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Abstract

Estimating the normalization constants (partition
functions) of energy-based probabilistic models
(Markov random fields) with a high accuracy is re-
quired for measuring performance, monitoring the
training progress of adaptive models, and conduct-
ing likelihood ratio tests. We devised a unify-
ing theoretical framework for algorithms for esti-
mating the partition function, including Annealed
Importance Sampling (AIS) and Bennett’s Accep-
tance Ratio method (BAR). The unification reveals
conceptual similarities of and differences between
different approaches and suggests new algorithms.
The framework is based on a generalized form of
Crooks’ equality, which links the expectation over
a distribution of samples generated by a transition
operator to the expectation over the distribution in-
duced by the reversed operator. Different ways
of sampling, such as parallel tempering and path
sampling, are covered by the framework. We per-
formed experiments in which we estimated the par-
tition function of restricted Boltzmann machines
(RBMs) and Ising models. We found that BAR
using parallel tempering worked well with a small
number of bridging distributions, while path sam-
pling based AIS performed best with many bridg-
ing distributions. The normalization constant is
measured w.r.t. a reference distribution, and the
choice of this distribution turned out to be very im-
portant in our experiments. Overall, BAR gave the
best empirical results, outperforming AIS.

1 Introduction

Markov random fields (MRFs, [Kindermann and Snell,
1980]) are undirected probabilistic graphical models that find
many applications in Al, for example in computer vision
[Blake ef al., 2011] and neural computation [Smolensky,
1986]. The distribution modelled by an MRF can be written

*This paper is an extended abstract of an article in the Artificial
Intelligence Journal (AlJ) [Krause et al., 2020].
TContact Author

5045

as

p(z) =

L _e@)
Z° ’

where £(x) is called the energy function and the normaliza-
tion constant Z is referred to as the partition function. Com-
puting and even estimating Z of an energy-based probabilis-
tic model is typically challenging, because analytical integra-
tion is not possible and numerical integration unfeasible. But
for many tasks, we would like to know Z with a high accu-
racy. We may need Z to assess the performance of models, to
monitor maximum likelihood learning when adapting model
parameters, and to perform likelihood ratio tests. In many
cases, the estimation of the normalization constant is com-
plicated by the inability to even generate samples from the
distributions in question. Therefore, we would like to be able
to obtain a good estimate without the requirements of exact
sampling of the distribution.

This explains the popularity of algorithms such as An-
nealed Importance Sampling (AIS, [Neal, 20011) which com-
pute the ratio of normalization constants between a reference
distribution pr and a target distribution prare. If Prer is cho-
sen such that its normalization constant is known, the AIS-
estimate of the ratio of the normalization constants gives an
estimate of the partition function of pareet. ALS introduces so
called bridging distributions, which interpolate between pies
and parger as well as a sampling scheme that allows to estimate
the normalization constant only requiring exact samples from
Pret- The performance and limitations of AIS are well known
in the AI community [Salakhutdinov and Murray, 2008;
Schulz et al., 2010]. Tt is very general, still, the weak as-
sumptions come at the expense of a possibly large variance if
the number of bridging distributions is too small.

There are alternative algorithms such as variants of Ben-
nett’s Acceptance Ratio (BAR, [Bennett, 1976]), which was
rediscovered several times as Bridge Sampling [Meng and
Wong, 1996], Reverse Logistic Regression [Geyer, 1994],
and Discriminance Sampling [Liu er al., 2015], which also
compute estimates of the ratio of normalization constants.
However, they require independent samples from all bridg-
ing distributions and consequently there are only few studies
applying BAR in the context of energy-based models in the
Al community [Desjardins ef al., 2011; Liu et al., 2015]. A
possible source of samples with small bias from pref, Prarget»
and all bridging distributions is Parallel Tempering (PT, [Des-
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jardins et al., 2010]), which is often used for sampling from
graphical models during training. Parallel Tempering intro-
duces replica Markov chains to foster faster mixing, which
leads to increasing sample quality in all chains. If the distri-
butions of the replica chains are chosen to be the same as the
bridging distributions of the BAR-estimator, it is possible to
re-use the samples acquired during training for estimation the
normalization constant at no additional cost (see, e.g., [Des-
jardins et al., 2011]).

Still, the theoretical and practical properties of BAR com-
pared to AIS have been little studied in the AI community.
Our work contributes to closing this gap using a theoretical
framework that can be used to derive AIS as well as differ-
ent variants of BAR and other algorithms, allowing a con-
cise proof of the fact that BAR is a maximum-likelihood es-
timator of the normalization constant [Shirts et al., 2003]. In
this extended abstract summarizing the work by [Krause et
al., 2020], we will put an emphasis on experimental results,
showcasing the advantages of the different algorithms. We fo-
cus on Restricted Boltzmann Machines (RBMs, [Smolensky,
1986; Hinton, 2002; Fischer and Igel, 2014]) as a particular
class of Markov random fields, but our considerations are not
limited to these stochastic neural networks. [Krause et al.,
2020] also show results for the 2D-Ising model with exter-
nal magnetic fields and we would like to point out that the
results are also relevant for other types of generative models
(e.g., see [Wu et al., 2017] for an application scenario in the
context of Generative Adversarial Networks).

2 Main Result

Let us briefly sketch our main theoretical result, a generaliza-
tion of Crooks’ equation [Crooks, 2000] to arbitrary sampling
distributions. We refer to [Krause ef al., 2020] for details.

Let pref = Po,P1, -+ PN = Drarget bE a set of Gibbs distri-
butions over some state space {2 with p; : 2 — R and

1 1
pi(z) = Ze—s,(x) = ZP?(IC) ;
where p () denotes the unnormalized probability distribu-
tion. Our goal is to estimate Zx /Zg.

We now consider a random variable X = (Xo, Xn,Y)
taking values * = (zo,zn,y) in an extended state space
Of = Q2 x ©. Here y, taking values in the state space O,
is a placeholder for any set of additional variables an actual
estimation method may require. Assume that we can use the
set of Gibbs distributions pg, p1, . . . , py to construct a pair of
distributions pp and pr on QF with

pr(x) = pr(y,rNn|T0)po(T0) and

pr(x) = pr(Y, TolzN)pN(TN) -
We call pr the forward distribution, because it creates sam-
ples from py given a sample zy from pg, and we refer to pr
as the reverse distribution.

Consider now any function F on the extended state space
QF. We are interested in relating expectations of F under pp
to expectations of F under pg. [Krause er al., 2020] prove
that

Z
F@pnar = 7o (F@e"@)

where (f(2)) (@) = [ p(z) f(z)dz and

Pr(Y; xo\xN)p}‘v(gﬂN)

Wi@) = = s enleo)py (@)

By choosing pr, pr and F, we can now derive several
estimation algorithms. By setting F(x) = 1, we obtain

% B <67W(m)>mw>

which for particular choices of pr becomes equivalent to AIS
or Linked Importance Sampling [Neal, 2005]. Instead of
choosing an arbitrary F, BAR uses the variant which mini-
mizes the variance

1
Fw =1 FreW)
Unfortunately, this expression involves the unknown normal-
ization constant itself. However, inserting into (1) and sim-
plifying leads to a fixed-point problem which can be solved
for % [Krause et al., 2020] show that this is indeed the
maximum-likelihood estimator. A practical variant can be
obtained by setting pp(x) = vazopi(a:i) and pr(x) =
pn(zN) vazl pi(x;—1). In this case, we can compute the es-
timator using independent samples from the N bridging dis-
tributions as produced by parallel tempering.

3 Experiments

We empirically compared different algorithms for partition
function estimation. Here, we will only show results for two
of these algorithms, vanilla AIS and BAR (which [Krause et
al., 2020] refer to as BARPT-ind). We asked:

1. How accurate are the methods depending on the number
of bridging distributions and the choice of the reference
distribution?

2. Do the methods tend to over- or underestimate the nor-
malization constant?

3. How do the methods perform in an online setting, where
PT samples are used both for training as well as for par-
tition function estimation?

To address these questions, we added several partition func-

tion estimation methods to the open-source machine learning

library Shark [Igel et al., 2008]. In this extended abstract,

we present only results for MNIST data set [LeCun et al.,

1998]. In all experiments, we considered the task of estimat-
ZN

ing In 7 with a fixed budget of sampling steps. We mea-

sured the mean relative error of an estimate C' defined as

1 >
p(C)

All our experiments were based on the same setup. For a
given RBM we took two sets of samples, one created by PT as
a way to get approximately independent samples and one us-
ing the AIS sampling-scheme. Given a reference distribution
Drer and the target distribution p(x) = ﬁe*‘g (#) specified by
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Figure 1: Mean relative error in percent for the different algorithms for different numbers of bridging distributions while keeping the total

amount of samples constant, for RBMs with 500 hidden units trained on MNIST, using different reference distributions.
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Figure 2: Distribution of estimates of In(Zxn/Zo) for RBMs with 16 hidden neurons trained on MNIST. Histograms are created for 1000
estimates. Numbers after the algorithm names specify the amount of bridging distributions used. The black vertical lines indicate the ground
truth. Estimates are computed using different reference distributions.
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Figure 3: Results of the Online-Experiments on MNIST using “base-rate” prr as the reference distribution of PT. Left: Average error of
the estimation of Zn /Zy as in Figure 1. We compare the quality of using the same samples as the training algorithm (Online) with using
separate samples (Offline) Right: True log-likelihood values during training (black) with confidence interval (purple) based on the error of

BAR-Online (left).
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the RBM parameters, we constructed the bridging distribu-
tions as 1
pil@) = — (Phg(@))! e HE@)

with 8; = %, fori = 1,2...,N — 1. Thus, we chose a
geometric mean of distributions with a uniform spacing of
(B-values. This is often done in practice and fits the theoret-
ical results by [Fischer and Igel, 2015]. In our experiments,
we considered two different choices of reference distribution
Pref, the uniform distribution, which is used often in AIS, and
a distribution which uses the pixel-wise marginal probabili-
ties as computed from the MNIST training set. The second
distribution is also called “base-rate” by [Salakhutdinov and
Murray, 2008].

To answer the first question raised above, we used a larger
RBM with 500 hidden units trained with CD-25 by [Salakhut-
dinov and Murray, 2008]. We compared standard AIS with
BAR using samples generated by PT. We varied the number
of bridging distributions while keeping the overall budget of
sampling steps fixed. For estimation, we used 1,200,000 sam-
ples in total where 50 % were used as burn-in time by PT. The
results can be seen in Figure 1. In our experiments, BAR per-
formed better with a small amount of bridging distributions,
while AIS required a very large amount. A large amount
of distributions can be detrimental for BAR as performing
initial burn-in of PT becomes very expensive. Furthermore,
all algorithms performed better when using the “base-rate”
reference distribution, even outperforming our pre-computed
ground truth estimate of In Z,, /Z, (which was computed by
AIS using a uniform distribution and a very large budget).

In the next experiment, we investigated the second ques-
tion. For this, we trained a smaller RBM with 16 hidden
neurons where the normalization constant can be computed
exactly. We took the RBM obtained at the end of the train-
ing, estimated In(Zy/Zp) 1000 times for the different algo-
rithms (i.e., BAR with 10 and AIS with 10,100, or 1000 bridg-
ing distributions), and computed histograms over these esti-
mates. The resulting histograms are given in Figure 2. The
results show that the distribution of estimates obtained by AIS
when using the uniform reference distribution is skewed to-
wards small values. All algorithms underestimated the true
value, but BAR was slightly better, most likely because PT-
samples had a longer time to converge to the true distribution.
When using the “base-rate” reference distribution, all algo-
rithms performed significantly better. However, AIS with 10
bridging distributions still showed a larger variance than BAR
as well as a visible skew. This is in line with the general
knowledge that AIS tends to underestimate the normalization
constant, even though it is unbiased in expectation.

In our third experiment, we investigated the online perfor-
mance. Again, we trained an RBM with 16 hidden units and
computed the normalization constant exactly. To generate the
samples required for training, we used PT with 50 Markov-
chains and re-used the samples to compute an estimate of the
normalization constant. We did not use any burn-in, which is
in line with usual training procedures. We compared our re-
sults to AIS and BAR using separate samples (and using burn-
in for PT). The results can be seen in Figure 3. While Online-
BAR performed slightly worse than the offline-variants, it
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was still able to accurately track the progress of training. To
visualize this, we plotted the true log-likelihood curve and
added shaded regions depicting the error-ranges as obtained
using the BAR-estimator.

4 Conclusions

[Krause et al., 2020] derived a generalized form of Crooks’
equality, which can be used to devise generalizations of
known estimators for the partition functions of Markov Ran-
dom Fields (MRFs), including Annealed Importance Sam-
pling (AIS) and Bennett’s Acceptance Ratio method (BAR).
Various methods for generating samples are covered such as
Parallel Tempering (PT), path sampling (used by AIS), and
Linked Importance Sampling [Neal, 2005].

When empirically comparing PT-based estimators with
vanilla AIS for estimation the normalization constants we
found different regimes: PT based estimators (as BAR shown
here) worked well with a small number of bridging distribu-
tions but required many samples, while AIS required many
bridging distributions but only a few samples of those. This
makes BAR a particularly good candidate for monitoring
training process when PT is used during training.

Another important result is that choosing a reference dis-
tribution which is close to the target distribution can have a
major impact on the quality of the estimate.
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