
Specializing Word Embeddings (for Parsing) by Information Bottleneck
(Extended Abstract) ∗

Xiang Lisa Li and Jason Eisner
Department of Computer Science

Johns Hopkins University
xli150@jhu.edu, jason@cs.jhu.edu

Abstract
Pre-trained word embeddings like ELMo and BERT
contain rich syntactic and semantic information, re-
sulting in state-of-the-art performance on various
tasks. We propose a very fast variational information
bottleneck (VIB) method to nonlinearly compress
these embeddings, keeping only the information
that helps a discriminative parser. We compress
each word embedding to either a discrete tag or a
continuous vector. In the discrete version, our auto-
matically compressed tags form an alternative tag
set: we show experimentally that our tags capture
most of the information in traditional POS tag anno-
tations, but our tag sequences can be parsed more
accurately at the same level of tag granularity. In the
continuous version, we show experimentally that
moderately compressing the word embeddings by
our method yields a more accurate parser in 8 of 9
languages, unlike simple dimensionality reduction.

1 Introduction
Word embedding systems like BERT and ELMo use spelling
and context to obtain contextual embeddings of word to-
kens. These systems are trained on large corpora in a task-
independent way. The resulting embeddings have proved to
then be useful for both syntactic and semantic tasks, with dif-
ferent layers of ELMo or BERT being somewhat specialized to
different kinds of tasks [Peters et al., 2018b; Goldberg, 2019].
State-of-the-art performance on many NLP tasks can be ob-
tained by fine-tuning, i.e., back-propagating task loss all the
way back into the embedding function [Peters et al., 2018a;
Devlin et al., 2018].

In this paper, we explore what task-specific information
appears in the embeddings before fine-tuning takes place. We
focus on the task of dependency parsing, but our method can
be easily extended to other syntactic or semantic tasks. Our
method compresses the embeddings by extracting just their
syntactic properties—specifically, the information needed to
reconstruct parse trees (because that is our task). Our non-
linear, stochastic compression function is explicitly trained

∗Originally published in Proceedings of the 2019 Conference on
EMNLP-IJCNLP [Li and Eisner, 2019]

Figure 1: Our instantiation of the information bottleneck, with
bottleneck variable T . A jagged arrow indicates a stochastic mapping,
i.e. the jagged arrow points from the parameters of a distribution to a
sample drawn from that distribution.

by variational information bottleneck (VIB) to forget task-
irrelevant information. This is reminiscent of canonical corre-
spondence analysis [Anderson, 2003], a method for reducing
the dimensionality of an input vector so that it remains predic-
tive of an output vector, although we are predicting an output
tree instead. However, VIB goes beyond mere dimensionality
reduction to a fixed lower dimensionality, since it also avoids
unnecessary use of the dimensions that are available in the
compressed representation, blurring unneeded capacity via
randomness. The effective number of dimensions may there-
fore vary from token to token. For example, a parser may
be content to know about an adjective token only that it is
adjectival, whereas to find the dependents of a verb token, it
may need to know the verb’s number and transitivity.

We try compressing to both discrete and continuous task-
specific representations. Discrete representations yield an
interpretable clustering of words. We also extend information
bottleneck to control the contextual specificity of the token
embeddings, making them more like type embeddings.

This specialization method is complementary to the previ-
ous fine-tuning approach. Fine-tuning introduces new infor-
mation into word embeddings by backpropagating the loss,
whereas the VIB method learns to exploit the existing infor-
mation found by the pretrained language model. VIB also has
less danger of overfitting, since it fits fewer parameters than
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fine-tuning. VIB is also very fast to train on a single GPU.
We discover that our syntactically specialized embeddings

are predictive of the gold POS tags, validating the intuition
that a POS tag summarizes a word token’s syntactic properties.
However, our representations are tuned explicitly for discrim-
inative parsing, so our discrete tags prove to be even more
useful for this task than POS tags, even at the same level of
granularity. Our continuous tags are also more useful than
the uncompressed ELMo representations, when it comes to
generalizing to test data.

2 Formal Model
The information bottleneck (IB) method originated in infor-
mation theory and has been adopted by the machine learn-
ing community as a training objective [Tishby et al., 2000;
Tishby and Zaslavsky, 2015]

Let X represent an “input” random variable such as a sen-
tence, and Y represent a correlated “output” random variable
such as a parse. Suppose we know the joint distribution
p(X,Y ). (In practice, we will use the empirical distribution
over a sample of (x, y) pairs.) Our goal is to learn a stochastic
map pθ (t | x) from X to some compressed representation T ,
which in our setting will be something like a tag sequence. IB
seeks to minimize

LIB = − I(Y ;T) + β · I(X;T) (1)

where I(·; ·) is the mutual information. A low loss means that
T does not retain very much information about X (the sec-
ond term), while still retaining enough information to predict
Y .1 The balance between the two MI terms is controlled by
a Lagrange multiplier β. By increasing β, we increase the
pressure to keep I(X; T) small, which “narrows the bottleneck”
by favoring compression over predictive accuracy I(Y ;T).

We extend the original IB objective (1) and add terms
I(Ti; X | X̂i) to control the context-sensitivity of the extracted
tags. Here Ti is the tag associated with the ith word, Xi is the
ELMo token embedding of the ith word, and X̂i is the same
word’s ELMo type embedding (before incorporating context).

LIB = − I(Y ;T) + β I(X;T) + γ
n∑
i=1

I(Ti; X | X̂i) (2)

In this section, we justify the additional term and sketch how
to efficiently estimate variational bounds on all terms (lower
bound for I(Y ;T) and upper bound for the rest).

We instantiate the variational IB (VIB) estimation method
[Alemi et al., 2016] on our dependency parsing task, as illus-
trated in Figure 1. We compress a sentence’s word embeddings
Xi into continuous vector-valued tags or discrete tags Ti (“en-
coding”) such that the tag sequence T retains maximum ability
to predict the dependency parse Y (“decoding”). Our chosen
architecture compresses each Xi independently using the same
stochastic, information-losing transformation.

The IB method introduces the new random variable T , the
tag sequence that compresses X , by defining the conditional
distribution pθ (t | x). In our setting, pθ is a stochastic tagger,

1 Since T is a stochastic function of X with no access to Y , it
obviously cannot convey more information about Y than the uncom-
pressed input X does. As a result, Y is independent of T given X , as
in the graphical model T → X → Y .

for which we will adopt a parametric form (§ 2.1 below). Its
parameters θ are chosen to minimize the IB objective (2). By
IB’s independence assumption,1 the joint probability can be
factored as pθ (x, y, t) = p(x) · p(y | x) · pθ (t | x).

2.1 I(X;T)— the Token Encoder pθ(t | x)

Under this distribution, I(X;T) def
=Ex [Et∼pθ (t |x) [log pθ (t |x)

pθ (t)
]].

Making this term small yields a representation T that, on
average, retains little information about X . The outer
expectation is over the true distribution of sentences x; we use
an empirical estimate, averaging over the unparsed sentences
in a dependency treebank. To estimate the inner expectation,
we could sample, drawing taggings t from pθ (t | x).

We must also compute the quantities within the inner
brackets. The pθ (t | x) term is defined by our parametric
form. The troublesome term is pθ (t) = Ex′ [pθ (t | x ′)], since
even estimating it from a treebank requires an inner loop over
treebank sentences x ′. To avoid this, variational IB replaces
pθ (t) with a simpler distribution to obtain an upper bound
on I(X;T). See [Li and Eisner, 2019] for the form of this
distribution and how we optimize its parameters to tighten
the uppper bound, jointly with optimizing θ.

2.2 Two Token Encoder Architectures
We choose to define pθ (t | x) =

∏n
i=1 pθ (ti | xi). That is, our

stochastic encoder will compress each word xi individually
(although xi is itself a representation that depends on context):
see Figure 1. We make this choice not for computational
reasons—our method would remain tractable even without
this—but because our goal in this paper is to find the syntactic
information in each individual ELMo token embedding (a goal
we will further pursue in § 2.3 below).

To obtain continuous tags, define pθ (ti | xi) such that
ti ∈ Rd is Gaussian-distributed with mean vector and diagonal
covariance matrix computed from the ELMo word vector xi
via a feedforward neural network. Alternatively, to obtain dis-
crete tags, define pθ (ti | xi) such that ti ∈ {1, . . . , k} follows
a softmax distribution, where the k softmax parameters are
similarly computed by a feedforward network. See [Li and
Eisner, 2019] for architecture details.

2.3 I(Ti; X | X̂i)— the Type Encoder sξ (ti | x̂i)
While the IB objective (1) asks each tag ti to be informative
about the parse Y , we were concerned that it might not be
interpretable as a tag of word i specifically. Given ELMo or
any other black-box conversion of a length-n sentence to a
sequence of contextual vectors x1, . . . , xn, it is possible that xi
contains not only information about word i but also informa-
tion describing word i + 1, say, or the syntactic constructions
in the vicinity of word i. Thus, while pθ (ti | xi) might extract
some information from xi that is very useful for parsing, there
is no guarantee that this information came from word i and not
its neighbors. Although we do want tag ti to consider context—
e.g., to distinguish between noun and verb uses of word i—we
want “most” of ti’s information to come from word i itself.
Specifically, it should come from ELMo’s level-0 embedding
of word i, denoted by x̂i—a word type embedding that does
not depend on context.
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To penalize Ti for capturing “too much” contextual in-
formation, our modified objective (2) adds a penalty term
γ · I(Ti; X | X̂i), which measures the amount of information
about Ti given by the sentence X as a whole, beyond what
is given by X̂i: I(Ti; X | X̂i)

def
= Ex [Eti∼pθ (ti |x) [log pθ (ti |x)

pθ (ti | x̂i )
]].

Setting γ > 0 will reduce this contextual information.
We can derive an upper bound on I(Ti; X | X̂i) by approximat-

ing the conditional distribution pθ (ti | x̂i) with a variational
distribution sξ (ti | x̂i). See details in [Li and Eisner, 2019].

Type Encoder Architectures Notice that sξ (ti | x̂i)may be
regarded as a type encoder, with the same neural architecture
as pθ (ti | xi) except that pθ takes a token vector as input
whereas sξ takes a context-independent type vector. sξ is not
used at test time, but only as part of our training objective.

2.4 I(Y ;T)— the Decoder qφ(y | t)

Finally, I(Y ;T) def
= Ey,t∼pθ [log pθ (y |t)

p(y) ]. The p(y) can be omit-
ted during optimization as it does not depend on θ. Thus, mak-
ing I(Y ; T) large tries to obtain a high log-probability pθ (y | t)
for the true parse y when reconstructing it from t alone.

But how do we compute pθ (y | t)? This quantity effec-
tively marginalizes over possible sentences x that could have
explained t. To avoid this expensive computation, we obtain a
lower bound of I(Y ; T) by replacing pθ (y | t)with a variational
approximation qφ(y | t). Here qφ is a tractable conditional
distribution, and may be regarded as a stochastic parser that
runs on a compressed tag sequence t.

In short, when t is a stochastic compression of a treebank
sentence x, we would like our variational parser on average to
assign high log-probability qφ(y | t) to its treebank parse y.

3 Training and Inference
With the variational approximations in §2, our final minimiza-
tion objective is an upper bound on (2). Training involves
computing two tractable KL divergence terms and a stochastic
gradient step. See [Li and Eisner, 2019] for algorithmic and
mathematical details.

To evaluate our trained model’s ability to parse a sentence x
from compressed tags, we obtain a parse as argmaxy qφ(y | t),
where t ∼ pθ (· | x) is a single sample. A better parser would
instead estimate argmaxy Et [qφ(y | t)] where Et averages
over many samples t, but this is computationally hard.

4 Experimental Setup
Data Throughout §§5–6, we will examine our compressed
tags on a subset of Universal Dependencies [Nivre et al., 2018],
or UD, a collection of dependency treebanks. We experiment
on 9 languages: Arabic, Hindi, English, French, Spanish,
Portuguese, Russian, Italian, and Chinese — languages with
different syntactic properties like word order. For each sen-
tence, x is obtained by running the standard pre-trained ELMo
[Gardner et al., 2017; Che et al., 2018] on the UD token se-
quence, and y is the labeled UD dependency parse without any
part-of-speech (POS) tags.

Figure 2: Compression-prediction tradeoff curves of VIB in our
dependency parsing setting as we lower β from 101 to 10−6 on a
log-scale. The dashed lines are for test data, and the solid lines for
training data. The “dim” in the legends means the dimensionality of
the continuous tag vector.

Optimization We optimize with Adam [Kingma and Ba,
2014], a variant of stochastic gradient descent. We train for 50
epochs with minibatches of size 20 and L2 regularization. For
each training sentence, we average over 5 i.i.d. samples of T to
reduce the variance of the stochastic gradient. We experiment
with different dimensionalities d ∈ {5, 32, 256, 512} for the
continuous tags, and different cardinalities k ∈ {32, 64, 128}
for the discrete tag set. We also tried different values β, γ ∈
{10−6, 10−5, · · · , 101} of the compression tradeoff parameter.

5 Scientific Evaluation
In this section, we study what information about words is
retained by our automatically constructed tagging schemes.
First, we show the relationship between I(Y ;T) and I(X;T)
on English as we reduce β to capture more information in
our tags.2 Second, across 9 languages, we study how our
automatic tags correlate with gold part-of-speech tags (and in
English, with other syntactic properties). See [Li and Eisner,
2019] for full tables and experimental details.

5.1 Tradeoff Curves
As we lower β to retain more information about X , both
I(X;T) and I(Y ;T) rise (Figure 2). There are diminishing
returns: after some point, the additional information retained
in T does not contribute much to predicting Y . Also notewor-
thy is that at each level of I(X,T), very low-dimensional tags
(d = 5) perform on par with high-dimensional ones (d = 256).
(Note that the high-dimensional stochastic tags will be noisier
to keep the same I(X,T).) The low-dimensional tags allow
far faster CPU parsing. This indicates that VIB can achieve
strong practical task-specific compression.

5.2 Learned Tags vs. Gold POS Tags
We investigate how our automatic tag Ti correlates with the
gold POS tag Ai provided by UD.

Continuous Version In Figure 3, the first figure shows the
original uncompressed level-1 ELMo embeddings of the to-
kens in test data. In the two-dimensional visualization, the
POS tags are vaguely clustered but the boundaries merge to-
gether and some tags are diffuse. The second figure is when

2We always set γ = β to simplify the experimental design.
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(a) ELMo, I(X;T) = H(X) ≈ 400.6 (b) I(X;T) ≈ 24.3 (c) I(X;T) ≈ 0.069

Figure 3: t-SNE visualization of VIB model (d = 256) on the projected space of the continuous tags. Each marker in the figure represents a
word token, colored by its gold POS tag. This series of figures (from left to right) shows a progression from no compression to moderate
compression and to too-much compression.

Models Arabic Hindi English French Spanish Portuguese Russian Chinese Italian

Iden 0.751 0.870 0.824 0.784 0.808 0.813 0.783 0.709 0.863
MLP 0.759 0.871 0.839 0.816 0.835 0.821 0.800 0.734 0.867
VIBc 0.779 0.866 0.851 0.828 0.837 0.836 0.814 0.754 0.867

POS 0.652 0.713 0.712 0.718 0.739 0.743 0.662 0.510 0.779
VIBd 0.672 0.736 0.742 0.723 0.725 0.710 0.651 0.591 0.781

Table 1: Parsing accuracy of 9 languages (LAS). Black rows use continuous tags; gray rows use discrete tags (which does worse). In each
column, the best score for each color is boldfaced, along with all results of that color that are not significantly worse.

β = 10−3 (moderate compression): our compressed embed-
dings show clear clusters that correspond well to gold POS
tags. The third figure is when β = 1 (too much compression),
when POS information is largely lost. An interesting obser-
vation is that the purple NOUN and blue PROPN distributions
overlap in the middle distribution, meaning that it was unnec-
essary to distinguish common nouns from proper nouns for
purposes of our parsing task3.

Beyond Gold POS Tags, we study other syntactic distinc-
tions: tense, number, and transitivity. Even with moderate
compression, ti achieves 0.87 classification accuracy in distin-
guishing between transitive and intransitive English verbs.

Discrete Version We also quantify how well our special-
ized discrete tags capture the traditional POS categories, by
investigating I(A;T). In effect, we are doing transfer learning,
fixing our trained IB encoder (pθ ) and now using it to predict
A instead of Y , but otherwise following § 2.4. We experiment
on all 9 languages, taking Ti at the moderate compression level
β = 0.001, k = 64. Experimental details and results are in [Li
and Eisner, 2019]. Averaging over the 9 languages, the recon-
struction retains 71% of POS information. We can conclude
that the information encoded in the specialized tags correlates
with the gold POS tags, but does not perfectly predict the POS.

6 Engineering Evaluation
As we noted in §1, learning how to compress ELMo’s tags for
a given task is a fast alternative to fine-tuning all the ELMo pa-
rameters. We find that indeed, training a compression method
to keep only the relevant information does improve our gener-
alization performance on the dependency parsing task.
Baselines. The continuous baselines include: Iden, which
leaves the ELMo embeddings uncompressed; MLP, which

3Both can serve as arguments of verbs and prepositions. Both can
be modified by determiners and adjectives.

uses a multi-layer perceptron ([Dozat and Manning, 2016])
to reduce the dimensionality in a task-specific and nonlinear
way. The discrete baseline: POS uses the k ≤ 17 gold POS
tags from the UD dataset.
Runtime. Our VIB approach is quite fast: it trains on 10,000
sentences in 100 seconds, per epoch, on a single GPU.
Analysis. In the continuous case, the VIB representation
outperforms all three baselines in 8 of 9 languages, and is
not significantly worse in the 9th language (Hindi). In short,
our VIB joint training generalizes better to test data. This is
because the training objective (2) includes terms that focus
on the parsing task and also regularize the representations. In
the discrete case, the VIB representation outperforms gold
POS tags (at the same level of granularity) in 6 of 9 languages,
and of the other 3, it is not significantly worse in 2. This
suggests that our learned discrete tag set could be an improved
alternative to gold POS tags [Klein and Manning, 2003] when
a discrete tag set is needed for speed.

7 Conclusion
In this paper, we have proposed two ways to syntactically
compress ELMo word token embeddings, using variational
information bottleneck. We automatically induce stochastic
discrete tags that correlate with gold POS tags but are as good
or better for parsing. We also induce stochastic continuous to-
ken embeddings (each is a Gaussian distribution over Rd) that
forget non-syntactic information captured by ELMo. These
stochastic vectors yield improved parsing results, in a way that
simpler dimensionality reduction methods do not. They also
transfer to the problem of predicting gold POS tags, which
were not used in training.
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