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Abstract
Many modern applications of description logics
(DLs, for short), such as biomedical ontologies
and semantic web policies, provide compelling
motivations for extending DLs with an overriding
mechanism analogous to the homonymous feature
of object-oriented programming. Rational closure
(RC) is one of the candidate semantics for such
extensions, and one of the most intensively stud-
ied. So far, however, it has been limited to strict
fragments of SROIQ(D) – the logic on which
OWL2 is founded. In this paper we prove that
RC cannot be extended to logics that do not sat-
isfy the disjoint model union property, including
SROIQ(D). Then we introduce a refinement of
RC called stable rational closure that overcomes
the dependency on the disjoint model union prop-
erty. Our results show that stable RC is a natu-
ral extension of RC. However, its positive features
come at a price: stable RC re-introduces one of the
undesirable features of other nonmonotonic logics,
namely, deductive closures may not exist and may
not be unique.

1 Introduction
Many modern applications of description logics (DLs, for
short), such as biomedical ontologies and semantic web poli-
cies, provide fresh motivations for extending DLs with an
overriding mechanism analogous to the homonymous fea-
ture of object-oriented programming (see [Rector, 2004;
Stevens et al., 2007; Bonatti et al., 2015] for extended mo-
tivations). This may be accomplished – for instance – by ex-
tending a given monotonic DL with so-called defeasible in-
clusions (DIs), that are expressions C @∼ D, where C and D
are concepts (such as OWL2 classes). The intended meaning
of C @∼ D is: “the instances of C are normally instances of
D”.1 In other words, D is a default property of C’s instances,

∗This is an extended abstract of the homonymous paper pub-
lished in the Artificial Intelligence journal [Bonatti, 2019].

1Compare DIs with the “strong” classical inclusions C v D of
DLs that mean: “all the instances of C are also instances of D”.
Relation v corresponds to the SubClassOf operator of OWL2.

that can be possibly overridden by conflicting properties in
the subclasses of C, as in the following example.
Example 1. By definition, eucaryotic cells (EC for short) are
cells that have a nucleus. Biologists consider mammalians’
red blood cells (MRBC) eukaryotic even if they have no nu-
cleus in their mature stage. This piece of biological knowl-
edge can be naturally encoded by stating that mammalian red
blood cells are eukaryotic, eukaryotic cells normally have a
nucleus while mammalian red blood cells normally do not
have it. A formalization of the above three statements by
means of DIs and classical inclusions is the following:

MRBC v EC

EC @∼ ∃hasPart.Nucleus
MRBC @∼¬∃hasPart.Nucleus ,

(the concept ∃hasPart.Nucleus represents the class of all
objects that have an attribute hasPart that is an instance
of Nucleus). If all the above inclusion symbols were v,
then concept MRBC would be inconsistent, because it would
be contained both in ∃hasPart.Nucleus and its complement.
With @∼ , instead, no contradiction is derived: the third axiom
overrides the second, and MRBC may have instances.

The formal semantics of DIs is nonmonotonic, that is – un-
like classical logic – adding more axioms to a knowledge base
(KB) may cause some of its consequences to be retracted.
Example 2. With reference to the above example, with-
out the third axiom one should conclude that mammalian
red blood cells normally have a nucleus, in symbols:
MRBC @∼ ∃hasPart.Nucleus. When the third axiom is added
to the KB this conclusion is retracted (overridden) and re-
placed with MRBC @∼¬∃hasPart.Nucleus.

Rational closure (RC) [Casini and Straccia, 2013; Britz et
al., 2013; Giordano et al., 2015] is a nonmonotonic seman-
tics applicable to DLs that received particular attention, be-
cause of the following properties: (i) it frequently preserves
the complexity of the classical DL that it extends; (ii) it al-
ways yields a unique deductive closure, while some of the
other nonmonotonic semantics may yield none or many de-
ductive closures, thereby raising inconsistency or ambiguity
problems; (iii) RC satisfies a set of postulates introduced long
ago by Kraus, Lehmann, and Magidor, called KLM [Kraus et
al., 1990; Lehmann and Magidor, 1992], that aim at model-
ing the logical properties of reasoning about normality. Some
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of the drawbacks of rational closure’s inferences are being
addressed in the works cited in Section 6. Our contribution,
instead, is focussed on the generality of RC.

RC has never been applied to the entire DL
SHROIQ(D), that constitutes the foundation of the
standard ontology language OWL2. The reason is that
the model theoretic semantics of RC is based on suitable
canonical models [Giordano et al., 2015] whose existence
is proved by means of the disjoint model union property
(DMUP), a property that is generally not enjoyed by the
DLs that support nominals (equivalently, the ObjectOneOf
operator of OWL2) or the universal role (i.e. OWL2’s
topObjectProperty).

This paper proves that the standard semantic framework of
RC, with its models and related soundness and completeness
results, cannot be extended to the DLs that do not enjoy the
DMUP. Then we introduce a refinement of RC called stable
RC, that does not rely on the DMUP, so in principle is applica-
ble to all of SROIQ(D). Finally, we extensively analyze the
properties of stable RC and compare it with RC. These three
contributions are briefly described in sections 3, 4, and 5, re-
spectively. Section 6 summarizes our conclusions. We are
going to simplify several definitions in order to meet space
limitations.2

2 Preliminaries on DLs
Here we recall only the basics needed to read this abstract;
see [Horrocks et al., 2006] for the missing details on the DL
SROIQ(D). The vocabularies of DLs consist of countably
infinite sets of concept names, role names, and individual
names. The compound concepts used in this abstract are de-
fined by the following grammar, where A and P range over
concept names and role names, respectively:

C,D ::= A | ⊥ | > | C uD | C tD | ¬C | ∃P.C .

DL interpretations are structures I = 〈∆I , ·I〉 where ∆I is
a nonempty set, and ·I is an interpretation function such that
AI ⊆ ∆I , P I ⊆ ∆I × ∆I , for all individual names a,
aI ∈ ∆I , ⊥I = ∅, and >I = ∆I .

Function ·I is extended to compound concepts as follows:
(C u D)I = CI ∩ DI , (C t D)I = CI ∪ DI , (¬C)I =
∆I \CI , and (∃P.C)I = {x | ∃y : (x, y) ∈ P I ∧ y ∈ CI}.
I satisfiesC iffCI 6= ∅. A concept inclusion is an expression
C v D; it is satisfied by an interpretation I iff CI ⊆ DI .

3 Analysis of Standard RC
We may assume without loss of generality that knowledge
bases are sets of DIs only.3 The semantics of RC is based on
ranked interpretations that are structures I = 〈∆I , ·I , hI〉,
where 〈∆I , ·I〉 is a classical DL interpretation, and hI :
∆I → ω (where ω is the first infinite ordinal) assigns each in-
dividual x to an ordinal; the higher the ordinal, the higher the
abnormality of x. The set of minimally abnormal members

2In particular we do not discuss the restriction of reasoning to
relevant concepts and DIs, that is adopted in the proofs of the com-
plexity results.

3Each classical inclusion E v F is equivalent to E u ¬F @∼⊥.

of CI will be denoted by minI(C). A ranked interpretation
I satisfies C @∼D iff minI(C) ⊆ DI , i.e., if the maximally
normal instances of C satisfy D. As usual, we say that I is
a model of a KB K iff I satisfies all the DIs in K. We also
write K |= C @∼D when C @∼D is satisfied by all the models
of K. C is consistent w.r.t. K if some model of K satisfies C.

The inferences of RC are computed by means of an excep-
tionality ranking rnk that maps each concept onto an ordinal
in ω+ 1 (where ω is the first infinite ordinal). The ranking, in
turn, is based on the following notion: A concept C is excep-
tional w.r.t. a KB K iff K |= > @∼ ¬C (informally: none of
the most normal individuals of any model ofK are ever inC).
A DI C @∼ D is exceptional w.r.t. K if C is. Exceptionality
induces a chain of KBs

E0 ⊇ E1 ⊇ . . . ⊇ Ei ⊇ . . . (i < ω) (1)

where E0 = K and each Ei+1 is the set of DIs of Ei that are
exceptional w.r.t. Ei, that is, Ei+1 contains a DI C @∼D of Ei
iff

Ei |= > @∼¬C . (2)

Define rnk(C) = i iff i is the least finite ordinal such that C
is not exceptional w.r.t. Ei; if no such i exists, then rnk(C) =
ω.

Now the rational closure of K, denoted by RC(K), can
be defined as the set of all DIs C @∼ D such that either
rnk(C) = ω or rnk(C) < rnk(C u ¬D). The rationale
behind this definition is the following: (i) rnk(C) = ω
should occur only when C is inconsistent w.r.t. K; in that
case C @∼ D vacuously holds; (ii) rnk(C) < rnk(C u ¬D)
in fact means that the instances of C that satisfy ¬D are not
the most normal instances of C.

The KLM postulates characterize |= and the set of DIs that
are valid in the class of all ranked interpretations. However,
these notions obviously constitute a monotonic logic. There-
fore the model-theoretic semantics of RC(K) is based only on
the minimal canonical models of K [Giordano et al., 2015].
The canonical models of K, roughly speaking, are models
of K where all the concepts that are consistent w.r.t. K are
simultaneously nonempty. Here is where the DMUP comes
into play: if the underlying monotonic DL enjoys it, then each
consistent K has a canonical model, that can be constructed
by taking the union of any set that contains a model for each
consistent concept. The correctness and completeness of RC
inferences can now be stated as follows: a DI is in RC(K) iff
it is satisfied by all minimal canonical models of K.

Unfortunately, we have shown that this result does not hold
if the underlying classical DL does not enjoy the DMUP. In
particular [Bonatti, 2019, Example 4.1] proves the following
statement:

Theorem 1. There exist a KB K and a concept C such that
C @∼ ⊥ is satisfied by all the ranked models of K (including
its canonical models) but C @∼⊥ is not in RC(K).

In other words, when the DMUP does not hold, the pro-
cedure for computing RC is not complete w.r.t. the standard
semantics of RC. We are not only talking about the current
definition of canonical model; no semantics based on ranked
models matches the computation of RC based on rnk .
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4 Stable Rational Closure
There are two possible ways of fixing the above problem.
First, one may change the semantics. This would be a ma-
jor departure from the original foundations of RC, aimed at
instantiating the KLM postulates; given the strict connection
between the postulates and ranked models, changing the no-
tion of interpretation may easily affect the validity of the pos-
tulates. Therefore, we followed the second possible choice,
and modified the definition of ranking.

By analyzing the problematic example behind Theorem 1,
it can be seen that the problem arises from the fact that each
Ei+1 with i > 0 is determined based on Ei that, in general, is
a strict subset ofK; in this way, some of the constraints posed
by K’s axioms may be lost along the way. Thus we introduce
a construction that takes into account the entire K at all steps.

Finding the new notion of ranking has not been easy; Sec-
tion 4 of [Bonatti, 2019] illustrates a few dead ends. Eventu-
ally, a natural refinement of RC that does not depend on the
DMUP has been obtained by setting up and solving a met-
alevel equation that captures the requirements on rankings.

For this purpose, let us consider arbitrary ranking functions
r from concepts to ω+ 1; these are the candidate refinements
of rnk . Each ranking function determines a class of ranked
interpretations, called upward closed models, whose function
h is constrained by r. More precisely, a model I of K is
upward closed w.r.t. r iff for each concept C, and for all in-
stances x ∈ minI(C), it holds that hI(x) = r(C). We write
K |=r C @∼D when C @∼D is satisfied by all the models of K
that are upward closed w.r.t. the given r.

Each ranking function r determines also the following ana-
logue of sequence (1):

Er0 ⊇ Er1 ⊇ . . . ⊇ Eri ⊆ . . . (i < ω) (3)

where for all i ≤ ω, Eri = {(C @∼D) ∈ K | r(C) ≥ i}.
Finally, each r induces a relativized notion of rational clo-

sure denoted by RCr, analogous to RC(K):

RCr =
{
C @∼D | r(C) = ω ∨ r(C) < r(C u ¬D)

}
.

Of course, only some ranking functions make sense.
“Good” rankings should satisfy a “correct” version of the ex-
ceptionality criterion (2). In order to specify the new crite-
rion, let Êri represent the class of all the individuals that sat-
isfy all the DIs in Eri ; formally, Êri is a concept defined by:

Êri =
l {

(¬C tD) | (C @∼D) ∈ Eri
}
.

Now the new exceptionality criterion can be formulated as
follows. For all concepts C and all ordinals i < ω, a “good”
ranking function should satisfy the following conditions:

1. if i < r(C), then K |=r Êri v ¬C ;

2. if i = r(C) 6= ω, then K 2r Êri v ¬C .
A ranking function r is stable w.r.t. K iff it satisfies the above
two conditions. By stable rational closure of K we mean any
set RCr such that r is stable w.r.t. K.

Let us compare the new exceptionality conditions with (2).
First, they depend on the entire K, as opposed to one of its
subsets Eri . This addresses the issue that leads to Theorem 1.

The instances of concept Êri can be regarded as the most
normal individuals at level i, since they satisfy all the DIs
at that level, by definition. So the inclusion Êri v ¬C says
that none of the most normal individuals at level i are in C;
accordingly, the two conditions above say that C shall be re-
garded as exceptional w.r.t. Eri iff Êri v ¬C is entailed.

Note that we use v instead of @∼ because Êri @∼ ¬C is al-
ways equivalent to > @∼ ¬C in all models of K, so (3) would
always reach a fixpoint in one step, and would not model cor-
rectly the exceptionality of concepts.

Finally, |=r is adopted in order to obtain a model-theoretic
characterization of stable rational closure; this matter is dis-
cussed in the next section.

5 Main Properties of Stable RC
We start by showing a model-theoretic characterization of sta-
ble RC
Theorem 2. For all stable rankings of K,

(C @∼D) ∈ RCr iff K |=
r

C @∼D .

Note that in the above theorem upward-closed models play
the role that minimal canonical models had in RC. The ad-
vantage of upward-closed models is that their existence does
not depend on the DMUP. This is achieved by allowing con-
sistent concepts to be empty in some upward-closed interpre-
tations, thereby removing the main need for constructing a
model from the union of other models (cf. the discussion of
canonical models in Section 3). Thus, upward-closed models
contribute to removing the limitation to generality that affects
RC.

The use of |=r in the new exceptionality criteria (points 1
and 2 in Section 4) is essential for achieving the above model-
theoretic characterization. It turns out that if |=r were replaced
with |=, then the resulting notion of stable closure would
match neither the consequences of all ranked models (i.e. it
might contain DIs δ such that K 6|= δ), nor the consequences
of upward-closed models only.

The next set of results constitutes the evidence that stable
RC can be regarded as a natural extension of RC. The first
result concerns the logical properties of stable RC:
Theorem 3. If r is stable, then RCr is closed under the KLM
postulates.
Next we turn to computational properties: like RC, stable RC
does not increase the complexity of reasoning in a number of
interesting DLs. In the following, let metavariable DL range
over the names of classical description logics, such as EL,
ALC or SROIQ, for example. We say that a set of DIs K is
in DL if the set of classical inclusions obtained by replacing
@∼with v in K is in DL.
Definition 1. The entailment problem of stable RC in a de-
scription logic DL consists in deciding, for a given set of DIs
D in DL, and for a given K in DL, whether D ⊆ RCr holds
for some stable ranking r of K.
Theorem 4. Let DL be a description logic whose subsump-
tion decision problem is in EXP. The entailment problem of
stable RC in DL is in EXP, too. Moreover, the entailment
problem of stable RC is in P in the logic EL extended with⊥.
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More generally, if DL’s subsumption problem is in NEXP or
N2EXP (that is the complexity of SROIQ), then the entail-
ment problem of stable RC is in PNEXP or PN2EXP, respec-
tively.

The next theorem provides further evidence that stable RC
is a natural generalization of RC. It states that when the
DMUP holds, then stable RC is equivalent to RC.
Theorem 5. If K is in a logic that enjoys the DMUP, then
K has exactly one stable ranking r, such that r = rnk and
RCr = RC(K).

Unfortunately, when the DMUP does not hold, there is no
guarantee that stable rankings exist and are unique. The term
“stable” is justified by the fact that the definition of a stable r
depends on |=r and viceversa. Thus stable rankings are essen-
tially defined by a stability condition, that may possibly have
no solutions or multiple solutions. Indeed we can prove that:
Theorem 6. There exist K that have no stable rankings, and
there exist K that have two or more stable rankings.

Consequently, one of the appealing properties of RC does not
scale to the expressive DLs that do not enjoy the DMUP. In
general, when stable rankings exist, the following relation-
ship holds between the sequences (1) and (3):
Theorem 7. If r is stable w.r.t.K, then for all i ≤ ω, Ei ⊆ Eri .

In other words, rnk(C) ≤ r(C), for all concepts C. The
disequality may be strict. Moreover, it can be proved that if
r1 and r2 are two distinct stable rankings of K, then the two
sequences 〈Er1i 〉i≤ω and 〈Er2i 〉i≤ω are not comparable with
each other.

Reasoning with upward-closed models can be reduced to
(monotonic) entailment over ranked models, for which a few
calculi have been provided (cf. [Britz and Varzinczak, 2017],
and Prop. 2.9 and Corollary 2.10 in [Giordano et al., 2018]).
In particular:
Theorem 8. For all ranking functions r,

K |=
r

δ iff K ∪
{
C @∼ Êrr(C) | C ∈ C ∧ r(C) < ω

}
|= δ ,

where C is a suitable, finite set of relevant concepts, that de-
pends on K and δ.

The above reduction constitutes the basis for automated rea-
soning in stable RC and is exploited in the proofs of the afore-
mentioned complexity results.

6 Discussion and Conclusions
Rational closure is tightly bound to the disjoint model union
property. In general, when this property does not hold, the
inferences computed through RC’s notion of ranking do not
match any model-theoretic semantics based on ranked inter-
pretations – that have always constituted the semantic foun-
dation of the logics designed around the KLM postulates, like
RC itself.

It can be seen that this is a consequence of the internal-
ization of the original framework by Kraus, Lehmann, and
Magidor, that is, the trasformation of a nonmonotonic con-
sequence relation into the object-level operator @∼ [Bonatti,
2019, Sec. 10].

Stable rational closure removes the dependency on the
DMUP and re-establishes a model-theoretic characterization
based on ranked models. Stable RC is a natural generalization
of RC: it coincides with RC when the KB enjoys the DMUP;
it enjoys the same computational properties as RC; it satisfies
the KLM postulates. Unfortunately, when the DMUP does
not hold, a KB may have no stable RC or multiple stable RCs.
In other words, similarly to other nonmonotonic logics, like
default and autoepistemic logics, stable RC may yield multi-
ple deductive closures or no deductive closures at all.

Further drawbacks of stable RC are inherited from
RC, due to the equivalence of the two logics over
the DLs that enjoy the DMUP. One of these draw-
backs is that default properties do not apply to role
fillers. For instance, suppose that Example 1 is ex-
tended with the axiom: HumanBody v ∃hasPart.MRBC.
From the resulting KB it is not possible to conclude that
HumanBody @∼ ∃hasPart.¬∃hasPart.Nucleus, that is, the de-
fault property of MRBC is not reflected on the attribute
hasPart of HumanBody.

Another drawback is the so-called inheritance blocking
phenomenon: one overriding suffices to block the inheritance
of all the default properties of the superclass. Consider again
our biological example, and extend the KB of Example 1 with
the axiom EC @∼ ∃hasPart.Mithocondria. Since the property
of having a nucleus is overridden in MRBC, the property of
having mithocondria is not inherited, either, even if none of
the properties of MRBC is inconsistent with having mitho-
condria.

A first solution to these problems has been given in [Pensel,
2019; Pensel and Turhan, 2018]. Generality is still an is-
sue, though, since these works are specifically formulated
for a logic of the EL family, that is a tiny fragment of
SROIQ(D). Other approaches, like [Britz and Varzinczak,
2017], are still missing the definition of nonmonotonic infer-
ences. In order to make stable RC applicable in practice, the
above research efforts should be completed, integrated with
each other, and further integrated with a satisfactory solution
to the generality problem.

In the light of the above technical difficulties, the author
believes that the competing logic DLN [Bonatti et al., 2015;
Bonatti and Sauro, 2017] is currently an appealing alterna-
tive. DLN suffers from none of the drawbacks of RC; it has
the same nice computational properties (actually, the results
on tractability preservation are currently broader); moreover
it “almost” satisfies several versions of the KLM postulates
[Bonatti and Sauro, 2017], even if satisfying the postulates
was not one of the goals of DLN. The major discrepancies
between the postulates and DLN stem from DLN’s novel
treatment of unresolved conflicts, i.e. the conflicts between
DIs that cannot be resolved by the chosen priority relation
and require additional knowledge. Such discrepancies disap-
pear when those conflicts are resolved by adding the missing
knowledge. The new way of handling unresolved conflicts is
motivated by knowledge engineering requirements, and – in
general – the minor violations of the postulates (that in the
author’s opinion are not a must, rather a tool for analyzing
nonmonotonic logics) are compensated by DLN’s extended
coverage of such requirements.
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