
Bidirectional Heuristic Search: Expanding Nodes by a Lower Bound (Extended
Abstract)∗

Shahaf S. Shperberg1 , Ariel Felner1 , Nathan R. Sturtevant2 , Eyal Shimony1 and Avi Hayoun1

1Ben-Gurion University of the Negev, Be’er-Sheva, Israel
2University of Alberta, Edmonton, Canada

shperbsh@post.bgu.ac.il, felner@bgu.ac.il, nathanst@ualberta.ca, {shimony,hayounav}@cs.bgu.ac.il

Abstract
Recent work on bidirectional search defined a
lower bound on costs of paths between pairs of
nodes, and introduced a new algorithm, NBS, which
is based on this bound. Building on these results,
we introduce DVCBS, a new algorithm that aims to
to further reduce the number of expansions. Gen-
eralizing beyond specific algorithms, we then pro-
pose a method for enhancing heuristics by propa-
gating such lower bounds (lb-propagation) between
frontiers. This lb-propagation can be used in exist-
ing algorithms, often improving their performance,
as well as making them ”well behaved”.

1 Introduction and Background
Bidirectional heuristic search (Bi-HS) algorithms interleave
two separate searches: forward from start, and backward
from goal. Recently, Eckerle et al. [2017] defined condi-
tions on pairs of nodes that must be expanded by Bi-HS al-
gorithms to guarantee solution optimality. Chen et al. [2017]
reformulated these conditions as a lower bound (lb) on costs
of paths between nodes, and used this lb to introduce NBS, a
non-parametric Bi-HS algorithm with an upper bound on the
node expansions required to verify solution optimality.

In this paper∗ we present DVCBS, a new algorithm that uses
the lb information differently than NBS and empirically com-
pare them, showing that DVCBS outperforms NBS on aver-
age. In addition, we generalize beyond specific algorithms
and show a connection between utilizing the lb information
and two desirable properties for Bi-HS algorithms: the well-
behaved property, where using a better heuristic never harms
performance; and the reasonable property, that guarantees
an algorithm never expands nodes with an lb greater than
the known global lower bound (LB) on an optimal solution.
Then, we present lb-propagation, a method for sharing the
best lb between the two search frontiers, improving the h-

∗This paper summarizes the paper: “Improving Bidirectional
Heuristic Search by Bound Propagation” ([Shperberg et al., 2019b])
which won the best-paper award at SoCS-2019, with some additions
from the paper: ”Enriching non-parametric Bidirectional Search Al-
gorithms” ([Shperberg et al., 2019a]).

and f -values in each frontier. Finally, we study a number of
algorithms and show that adding lb-propagation makes some
(but not all) algorithms well-behaved and reasonable, and em-
pirically reduces the number expanded nodes in many cases.

1.1 Definitions and Notations
Given a distance metric d(x, y) between nodes in an (implic-
itly defined) graph G = {V,E}, the aim of a shortest-path
problem is to find a least-cost path between two given ver-
tices start and goal in G, with C∗ = d(start, goal).

Most Bi-HS algorithms maintain two open lists: OpenF

for the forward search and OpenB for the backward search.
Given a direction D (either forward or backward) We use

fD, gD and hD to indicate f -, g-, and h-values in direction
D. W.l.o.g., the known minimal edge cost in G is denoted by
ε, with ε = 0 if a greater value is not known.

The heuristic hD in direction D is admissible iff hD(u) ≤
d(u, g) for every node u ∈ G and is consistent iff hD(u) ≤
d(u, u′)+hD(u′) for all u, u′ ∈ G. Let IAD be the set of prob-
lems with admissible heuristics, and ICON ⊆ IAD be the set
of problems with consistent heuristics. A search algorithm is
admissible on a set of problems I if it is guaranteed to find an
optimal solution on every problem i ∈ I . Finally, a heuristic
h1 is said to dominate another heuristic h2 if for every node
n ∈ G, h1(n) ≥ h2(n) [Russell and Norvig, 2016].

1.2 Guaranteeing Solution Optimality
Unidirectional search algorithms must expand all nodes n
with f(n) < C∗ in order to guarantee solution optimal-
ity [Dechter and Pearl, 1985]. Eckerle et al. [2017] gener-
alized this to Bi-HS by examining pairs of nodes 〈u, v〉 with
u ∈ OpenF and v ∈ OpenB .1

Definition 1. For each pair of nodes (u, v) let
lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v) + ε}

In Bi-HS, a pair of nodes 〈u, v〉 is called a must-expand
pair (MEP) if lb(u, v) < C∗. For each MEP only one of u or

1 This analysis of Eckerle et al. [2017] (Extended by [Chen et al.,
2017; Shaham et al., 2018]) relies on the standard assumptions that
the algorithms are deterministic, black-box, and expansion-based,
and that they are admissible on IAD when solving problems in ICON.
We therefore, assume that we are given problems from ICON. How-
ever, the methods presented in this paper can be extended to algo-
rithms that are admissible on ICON but not on IAD ([Shaham et al.,
2018; Alcázar et al., 2020]).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Sister Conferences Best Papers Track

4775

v must be expanded in order to ensure that there is no path
from start to goal passing through u and v of cost < C∗. In
the special case of unidirectional search, algorithms expand
all the nodes with fF < C∗, which is equivalent to expand-
ing the forward node of every MEP. Bi-HS algorithms may
expand nodes from either side, potentially covering all the
MEPs with fewer expansions.

In order to bound the minimal solution cost that can pass
through each (single) node u in the open lists, we use the
bound lb(u, v), apply it to every node v in the opposite fron-
tier and take the minimum of these values. Formally, for ev-
ery u in OpenD let lb(u) = minv∈openD

{lb(u, v)} (D is op-
posite to D). Then lb(u) is a lower bound on the cost of any
solution that passes through u. Finally, we define the global
lower bound LB to be the minimal lb(u) among all nodes.
lb was reformulated by Chen et al. [2017] as a bipartite

graph (called a Must-Expand Graph or GMX) in which for
each node u ∈ G there is a left vertex uF and a right vertex
uB ; a GMX has an edge between a vertex uF and a vertex vB
iff (u, v) is an MEP. Under this representation, the task of cov-
ering all the MEPs is equivalent to finding a vertex cover (VC)
of theGMX, and the minimum vertex cover (MVC) is the mini-
mum number of expansions required to prove solution optim-
laity. Chen et al. [2017] then used the GMX representation to
develop NBS, a Bi-HS algorithm that chooses an edge form
the GMX in every iteration, and expands both nodes. NBS ter-
minates once a solution with cost ≤ LB is found. By only
expanding edges of the GMX, NBS is bounded by 2 × |MVC|
and thus expands at most twice the number of nodes required
to verify solution optimality.

2 Bidirectional Search using Dynamic VC
Based on the above lower bounds, we introduce the Dynamic
Vertex Cover Bidirectional Search (DVCBS) algorithm. Like
NBS, DVCBS maintains LB and terminates when a solution
with cost ≤ LB is found. However, DVCBS differs concep-
tually from NBS: while NBS always expands both nodes of a
chosen edge (MEP), DVCBS works by maintaining a dynamic
version of a GMX (a DGMX), greedily expanding a minimum
vertex cover of the DGMX at each step.

The structure of a DGMX resembles that of a GMX, with
two main differences: (1) The full GMX is unknown during
the search. As a result, a DGMX constructs left and right ver-
tices using only nodes inOpenF andOpenB respectively. (2)
The value ofC∗ is not known during the search, thus edges of
a DGMX are defined on pairs 〈u, v〉 such that lb(u, v) < LB.
Since LB ≤ C∗, all such pairs are MEPs in the relevant full
GMX. Note that nodes with the same g-value in theGMX (and
DGMX) can be merged into a single weighted vertex, or clus-
ter, where the task is to find a minimum weighted VC.

2.1 Choosing Nodes for Expansion
There are many ways to choose nodes for expansion given a
DGMX and an MVC. Every expansion deletes vertices of, and
may add new vertices to the DGMX, invalidating the given
MVC. However, computing an MVC every time the DGMX
changes incurs some overhead. Thus, an efficient expansion
policy should balance between expanding more nodes and

Domain Heuristic Algorithm VC: GMX Total

14
Pancake

GAP NBS 47 147
DVCBS 30 121

GAP-1 NBS 5,870 5,915
DVCBS 4,321 4,344

GAP-2 NBS 137,295 137,719
DVCBS 86,292 87,012

15
Puzzle MD NBS 12,709,517 12,748,107

DVCBS 11,589,837 11,669,720
Grids
DAO Octile NBS 6,561 6,677

DVCBS 5,158 5,545

TOH4

10+2 NBS 232,509 232,509
DVCBS 224,233 224,249

6+6 NBS 663,136 681,995
DVCBS 636,375 664,469

Table 1: Average node expansions across domains (using ε = 1)

maintaining relevantDGMX and MVC. We experimented with
various expansion policies, and found that a good balance is
to expand a single cluster before re-computing theDGMX and
MVC. This results in a manageable number of MVC computa-
tions, while working with reasonably up-to-date information.
Moreover, since all vertices in a cluster share g-values, LB
may only be increased after an entire cluster is expanded. We
only report experimental results for this variant.
DVCBS contains several other decision points. First, there

can be many possible MVCs for a given DGMX. Addition-
ally, as mentioned above, one cluster from an MVC should be
chosen and expanded. Finally, the order of node expansions
within a cluster may affect the number of expansions before
reaching a solution when LB = C∗. We experimented with
many variants but found the best to be as follows: select the
cluster with the least amount of nodes among the clusters with
minimal gF - and gB-values, among all MVCs. Tie breaking
within a cluster orders nodes according to the order of their
discovery. The results reported in Section 2.2 use this variant.

The core of DVCBS includes the following steps: (1) ini-
tialize the DGMX, (2) find an MVC, (3) expand a cluster from
the MVC and (4) update the DGMX. Steps 2-4 repeat until
either an optimal solution is found or no solution can exist.

While DVCBS outperforms NBS on average (see experi-
ments below), DVCBS is not bounded in its worst case.

2.2 Evaluating DVCBS
In order to empirically evaluate DVCBS, we ran experiments
on the following domains: (1) 50 Pancake Puzzle (with 14
pancakes) instances with the GAP heuristic [Helmert, 2010].
To get a range of heuristic strengths, we also used the GAP-n
heuristics (n = 1 . . . 9) where the n smallest pancakes are
deleted from the heuristic computation; (2) 50 12-disk, 4-peg
Towers of Hanoi (TOH4) instances with additive PDBs [Fel-
ner et al., 2004]. (3) Grid-based pathfinding: maps from
Dragon Age Origins (DAO) [Sturtevant, 2012], each with dif-
ferent start and goal points. (4) The standard 100 instances of
the 15 Puzzle problem [Korf, 1985] using Manhattan Dis-
tance. Our results are reported in Table 1 in which “VC:
GMX” denotes the nodes expansions before finding a VC of
the GMX, and “Total” denotes that overall total expansions.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Sister Conferences Best Papers Track

4776

As NBS has a 2× bound guarantee, any algorithm must ex-
pand at least half of those expanded by NBS, limiting possible
improvements. Nevertheless, we found DVCBS required less
expansions to find a VC of the GMX and a solution. Finally,
the expansion rates of both algorithms were similar, with very
low variance. Therefore, the number of node expansions re-
ported in Table 1 reflects the run-time accurately.

Both DVCBS and NBS are algorithms specifically designed
to utilize lb(u, v). We now introduce interesting theoretical
properties that may be gained by using the lb information. In
addition, we propose a way to incorporate this information
into existing algorithms that do not include it by design.

3 Well-Behavedness and Reasonableness
If h1 and h2 are consistent heuristics and h1 dominates h2,
then A∗ using h1 will expand a subset of the nodes expanded
when using h2, up to tie-breaking in the last f -layer [Holte,
2010]. Holte et al. [2017] defined the meet-in-the-middle
(MM) Bi-HS algorithm and presented an anomaly in which
the above property is violated. Specifically, they presented
an example in which MM0 (an MM variant with a global zero-
heuristic, h0) expands a subset of nodes that are expanded by
MM with a stronger heuristic. Barley et al. [2018] also refer
to this anomaly, calling algorithms well-behaved if using a
stronger heuristic does not cause any additional node expan-
sions, and ill-behaved otherwise. Well-behavedness has not
been formally defined in a general manner. Therefore, we in-
troduce a general definition of the well-behavedness property
below and show that the anomaly stems from a combination
of (1) different tie-breaking, and (2) ignoring the theoretical
lower-bound conditions in the expansion process.

Many heuristic search algorithms only partially specify
which node to expand at each step. For example, A∗ may
choose any node in OPEN with a minimal f -value. Thus,
these algorithms specify a set of nodes from the open lists
(the allowable-set) from which the next node must be ex-
panded. A tie-breaking scheme is used to select a node from
the allowable-set. Such schemes are usually implementation-
specific, rather than part of the algorithm definition.

LetAh(I, t) be the sequence of nodes expanded by running
algorithm A using heuristic h on problem instance I with a
tie-breaking function t, and let S(Ah(I, t)) be a (unordered)
set of nodes induced by the expansion performed byAh(I, t).

Definition 2. Let h1, h2 be admissible, consistent heuris-
tics, such that h1 dominates h2. Algorithm A is said to
be well-behaved if for every tie-breaking policy t and prob-
lem instance I , there exists a tie-breaking policy t′ such that
S(Ah1

(I, t′)) ⊆ S(Ah2
(I, t)).

This general definition applies to any Bi-HS algorithm. To
date, only A∗ and GBFHS were shown to be well-behaved,
and MM has been shown to be ill-behaved. Based on lb, We
define conditions that determine whether algorithms are well-
behaved, covering many more algorithms.

Theorem 1. An admissible Bi-HS algorithm A is well-
behaved if the following three sufficient (but not necessary)
conditions hold: (C1)A chooses a node u for expansion only
if lb(u) = LB; (C2) A terminates when a solution with cost

Algorithm Without lb-p With lb-p
R WB R WB

BHPA × X X X
BS∗ × × X ×
fMM × × X X

GBFSH X X X X
NBS, DVCBS X × X ×

Table 2: Algorithm properties summary. R columns denote reason-
ableness, WB columns denote well-behavedness.

C ≤ LB is found; and (C3) the allowable-set of A contains
every node u with lb(u) = LB.

While being well-behaved is an interesting property, some
well-behaved algorithms that do not satisfy C1-C3, do not
behave sensibly. For example, an algorithm that completely
ignores heuristic values and expands nodes by their g-value is
clearly well-behaved because a stronger heuristic would not
affect the algorithm’s behavior. However, such an algorithm
might expand nodes n with f(n) > C∗ whose g(n) ≤ C∗.
Gilon et al. [2016] denoted algorithms as reasonable if they
prune any node n with f(n) > C, where C an upper bound
on the cost. We generalize this notion as follows:
Definition 3. A Bi-HS algorithm is reasonable if for every tie-
breaking policy it does not expand a node v if either lb(v) >
C∗, or if lb(v) = C∗ and a solution of cost C∗ was found.
Theorem 2. Any admissible Algorithm A that satisfies C1
and C2 is reasonable.

To summarize, an algorithm that satisfies C1 and C2 is rea-
sonable, and one that also satisfies C3 is well-behaved.

4 lb-propagation and its Effect on Algorithms
lb-propagation is a method for enhancing heuristics by utiliz-
ing lb-values. Let hlb(n) = lb(n) − gD(n) denote the new
heuristic for nodes in direction D. Maintaining and using hlb
(by propagating lb information between frontiers) instead of h
in an algorithm is called lb propagation. Consider the follow-
ing observations: (1) hlb is a dynamic heuristic that considers
information generated by the search in direction D. There-
fore, its value for a node may change as the search proceeds.
(2) As lb(n) ≥ fD(n) holds, hlb(n) ≥ hD(n) for every node
in both directions. (3) hlb maintains the consistency and ad-
missibility properties of h.

Despite the fact that hlb dominates h(n), lb-propagation
depends on the ability to efficiently compute the lb of nodes
in OPEN. In some algorithms, the lb-propagation can be ap-
plied to a subset of OPEN, possibly enabling efficient lb com-
putation (as in NBS). Another possibility is to use g-h buck-
ets [Burns et al., 2012]; this solution is very efficient when
the number of possible g-values is relatively small.
hlb changes the f -values of nodes to be their lb-value, thus,

any algorithm that expand nodes and terminates based on f -
values, and applies lb-propagation will now satisfy condition
C1 and C2 and become reasonable. However, in order to be
provably well-behaved, condition C3 is also needed.

Table 2 shows the effect of lb-propagation on several algo-
rithms: BHPA [Pohl, 1971], BS∗ [Kwa, 1989], fMM [Shaham
et al., 2017], NBS, DVCBS and GBFHS [Barley et al., 2018].

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Sister Conferences Best Papers Track

4777

Algorithm
10-Pancake TOH-10 Grid

GAP-0 GAP-1 GAP-2 GAP-3 8+2 6+4 DAO
h hlb h hlb h hlb h hlb h hlb h hlb h hlb

BPHA-Alt 26 26 674 665 9,484 6,916 50,804 14,564 26,435 23,666 96,102 69,130 368 319
BPHA-Min 25 21 465 427 6,375 5,615 34,497 28,127 33,770 13,270 159,079 49,128 413 309

BS∗ 25 25 374 682 5,528 5,585 30,687 11,957 18,268 18,351 73,434 63,918 311 496
fMM(1/4) 103 115 5,348 1,985 30,858 11,030 82,396 27,097 22,660 19,899 65,364 57,453 414 407

MM 264 76 2,519 682 5,944 1,684 5,034 2,040 41,407 34,307 89,883 76,852 511 501
fMM(3/4) 64 81 2,098 1,111 15,424 6,002 48,227 13,263 42,452 36,933 173,968 158,290 442 434

Table 3: Experimental results of average node expansions across domains

Figure 1: MM vs. MMlb (left) and BHPA-Min vs. BHPA-Minlb (right) on 10-pancake

5 Empirical Evaluation of lb-propagation
The evaluation of the lb-propagation was performed using the
same settings reported in section 2.2 with the following ex-
ceptions: (1) 10 pancaked were used instead of 14 (2) 10 disk
were used in TOH4 instead of 12. (3) the 15 Puzzle problem
domain was excluded. These changes were made since many
of the algorithms evaluated in this section could not solve the
original (more complex) problems in reasonable time.

Figure 1 shows average node expansions in the 10-pancake
domain across all GAP heuristics. Figure 1 (left) compares
MM and MMlb, clearly showing that hlb reduces the number of
expansions in each of the GAP heuristics up until the heuris-
tic effectively becomes h0. The presence of the anomaly is
demonstrated by the hump-in-the-middle [Barley et al., 2018]
in heuristics GAP-2 through GAP-6. By contrast, the hump-
in-the-middle of MMlb is not present in when considering av-
erage expansions. Figure 1 (right) compares a variant of
BHPA, denoted by BHPA-Min, with the lb-enhanced BHPA-
Min. This variant selects the frontier that includes the node
with the minimal f -value. Here too, the lb-propagation im-
proves the search by reducing the number of nodes expanded.
Even though BHPA-Min is well-behaved, the lb-propagation
still improves the algorithm by making it reasonable.

Table 3 depicts the average number of nodes expanded
across domains, with ε = 1. h denotes the original heuris-
tic, while hlb denotes the lb-enhanced heuristic. We tested
the algorithms BS∗, fMM(p) using p ∈ {1/4, 1/2, 3/4}, BHPA-
Min and BHPA-Alt (another BHPA variant that alternates
expansions between the frontiers). We found that using lb-
propagation reduces node expansions in most cases by up
to a factor of 4. lb-propagation particularly excels when the
heuristics are weak. In these cases, using hlb always results

in fewer expansions. This is also the case for GAP-4 through
GAP-9, which do not appear in the table. Another interesting
observation is that the hump-in-the-middle is less pronounced
in all of the lb-enhanced algorithms we tested. We also ex-
perimented using ε = 0, and similar trends were exhibited.

6 Summary and Conclusions
We have examined the lower bounds on paths costs between
pairs of nodes (lb), and presented a dynamic-vertex-cover
based Bi-HS algorithm, DVCBS, that uses lb by design. More-
over, we have empirically showed that DVCBS outperforms
NBS on average, despite not having any upper bound guar-
antees. We analyzed the advantages of using the lb infor-
mation by examining the anomaly present in some Bi-HS al-
gorithms, where using a better heuristic may lead to more
node expansions. Aiming to improve some of the anoma-
lous algorithms, we defined the “well-behavedness” and “rea-
sonableness” properties, and established sufficient conditions
(C1, C2, C3) for them based on lb. Finally, we devised the
lb-propagation scheme for utilizing the lb information in ex-
isting algorithms lacking this feature, that can be added to
many Bi-HS algorithms, in some cases granting them these
desirable properties. Empirical results show that modified al-
gorithms exhibit better behavior, mitigating or eliminating the
undesirable “hump-in-the-middle” effect.

Acknowledgements
Partially supported by ISF grant #844/17, by BSF grant
#2017692, by NSF grant #1815660, by the Frankel center for
CS at BGU, by CIFAR and NSERC.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Sister Conferences Best Papers Track

4778

References
[Alcázar et al., 2020] Vidal Alcázar, Pat Riddle, and Mike

Barley. A unifying view on individual bounds and heuris-
tic inaccuracies in bidirectional search. In AAAI, 2020.

[Barley et al., 2018] Michael W. Barley, Patricia J. Rid-
dle, Carlos Linares López, Sean Dobson, and Ira Pohl.
GBFHS: A generalized breadth-first heuristic search algo-
rithm. In SoCS, pages 28–36, 2018.

[Burns et al., 2012] Ethan Andrew Burns, Matthew Hatem,
Michael J. Leighton, and Wheeler Ruml. Implementing
fast heuristic search code. In SoCS, 2012.

[Chen et al., 2017] Jingwei Chen, Robert C. Holte, Sandra
Zilles, and Nathan R. Sturtevant. Front-to-end bidirec-
tional heuristic search with near-optimal node expansions.
In Proceedings of IJCAI, 2017.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A*. J. ACM, 32(3):505–536, 1985.

[Eckerle et al., 2017] Jurgen Eckerle, Jingwei Chen,
Nathan R. Sturtevant, Sandra Zilles, and Robert C. Holte.
Sufficient conditions for node expansion in bidirectional
heuristic search. In ICAPS, 2017.

[Felner et al., 2004] Ariel Felner, Richard E. Korf, and Sarit
Hanan. Additive pattern database heuristics. J. Artif. Intell.
Res., 22:279–318, 2004.

[Gilon et al., 2016] Daniel Gilon, Ariel Felner, and Roni
Stern. Dynamic potential search - A new bounded sub-
optimal search. In SoCS, pages 36–44, 2016.

[Helmert, 2010] Malte Helmert. Landmark heuristics for the
pancake problem. In SoCS, 2010.

[Holte et al., 2017] Robert C. Holte, Ariel Felner, Guni
Sharon, Nathan R. Sturtevant, and Jingwei Chen. MM: A
bidirectional search algorithm that is guaranteed to meet
in the middle. Artif. Intell., 252:232–266, 2017.

[Holte, 2010] Robert C. Holte. Common misconceptions
concerning heuristic search. In SoCS, 2010.

[Korf, 1985] Richard E. Korf. Depth-first iterative-
deepening: An optimal admissible tree search. Artif. In-
tell., 27(1):97–109, 1985.

[Kwa, 1989] James B. H. Kwa. BS*: An admissible bidi-
rectional staged heuristic search algorithm. Artif. Intell.,
38(1):95–109, 1989.

[Pohl, 1971] Ira Pohl. Bi-directional search. Machine intel-
ligence, 6:127–140, 1971.

[Russell and Norvig, 2016] Stuart J Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach.
Malaysia; Pearson Education Limited,, 2016.

[Shaham et al., 2017] Eshed Shaham, Ariel Felner, Jingwei
Chen, and Nathan R. Sturtevant. The minimal set of
states that must be expanded in a front-to-end bidirectional
search. In SoCS, pages 82–90, 2017.

[Shaham et al., 2018] Eshed Shaham, Ariel Felner,
Nathan R. Sturtevant, and Jeffrey S. Rosenschein.

Minimizing node expansions in bidirectional search with
consistent heuristics. In SoCS, pages 81–98, 2018.

[Shperberg et al., 2019a] Shahaf Shperberg, Avi Hayoun,
Ariel Felner, Solomon Eyal Shimony, and Nathan R.
Sturtevant. Enriching non-parametric bidirectional search
algorithms. In AAAI, 2019.

[Shperberg et al., 2019b] Shahaf S. Shperberg, Ariel Fel-
ner, Solomon Eyal Shimony, Nathan R. Sturtevant, and
Avi Hayoun. Improving bidirectional heuristic search by
bounds propagation. In SOCS, 2019.

[Sturtevant, 2012] Nathan R. Sturtevant. Benchmarks for
grid-based pathfinding. IEEE Trans. Comput. Intellig. and
AI in Games, 4(2):144–148, 2012.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Sister Conferences Best Papers Track

4779

	Introduction and Background
	Definitions and Notations
	Guaranteeing Solution Optimality

	Bidirectional Search using Dynamic VC
	Choosing Nodes for Expansion
	Evaluating DVCBS

	Well-Behavedness and Reasonableness
	lb-propagation and its Effect on Algorithms
	Empirical Evaluation of lb-propagation
	Summary and Conclusions

