPS problem with
the two constraints. In addition, we incorporate
side information into our method based on contex-
tual bandit, which further improves the effective-
ness of our method. Extensive experiments con-
ducted on four representative real-world datasets
demonstrate that our method significantly outper-
forms the state-of-the-art methods when cardinality
constraint and non-zero transaction costs co-exist.

1 Introduction

Online portfolio selection (OLPS), which aims to construct
a portfolio to optimize the allocation of wealth across a set
of assets for the highest return, has been extensively investi-
gated in recent years [Li and Hoi, 2014]. Most of the pro-
posed methods [Li e al., 2012; Huang et al., 20161, however,
overlooked two constraints in the real trade practice, i.e., car-
dinality constraint and non-zero transaction costs.

On one hand, the cardinality constraint problem is one
of the big challenges in OLPS, which refers to limiting the
number of assets, instead of including all assets in an effi-
cient portfolio. As far as investors are concerned, cardinal-
ity constraint enables them to limit the complexity of a port-
folio and reduce managerial concerns. However, Ito et al.
[2018] prove that OLPS with cardinality constraint is an NP-
complete problem. The number of cardinality constrained as-
sets combinations grows exponentially with the number of
assets. Hence, it is computationally infeasible to construct
portfolios of all combinations and choose the optimal one.

On the other hand, how to constrain the non-zero trans-
action costs is an important open issue in OLPS. Transac-
tion cost is one central friction in real-world financial mar-
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kets. Every time when an investor changes his/her port-
folio, the investor needs to pay a certain transaction cost.
However, most state-of-the-art OLPS methods overlooked
transaction cost [Hazan and Kale, 2015; Huang et al., 2016;
Ito et al., 2018], which might lead to overtrading with hefty
transaction costs in practice, and even losing profits.

Based on the above analysis, we propose a novel method
called LExp4.TCGP to address the OLPS problem with
the two constraints, i.e., cardinality constraint and non-zero
transaction costs. LExp4.TCGP first exploits side informa-
tion of assets to sequentially generate a probability distri-
bution over the cardinality constrained assets combinations.
Then based on the probability distribution and a lazy sam-
ple mechanism, our method selects the nearly-optimal assets
combination based on our proposed contextual bandit frame-
work. Finally, our method allocates wealth of the selected
assets combination with the trade-off between the expected
return and transaction costs.

Specifically, we give the details of how LExp4. TCGP deals
with the two constraints. Firstly, for cardinality constraint, we
model the assets combination selection into a bandit frame-
work. To further improve the effectiveness of the selection,
we exploit side information which can provide hints that one
or a set of assets are likely to be superior to the others [Cover
and Ordentlich, 1996] and propose a contextual bandit algo-
rithm. To the best of our knowledge, our method is the first
bandit-based OLPS method considering the side information.
Secondly, for constraining non-zero transaction costs, we de-
velop two mechanisms to reduce trading volumes in the com-
plex process consisting of assets combination selection and
wealth allocation, which is equivalent to minimizing the in-
curred transaction costs. In assets combination selection,
the portfolio changes whenever selling or buying any assets.
Such behavior consumes much transaction cost, hence we de-
vise a lazy sample mechanism to reduce the changes of the
selected assets combination. In wealth allocation, each ad-
justment of weights consumes transaction cost, so we develop
a new algorithm named TCGP to minimize the difference be-
tween two consecutive allocations. In general, our model not
only satisfies two constraints, but also achieves sublinear re-
gret, which is a strong theoretical performance guarantee to
address the OLPS problem.

To sum up, our main contributions are as follows: (1) We
propose a novel LExp4. TCGP method to achieve greater fea-

4682



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Special Track on Al in FinTech

sibility in financial markets; (2) We incorporate side infor-
mation to improve the effectiveness of the proposed method;
(3) We have rigorously proven that LExp4. TCGP method
achieves sublinear regret, which indicates that our method has
a strong theoretical performance guarantee; and (4) We have
conducted extensive experiments on four real-world datasets,
which empirically demonstrate that our method significantly
outperforms the state-of-the-art methods when cardinality
constraint and non-zero transaction costs co-exist.

2 Related Work

OLPS has been studied in different disciplines, including fi-
nance, statistics, machine learning, and optimization. Al-
though the need for considering real constraints has been
mentioned [Li and Hoi, 2014], only a few studies deal with
the real constraints.

The cardinality constrained OLPS problem has been stud-
ied by several researchers, whose solutions can be classified
into three categories. The first category uses a repair mech-
anism to delete the assets with smaller weights [Mishra et
al., 2014; Liu et al., 20161, which lacks theoretical perfor-
mance guarantee and performs poorly when weights are close
to each other. The second category adds a sparsity regulariza-
tion term to allocate weight concentrating on a few assets.
Das et al. [2014] added a surrogate group-sparse constraint
to the OLPS model, which has a motivation similar to car-
dinality constraint, but they did not consider any constraint
about cardinality directly. The third category is to construct
a multi-armed bandit framework to select an assets combina-
tion with cardinality constraint. Ito et al. [2018] proposed
two algorithms in Full-feedback setting and Bandit-feedback
setting to select an assets combination and calculate the port-
folios of all assets combinations and that of the selected assets
combination respectively. Moeini [2019] combined orthogo-
nal bandit learning with a kernel search heuristic. However,
all of them do not consider the side information, with which
the OLPS models can become more effective in financial mar-
kets.

Targeting the OLPS problem, the methods of considering
transaction costs are mainly divided into three categories. The
first category focuses on occasional rebalancing. Helmbold
et al.[1998] considered a semi constant rebalanced portfolio
(SCRP) method and Huang et al. [2015] proposed a semi-
universal portfolio (SUP) method, which rebalances only in
some periods. The second one is extended from universal
portfolio (UP) [Cover, 1991], which utilizes UP formula-
tion as a moving target portfolio [Blum and Kalai, 1999]
and then rebalances the portfolio in each investment period.
The last category modifies the objective function via adding
a regularization term [Das et al., 2013; Shen et al., 2014;
Li et al., 2018]. However, all of the above methods are not
applicable in the case of cardinality constraint, because in the
cardinality constrained OLPS problem, we need to consider
the difference not only between two consecutive allocations
but also between two consecutive assets combinations.

In a word, none of the existing work in OLPS has at-
tempted to investigate two real constraints with theoretical
performance guarantee in their algorithms.
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3 Problem Settings

Consider a financial market with n assets, we invest our
wealth in the market for a sequence of T trading periods. In
each trading period, the price relatives of the assets are de-
noted as a vector r = (71,79, ..., T, ), where r; is the next pe-
riod’s opening price of the asset ¢ divided by its opening price
in the current period, which is bounded in a closed interval
[C1, Ca] (Cy and Oy are constants satisfying 0 < Cy < Cb).

In general, some assumptions bellow are widely adopted in
OLPS problem [Li and Hoi, 2014], which are also followed
in our paper: (1) No margin/short: margin purchase and short
sale are not allowed; (2) Unlimited market liquidity: one can
buy and sell any quantity of any asset in its closing prices;
and (3) Zero impact cost: market behaviors are not impacted
by any OLPS method.

Online Portfolio Selection Problem. A portfolio is defined
by a weight vector w = (w1, wa, ..., w, ) satisfying the con-
straint that every weight w; is non-negetive and the sum of
all the weights equals one, i.e., w € {w|w > O,w'l= 1}.
The element ¢ of w indicates the proportion of wealth allo-
cated to the asset . Let w, denote the weight of portfolio
for a period ¢. After T periods, an OLPS strategy increases

the initial wealth Ag by a factor of Hle(th r;), namely,
the final cumulative wealth after T periods is Ap(w) =

Ap Hthl(th ry). For the sake of simplicity, we set Ag =
1. Since the model assumes multi-period investment, we
define the logarithmic cumulative wealth according to the
capital growth theory [Hakansson and Ziemba, 1995] as
log Ap(w) = 23;1 log(w, r).

Cardinality Constraint. The combination of assets is re-
stricted to a set of available combinations S C [n]. For an
assets combination S € S, A is the set of portfolios which
satisfies A = {w|w > 0,w 1 = 1, supp(w) C S}, where
supp(w) = {i € [n]Jw; # 0}. Ito et al. [2018] define a
special form of S with cardinality constraint, S, := {S C
[n]||S| < k} for some k < n. Note that when S = S,,, the
problem coincides with the standard online portfolio selec-
tion problem, and the problem even turns into the single asset
selection problem when S = &3.

Transaction Costs. Following the proportional transaction
costs model [Gyorfi and Vajda, 2008], we can get a new log-
arithmic cumulative wealth with non-zero transaction costs:

T
log A% (w) = Zlogct,l x (w, ry), (1)

t=1

where c;_; denotes the transaction costs factor as the ratio of
the net wealth after transaction costs incurred. Then we have:

L=cio1 +7||Wee1 — Wiera]]y )

where -y is the transaction cost rate (Note that we equalize the
rates of purchases and sales, which is widely adopted by re-
lated research [Gyérfi and Vajda, 2008; Li ef al., 2018]) and

the renormalized portfolio weight Wi_, = ‘:'Flicz"ll (the
t—1"t—

symbol o denotes the Hadamard product). Moreover, Li et

al. [2018] gave the bound of ¢;_; as 1_W+’Y”17v—71_ ” <
t— Wty
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< =
C—1 = THyfwe1—wil,

[Wi—1 — w¢||,;, namely, the smaller the ¢1 term, the larger
the value of ¢;_1.

which is inversely related to

Definition of Regret. Let fr(w™*) denote the optimal fix

(non-shifting) portfolio in hindsight for 7' periods, namely,

fr(w*) = argmax Zthl fi(w?). In our setting, we
SeS,wSeAS

adopt the formula of f;(w*) as:

Fiw®) = log(w® 1) <A |[Wwer — w0, 3
SN——— —————

the expected return trading volume

where w® € AS X < 0 is a trade-off parameter to balance
the expected return and trading volume. In particular, the re-
gret after T-periods is defined as:

T
Ry = fr(w") =Y fi(w}"). @)
t=1

4 Methodology

To address the OLPS problem with cardinality constraint and
transaction costs, we propose the LExp4. TCGP algorithm,
which sequentially selects assets combination (LExp4) and
allocates wealth of the selected combination (TCGP) until the
end of trading periods. In this section, we first introduce the
selection and allocation parts respectively, then give the entire
algorithm and finally give the theoretical analysis.

4.1 Assets Combination Selection: Lazy Exp4
(LExp4) Algorithm

We model the assets combination selection problem as a
multi-arm bandit problem. The main advantage comes from
the fact that the investors need not to observe all the assets;
rather, they only need to focus on the assets in the selected
combination. So we need not to always update wf for all
S € Si. Regarding the OLPS problem, it is hard to assume
that the rewards are truly randomly generated, especially
when it comes to competitive financial scenarios. Therefore,
we propose an adversarial contextual bandit algorithm LExp4
based on Exp4 algorithm [Auer er al., 2002] with a lazy sam-
ple mechanism for selecting assets combination to reduce the
changes of the selected combination.

Consider there are some experts who sequentially give
their advices of which assets combination is likely to be su-
perior to others. Note that the expert does not mean a real
person, in our paper, it is an online policy. The goal of LExp4
algorithm is to combine the experts’ advices by an expert trust
vector q which measures experts’ credibilities, so that its se-
lected assets combination is close to the optimal combina-
tion in hindsight. We use &; to denote the |Sy|-dimensional
expert’s advice vector, which represents a probability distri-
bution over the assets combinations which are recommended
by expert i on period t. Specifically, & € [0,1]/°* and
B, = 1.

There are many ways to construct the sequence of ex-
perts’ advices. Most of the existing contextual bandit meth-
ods, however, adopted offline policies [Syrgkanis ef al., 2016;
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Algorithm 1 Generate Experts’ Advices (GEA)

Input: 0, € Rm—Dxd x, ¢ Rnxd,
Output: &,.

I: fori=1,....m—1do

2:  Convert X, into x.

3:  Predicty;, = BiTxi,a, wherea =1, ..., n.
4: foreach S € S; do

5 Vi, = mean(y; ), where a € S.

6: end for

7 &g = m, where S € S.

8:  Normalize &;.

9: end for

10: &" = 571,

Wei and Luo, 2018], which are not applicable to the dynamic
OLPS issue. Therefore, we propose a novel online policy to
generate experts’ advices (see Algorithm 1). Let x;, € R™*¢
be the side information of all assets available in period ¢. We
assume each expert has a binary vector z' € R¢ and coeffi-
cients 8° € R? of side information, where i is the expert’s
index. In particular, the binary vector specifies whether a par-
ticular dimension of side information participates in the pre-
diction, which is generated based on a binary coding of the
expert’s index. Experts’ advices are designed as follows. In
period ¢, each expert first converts x; into x? associated with
the binary vector z* and predicts all assets’ rewards. Then the
expert sorts the assets combinations by their average predict
rewards. Finally the expert uses the reciprocal ranks as the
probabilities of assets combinations and normalizes the total
probabilities to one. Beside, we include a uniform expert &,
which always assigns uniform probabilities to all assets com-
binations. Therefore, there are totally m = 2¢ experts.

After generating the m experts’ advices S%, ., &, the
LExp4 algorithm lazily samples an assets combination .S; €
Sk based on the experts’ comprehensive recommendation.
The experts’ comprehensive recommendation is a sampling
distribution p; of all combinations with an exploitation and
exploration trade-off calculated as:

Zgﬂﬁfg,s B

S
py =(01-23 =+ 1o, forall S € S, (5)
v= ) 2 qy | Sk g

where 3 € (0, 1) is the exploration parameter.

Specifically, the lazy sample mechanism means sample as-
sets combination occasionally. The total trading periods are
divided into several segments, and in each segment the LExp4
algorithm only samples the combination once; but the re-
wards and the experts’ adviecs in each segment are still ac-
cumulated into the expert trust vector q.

4.2 Wealth Allocation: Transaction Costs-aware
Gradient Projection (TCGP) Algorithm

Following the definition in problem settings, we can give the
objective function of weight w; at period ¢, which allows us
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Algorithm 2 Transaction Costs-aware Gradient Projection
(TCGP)

Input: r,_;, w;_1, S;, parameters 7, A, and p .
I: Initialize w;, z,u € 0%, i = 0, W;_; = 10—t

W, Tt
2: ADMM iterations
(1) — 4, ()
(i+1) _ ( Nri—1 +w p(z ul)
‘ = B -1+ ),
! p};[ (p+ w1 1+p
20D = Sx/p(Wi—1 — (H—l) +ul?),

W) = ) 4w, — W(L+l) Llit1)
3: Continue until stopping criteria are satisfied.

4: Output wy g, = Wy.

to control the transaction volume, as follows:
. T -
wy = argmin( — nlog(w ' r;—1) + A |[W—1 — W||;
wEASt

(6)

1 2
+ 5 lIwes = wl).

The purpose of the first term is to maximize logarithmic
wealth based on Exponential Gradient-type [Helmbold er al.,
19981, which implies that the portfolio vector itself encapsu-
lates the necessary information from the previous price rela-
tive r;_1. The second term is the /1 penalty, which is used
to control transactions volume leading to reduce transaction
costs. The third term denotes a regularization term, where we
use ¢2 norm regularization, which is same as gradient projec-
tion algorithm [Helmbold er al., 1997].

Since there is an ¢1 term in our objective function, we pro-
pose a TCGP algorithm based on alternating direction method
of multipliers (ADMM) algorithm [Boyd er al., 2011] to solve
Eq.(6). By decoupling /1 term and replacing the log term
with its first order Taylor expansion around wy_1, the aug-
mented Lagrangian for the above problem becomes,

r (W —wi_1)
Wi iT )

—z+ull3,

L,(w,z,u) = arg min —n(log(w,_ r:_1) +
pEASt

A elly + 5 ey — w2+ 2wy~ w
where 2 = W — Wy_1, u = %y is the scaled dual variable,
and y is the dual variable. Using the scaled dual variable,
TCGP algorithm consists of the iterations for solving w; (see
Algorithm 2).

The projection to the simplex Hpe As, 18 carried out as
in [Duchi et al., 2008]. The function Sy,, denotes the soft
thresholding operator and the stopping criteria are based on
the primal and dual residuals [Boyd et al., 2011].

4.3 LExp4.TCGP Algorithm

In each trading period, LExp4. TCGP consists of three steps:
(1) it selects assets combination; (2) it allocates wealth of
the selected combination; (3) it observes price relatives r and
updates 0 and q. The LExp4. TCGP algorithm is summarized
in Algorithm 3.
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Algorithm 3 LExp4. TCGP

Input: T periods, n assets, m experts, cardinality k,
the segment length x, the exploration parameter /3.
1: Initial 8; = 0,q; = 1.
2: foreacht=1,...,T do
3 Observe side information of all assets x; € R**¢,
4:  Getm experts’ advices £, &7, ..., €7 = GEA(0,,x,).
5:  ift =0 (mod k) then
6: Draw assets combination S; randomly according to
the sampling distribution p, by Eq.(5).
else
St = St
end if

10:  Output wf t=

v ®

11 if t =1
TCGP(w;_1,ri—1,5;) otherwise.
11:  Observe price relatives r;.

12:  // Update 6.

13: fori=1,...,m—1do
14: Convert x; into Xj.
; i T 1. T
15: 071;+1 = (Xllzt Xzl:t + I) 1X11:t 1.
16:  end for

17:  // Update q.
18: foreach S € S; do
log(r/ wy)/p® if S =S,

. -9 _
19: Yo = 0 otherwise.
20:  end for
21: for:=1,....,mdo
2 =gy,
23: Gi1 = q; exp(avy/|Sk]).
24:  end for
25: end for

4.4 Analysis of Regret

The theoretical performance of OLPS methods is measured
by regret Rp. First of all, we derive the regret upper bound
of our method in Theorem 1.

Theorem 1. For any T > 0, let w* € AS" be the opti-
Zt 1 [t(S,w). Let

the sequence of w; be defined as the output in LExp4.TCGP.
Suppose ||W —wl|, < L,Vw,W € AS. Forany ¢ > 0 and
0 < g < 1, the regret of LExp4. TCGP can be bounded as:

mal portfolio obtained from max

2 .
Ry SQL LGt ISdlosm o yygor A Loy gon. ®)
n 2 B K
_ (q+€)(1 (g+e)")
where Q. “ato S Tare = @ O = o
04 = log Cg.

\SkllogM)} n =

Then, by choosing 8 = min{l, O le-D)T =

1 . .
CoviT and Kk = \ﬁ, we obtain

Ry < CsV'nT + /(e — 1)Cy|Si|log mT + \(1 + Q)LVT
< O(VT).

The complete proof of Theorem 1 will be available in a
longer version of the paper.
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Figure 1: Cumulative wealth and turnovers achieved by various methods with varying transaction cost rates (k = 5).

Next, we theoretically analyze the regret of our method
compared with that of other methods in three typical cases:

(1) Single asset selection (S = S1): We compare with two
methods, i.e., Full-feedback and Bandit-feedback [Ito et al.,
2018] to discuss the performance towards finding the optimal
assets combination. In Table 1, if there is no transaction cost
(A = 0), all methods achieve O(v/T). Full-feedback per-
forms the best. When m < n, our method has a better per-
formance; otherwise, Bandit-feedback performs better. With
the non-zero transaction costs (A > 0), Full-feedback and
Bandit-feedback achieve O(T') which is larger than ours.

(2) Standard portfolio selection (S = S, ): We compare
with OLU [Das et al., 2013] which only considers the trans-
action costs but overlooks cardinality constraint. The re-
gret of our method and OLU are both O(v/nT) + N\O(VT),
but OLU’s regret formulation uses an impractical term w;_;
which does not follow the general trading principle [Li et
al., 2018]. Instead, we use the renormalized portfolio weight
W¢_1. Thus OLU’s regret bound has a gap between w,_; and
w;_1, and our method has a smaller regret bound than OLU.

(3) Cardinality constrained portfolio selection (S = Sk):
As highlighted in Theorem 1, our LExp4. TCGP achieves a
sublinear regret O(+/T) after T trading periods. For an online
learning algorithm, a sublinear regret upper bound is vital, as
it indicates the average number of suboptimal portfolio that
makes vanishes rapidly over time.

In addition, RR-DE [Liu et al., 2016] and NS-MOPSO
[Mishra et al., 2014] can address OLPS problem with cardi-
nality constraint, but little is known about their regret bounds.

S Experiments

In this section, we present the extensive experiments con-
ducted on four representative real-world datasets.
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Constraints Single Asset Cardinality Constraint Standard
(S =81) (S = Sk) (S =5n)
LExp4.TCEG O(v/nTlogm)  O(y/T|Sk[log m) O(VnT)
+AO(VT) +AO(VT) +A0(VT)
Full-feedback O(\/Tlogn) O(\/T log |Sk|) O(\/Tlogn)
+X0(T) +X0(T) +A0(T)
Bandit-feedback O (y/nT logn) O(\/T|Sk|logn) O(\/Tlogn)
+AO(T) +X0(T) +A0(T)
OLU - - Oo(V/nT)
+AO(VT)

n denotes the number of stocks; 7" is the number of trading periods; m denotes the
number of experts; Sy denotes assets combinations with k cardinality constraint.

Table 1: Summary of regret upper bounds

Dataset ~ Region Time frame #Days  # Assets
NYSE Us 06/03/1962 - 12/31/1984 1,259 36
TSE CA 01/04/1994 - 12/31/1998 544 88
DIIA us 01/14/2001 - 01/14/2003 507 30
SP500 Us 02/11/2013 - 02/07/2018 1,355 500

Table 2: Summary of the four datasets

5.1 Experimental Settings

Data Collection. The experiments are conducted on four
public datasets: the NYSE, TSE, DJIA, and SP500 datasets,
which are summarized in Table 2. In particular, the NYSE
dataset [Cover, 1991] consists of 36 stocks from the New
York Stock Exchange. The TES [Li er al., 2012] dataset in-
cludes 88 stocks of Canada market from the Toronto Stock
Exchange (TSE). The DJIA dataset is a collection of Dow
Jones 30 composite stocks [Huang et al., 2016]. The SP500
dataset contains 500 stocks of the S&P 500 index!.

Comparison methods. The representative and state-of-the-
art methods compared in our experiments can be categorized

"hitps://www.kaggle.com/camnugent/sandp500
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NYSE TSE DIIA SP500

Methods 1 3 T 1 3 o T 3 T T 3 n
NS-MOPSO 7.89 10.91 11.81 057 079 071 1.00 131 1.64 0.96 1.09 1.28
Full-feedback* 331E-23 ; 2.21E-03 1.96E-03 1.41E-01 3.49E-06 ) 0.08 1.16E-05 ) 1.04
Bandit-feedback 849E-23  1.01E-20  221E-03 634E-03  0.01 0.14 138E-06  2.08E-05  0.08 643E-06 7.01E-06 1.04
oLu? 29.88 081 ; ; 1.58 ; ; 1.87
DRP? 28.39 0.79 ; ; 1.64 ; ; 1.93
TCO? 2.31E+06 0.12 - . 0.92 . . 236
RR-DE 5.44 5.40 5.06 08 069 073 1.43 1.18 1.62 0.67 1.80 1.14
LExp4.TCGP 13.01 26.95 30.61 0.93 1.01 0.82 210 1.96 1.69 1.88 197 240

! Due to too many assets combinations to be calculated, the Full-feedback method cannot run under the S = S5 within a tolerable time.
2 OLU, DRP, TCO methods cannot address the cardinality constraint problem, so they can only be compared with the results in standard portfolio selection (S = S,,).

Table 3: Cumulative wealth achieved by various methods with different cardinality constraints (y = 0.005, k = 1, 5, n).

into three groups:

(1) OLPS with Cardinality Constraint: NS-MOPSO
[Mishra et al., 2014] , Full-feedback [Ito et al., 2018], and
Bandit-feedback [Ito et al., 2018].

(2) OLPS with Transaction Costs: OLU [Das et al., 20131,
TCO [Li et al., 2018], and DRP [Shen er al., 2014].

(3) OLPS with Cardinality Constraint and Transaction
Costs: RR-DE [Liu et al., 2016].

Among them, NS-MOPSO is a single-period OLPS
method, so we apply the interval programming approach [Liu
et al., 2016] to amend it to be a multi-period method.

Experiments Setups and Metrics. We collect the assets’
side information of the above datasets. Each asset is associ-
ated with an 8-dimensional feature vector, which include: the
average price relatives of last 1, 3, 6, 12 days and the average
trading volume of last 1, 3,6, 12 days (Note that the average
trading volume are only available on the SP500 dataset).

Regarding parameter settings, we set the trade-off parame-
ter A = 10 X y (7y is the transaction cost rate) and the parame-
ter for the augmentation term p = 0.1, which are empirically
effective. In addition, we set the parameters 3, 7, k according
to Theorem 1. We use the parameter settings recommended
in the relevant studies for other comparison methods.

We use the standard metrics in finance [Li et al., 2012] to
measure the performance of the OLPS methods: (1) Cumu-
lative wealth (CW); (2) Turnover (TU); (3) Maximum draw-
down (MD); (4) Volatility (VO); (5) Sharpe ratio (SR); (6)
Camer ratio (CR). Among them, CW is the most common
metric to primarily compare different trading strategies. TU
is a measure of trading volume in a time period, which evalu-
ates whether the strategy can constrain the transaction costs.
In general, the higher the values of the CW, and the lower
TU, the better the performance of the compared algorithm.
For some process-dependent investors, it is important to eval-
uate risk and risk-adjusted return of portfolios. One common
way to achieve this is to use VO to measure the volatility
risk and SR to evaluate the risk-adjusted return concerning
the volatility risk. Another way focuses on drawdown which
measures the decline from a historical peak in the camulative
wealth achieved by a financial trading strategy. So we adopts
MD to measure downside risk and CR to measure the return
relative to the drawdown risk of a portfolio. Generally speak-
ing, the smaller the VO and MD, the more risk tolerable the
financial trading strategy. Higher SR and CR indicate bet-

ter performance of a trading strategy concerning the volatility
risk and the drawdown risk. Note that all metrics are adjusted
by transaction costs following the OLPS framework [Li ez al.,
2018].

5.2 Experimental Results

Evaluation with different cardinality constraints. We
backtest three reasonable cardinality constraints representing
3 cases: single asset selection (k = 1), standard portfolio se-
lection (k = n), and cardinality constrained portfolio selec-
tion (k = 5). Table 3 presents the CW achieved in the above
three cases and the best result in each column is highlighted
in bold. Note that Full-feedback and Bandit-feedback are ex-
cluded from the analysis below, because they trade overly and
their profits are almost consumed by transaction costs.

In Table 3, LExp4.TCGP achives the highest CW with dif-
ferent cardinality constraints. (1) In single asset selection,
our method outperforms NS-MOPSO and RR-DE by 10.7%
and 180.6% respectively, because LExp4 plays an important
role in our method to select the nearly-optimal asset; (2) In
standard portfolio selection, our method outperforms all of
the state-of-the-art methods by an average of 90.6%, ranging
from 1.2% to 583.3% (except TCO on the NYSE dataset),
because TCGP helps LExp4.TCGP to allocate wealth more
effectively. TCO performs extremely better than our method
only on the NYSE dataset, because it overly exploits the old
and (weak-form) inefficient the market in the NYSE dataset
and gains huge profit according to Li et al. [2018]’s analy-
sis. In contrast, TCO performs poorly on all the other three
datasets; (3) In cardinality constrained portfolio selection,
our method performs the best with an average improvement
98.8%, ranging from 27.9% to 346.1%, because of the supe-
riority of both LExp4 and TCGP.

Evaluation with varying transaction cost rates. To bet-
ter illustrate the effectiveness of our method with transac-
tion cost, we compare the state-of-the-art methods in terms
of CW. Figure 1 plots the CW and TU with varying transac-
tion cost rates. We can draw three conclusions from Figure
1. (1) On all levels of transaction cost rates, LExp4. TCGP
always achieves the highest CW, because it has the lowest
TU, which can prevent profit from being robbed by transac-
tion costs; (2) LExp4.TCGP’s TU consistently decreases to
almost zero when the transaction cost rate increases, which
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Figure 2: Risk and risk-adjusted performance (v = 0.005, k = 5).

illustrates that LExp4. TCGP can trade off between the trans-
action cost rate and turnover; (3) The CW of LExp4.TCGP is
higher than Bandit-feedback with zero transaction cost rate,
because our method also considers side information which
the Bandit-feedback overlooks. This demonstrates that lever-
aging side information can improve the effectiveness of our
method.

Evaluation of risk and risk-adjusted return. At last, we
evaluate the risk in terms of MD and VO, and the risk-
adjusted return in terms of SR and CR. Figure 2 shows the
results on all four datasets. In terms of MD, our method per-
forms the best of all methods. In terms of VO, our method
has lower risk than Bandit-feedback but higher risk than NS-
MOPSO and RR-DE methods (Figure 2 (b)), because high
returns are usually accompanied by high risks. To further
evaluate the trade-off of return and risk, we examine the risk-
adjusted return in terms of SR and CR. The results in Figure
2 (c) (d) show that our method performs the best, indicating
the outstanding ability in balancing return and risk.

6 Conclusions

In this paper, we propose a novel method called LExp4. TCGP
to address the OLPS problem with cardinality constraint
and transaction costs. Extensive experiments show that our
method can achieve satisfactory performance. In the future,
we plan to extend our work into three potentially directions.
The first direction is to consider more side information re-
lated to the financial market (e.g., coronavirus). The second
direction is to extend our model to a risk-sensitive one. The
third direction is to further reduce the time complexity of our
method.
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