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Abstract
State estimation methods based on hybrid discrete
and continuous state models have emerged as a
method of precisely computing belief states for
real world systems, however they have difficulty
scaling to systems with more than a handful of
components. Classical, consistency based diag-
nosis methods scale to this level by combining
best-first enumeration and conflict-directed search.
While best-first methods have been developed for
hybrid estimation, conflict-directed methods have
thus far been elusive as conflicts summarize con-
straint violations, but probabilistic hybrid estima-
tion is relatively unconstrained. In this paper we
present an approach (A*BC) that unifies best-first
enumeration and conflict-directed search in rela-
tively unconstrained problems through the concept
of “bounding” conflicts, an extension of conflicts
that represent tighter bounds on the cost of regions
of the search space. Experiments show that an
A*BC powered state estimator produces estimates
up to an order of magnitude faster than the current
state of the art, particularly on large systems.

1 Introduction
There is a continuously growing demand for complex sys-
tems with autonomous decision making capabilities that are
robust and safe. These desires can be achieved using sys-
tems that have the ability to self-repair by using planners on-
line to generate novel responses to exceptional situations. A
key capability needed by such systems is the ability to accu-
rately estimate the system state. While discrete models have
long been a mainstay of the model-based reasoning commu-
nity [De Kleer and Williams, 1987], these models do not have
the requisite resolution needed when controlling or detecting
incipient failures in dynamic hybrid discrete and continuous
systems.

While exact hybrid estimation is theoretically simple —
given an appropriate continuous state estimator, generate a
∗This paper is an extended abstract of an article in the Journal of
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continuous state estimate for every possible discrete state tra-
jectory — it quickly becomes infeasible due to the expo-
nential growth in discrete trajectories over time. As such,
the current state of the art in hybrid state estimation focuses
on approximate estimation. These techniques include Multi-
ple Model (MM) methods such as the Generalized Pseudo-
Bayesian Algorithm (GPB) [Ackerson and Fu, 1970], the
detection-estimation method [Tugnait, 1982], the residual
correlation Kalman filter bank [Hanlon and Maybeck, 2000],
the Interacting Multiple Model (IMM) algorithm [Blom and
Bar-Shalom, 1988], and adaptive MM methods by Li et
al. [1996; 1999; 2000]. More recently, techniques such as
the Hybrid Mode Estimator (HME) [Hofbaur and Williams,
2002; Hofbaur and Williams, 2004], the Hybrid Diagnos-
tic Engine (HyDE) [Narasimhan and Brownston, 2007], and
combined stochastic and greedy estimation [Blackmore et al.,
2008] have also been developed.

While these state of the art techniques have been shown
to effectively estimate the hybrid state of small subsystems
comprised of a hand-full of components, they have difficul-
ties scaling to larger, real-world systems. Consistency based
state estimators from the model-based reasoning community
are able to scale in large part through the use of best-first enu-
meration and conflict-directed search [Williams and Ragno,
2007], as well as stochastic search methods [Feldman et al.,
2010]. Conflict-directed search serves the role of efficiently
pruning large sets of inconsistent states (i.e., states with zero
probability), best-first enumeration focuses the estimator on
the states that are most likely, and stochastic methods allow
the algorithms to remove the burden of completeness. While
all methods are important, conflicts have been shown to be
particularly effective due to their pruning ability. While scal-
ing of hybrid estimation methods has been improved through
best-first [Hofbaur and Williams, 2002] and sampling-based
methods [Blackmore et al., 2008], the creation of effective
conflict-directed methods has proven more challenging. The
primary difficulty is that a conflict is a consistency based con-
cept that represents sets of states that have zero probability
based on a proof of logical inconsistency. However, in the
extreme case of a stochastic environment with unbounded un-
certainty (such as Gaussian noise models), all behaviors are
consistent, albeit unlikely.

In this paper we present an approach to hybrid estima-
tion that augments best-first enumeration with a variant of
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conflicts that is more suitable to probabilistic, rather than
consistency-based, inference through the concept of bound-
ing conflicts, as well as a search algorithm (A* with Bound-
ing Conflicts) that uses them. Instead of representing a set
of search states that are inconsistent, bounding conflicts com-
pactly encode an area of the search space where the predicted
cost — such as one obtained from a heuristic bounding func-
tion used during search — is much lower than the true cost,
as well as a tighter bounding function to use in those areas
of the state space. Bounding conflicts are similar in spirit to
valued nogoods [Dago and Verfaillie, 1996], but more pow-
erful as bounding conflicts provide a tighter bound function
instead of a static bound.

While the focus of this paper is on hybrid estimation, we
gain insight into bounding conflicts by viewing hybrid esti-
mation as an instance of an optimization problem. As such,
we present both a general best-first enumeration algorithm
based on bounding conflicts, and a hybrid estimation method
based on this general capability. For hybrid estimation, this
allows the search for mode assignments to learn which modes
are unlikely given the observations and avoid them to quickly
focus in on the best candidates. However, these poor mode
assignments aren’t discarded, instead they are saved for later,
to be expanded and tested if there is enough time.

In the remainder of this paper we describe the hybrid dis-
crete and continuous state estimation problem as well as how
the systems are modeled. Then we outline a best-first hybrid
state estimation approach and how it can be solved as an in-
stance of tree search. Next we introduce the A* with Bound-
ing Conflicts (A*BC) algorithm and discuss how bounding
conflicts can be learned in hybrid state estimation. Last, we
provide empirical evidence showing our approach produces
state estimates up to an order of magnitude faster than the
state of the art.

2 Problem Statement
Hybrid state estimation is an instance of state filtering for sys-
tems with both discrete and continuous state. The goal of a
hybrid state estimator is to compute a belief over the system
state at time t (xt) given a model of the system, a starting be-
lief, observations of the system (y1:t), and the control inputs
(u1:t). The state of the system is fully determined by discrete
mode variables (mt) and continuous state variables (xc,t), re-
sulting in Equation 1 which describes the belief state.

p(mt,xc,t|y1:t,u1:t) (1)

We model the state space and dynamics of the system being
estimated using a Concurrent Probabilistic Hybrid Automa-
ton (CPHA). CPHAs consist of a number of Probabilistic
Hybrid Automata (PHAs) operating concurrently, interacting
via constraints on shared variables. This composition makes
CPHAs particularly useful for modeling large scale systems
composed of many individual components operating in con-
cert.

In the CPHA modeling formalism, the discrete state of a
system or component is called its mode. The mode of the sys-
tem determines the evolution of both the continuous and dis-
crete state of the system between successive time steps. This

mtmt−1

xc,txc,t−1

ytyt−1 uc,tuc,t−1

ud,tud,t−1

Figure 1: The recursive hybrid estimation problem shown as a dy-
namic Bayes net. The hidden variables are shaded.

is modeled by having the mode of a component determine
which algebraic and differential equations are active during a
given time step. The relationships between the various vari-
ables at successive time steps are visualized as a dynamic
Bayes net in Figure 1.

Given an assignment to every mode variable at time t,
the system wide continuous dynamics and outputs can be
computed, typically with a symbolic solver, as equations of
the form below. Equation 2 represents the evolution of the
system-wide continuous state and Equation 3 represents the
continuous observations of the system.

xc,t = ft(xc,t−1,uc,t,vs,t) (2)
yc,t = gt(xc,t,uc,t,vo,t) (3)

3 Approach
Due to the hybrid discrete and continuous nature of the state,
we represent the belief state is as a mixture of N independent
sub-beliefs1. The i’th sub-belief at time t (x̂(i)

t ) is parameter-
ized by a weight (w(i)

t ), mode assignment (m̂(i)
t ), and contin-

uous probability distribution (p(i)c,t). Intuitively, a sub-belief

states that with probability w(i)
t , the system is in the specified

mode and the belief state over the continuous variables is de-
scribed by the continuous distribution. The entire belief state
can be constructed using a weighted sum over the sub-beliefs.

Given this representation of the belief state, Hofbaur and
Williams [2004] have shown that a sub-belief x̂(j)

t can be re-
cursively computed from a sub-belief at the previous time
step x̂

(i)
t−1 and a new mode assignment m̂(j)

t . The weight
computation is shown in Equations 4 and 5 where PT and
PO are the hybrid transition and observation likelihoods.
Computing (p(i)c,t) is then accomplished using any continu-
ous state estimator; for this work, we use Kalman filter vari-
ants such as the Extended Kalman Filter (EKF) [Sorenson,
1985], Unscented Kalman Filter (UKF) [Julier and Uhlmann,
1997], and Truncated Unscented Kalman Filter [Teixeira et

1In mixture models, these are normally called the mixture’s com-
ponents. We choose to use “sub-beliefs” to eliminate any confusion
with the components that make up the system being estimated.
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Figure 2: Search tree for hybrid state estimation with a fixed variable
order.

al., 2010; Simon, 2010; Garcia-Fernandez et al., 2012].

w
(j)
t|t−1 = PT (m̂

(j)
t , x̂

(i)
t−1,ud,t)w

(i)
t−1 (4)

w
(j)
t = ηPO(yt, p

(j)
c,t ,uc,t)w

(j)
t|t−1 (5)

The difficulty in computing a complete belief state is that
the number of mode assignments is exponential in the number
of components in the system. Additionally, each sub-belief is
dependent on the mode trajectory and the number of mode
trajectories grows exponentially over time. As such, for any
non trivial system, the belief state must be approximated. We
approximate the belief state using the k sub-beliefs with the
highest weights. In order to determine the k best sub-beliefs
at a given time, we frame it as a decision problem: given
x̂t−1, determine the pairs of sub-beliefs from t − 1 and suc-
cessor modes that result in the largest weights.

We propose solving this decision problem using best-first
search, namely a variant of A* called A* with Bounding Con-
flicts (A*BC). A search tree with a fixed variable ordering is
visualized in Figure 2. The first layer of the tree represents
choosing a sub-belief from time t − 1 and the cost of the
choice is the negative log of that sub-belief’s weight. The
next N layers of the tree represent choosing the modes of
the N components of the system, the combined cost of these
decisions is the negative log of the hybrid transition likeli-
hood. The last layer represents the incorporation of observa-
tions into the system and its cost is the negative log of the
hybrid observation likelihood. The goal is to find the k paths
with the lowest cost.

It is straightforward to compute a tight heuristic to guide
A* search in the first N +1 layers of the tree: for every com-
ponent not yet assigned a mode, assume that it takes the most
likely mode transition. However, the hybrid observation like-
lihood is a function of the continuous belief state at time t,
which makes computing a tight heuristic difficult. This re-
sults in a potentially very loose bound of 0 cost being used in
practice. A cost of 0 for the last layer is realized only when
the actual observations perfectly match the most likely obser-
vations. This weak heuristic can result in the search being
“tricked” into exploring large amounts of the state space (the
paths with the highest a priori probabilities) even if the ob-
servations are very unlikely in those modes.

Instead, when A*BC discovers a subpath where the heuris-
tic predicts a cost to go that is much lower than the actual cost,

Figure 3: A simplified fluid cooling system. The loads L1 and L2 are
producing heat, have their temperatures observed, and can be cooled
by fluid being pumped by P1. Valves V1 and V2 can be opened and
closed to direct the flow.

it learns a bounding conflict (defined below) that summarizes
why the heuristic was poor and uses that bounding conflict to
compute better heuristics in the future. In the case of hy-
brid state estimation, bounding conflicts are learned when
PO is evaluated (using the results from the EKF continuous
state estimator) and shows that the observations are unlikely
(PO < 0.5).
Definition 1. A bounding conflict is a pair 〈z, b〉 where:
• z is a partial assignment to the decision variables of a

best-first enumeration problem and
• b : Pz → R is a function that maps extensions of z to a

bound on the cost of any further extensions.
For an example bounding conflict, consider the simplified

fluid system pictured in Figure 3. Assume that the system
model says there is a 90% probability of valve V1 being
closed. Additionally, assume that the state estimator has ob-
served the temperature of L1 has increased less than would
be expected if there were no coolant flow. When the hybrid
state estimator computes PO for this scenario and notes the
discrepancy between expected and true observations, it can
learn the bounding conflict 〈V1 = closed, b1〉 where b1 is a
function that captures the factor by which PO can be reduced
in any mode that contains V1 is closed.

A*BC then uses these bounding conflicts to both compute
a tighter bound for any given node in the search tree and
dynamically change the order in which it searches to proac-
tively steer away from sub spaces in the tree where the cost
is known to be high. This is accomplished in large part by
Algorithm 1. SPLIT-ON-BOUNDING-CONFLICT is one of
A*BC’s two methods to generate the neighbors for a search
node. Given a bounding conflict γ, the method generates a
set of neighbors using two techniques. The latter technique
(lines 2-8) is the classical conflict directed search technique;
every neighbor generated this way is guaranteed to be incon-
sistent with γ’s partial assignment. The remaining neighbor
(line 1) generated is simply the partial mode assignment of
the search node, extended to include γ’s partial assignment.
However, this neighbor is also annotated to include the in-
formation that it manifests the bounding conflict γ, allowing
A*BC to use the tighter bounding function contained within
to push the node deeper into the search queue and further ex-
pand it only if necessary.
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Algorithm 1: SPLIT-ON-BOUNDING-CONFLICT

Input: The node to exapnd, n, and the conflict to split
on, γ.

Output: The children of n that resolve the conflict.
1 children← MAKE-NODE({γ[z]}, n);
2 foreach assignment ∈ γ[z] do
3 x← variable of assignment;
4 y ← value of assignment;
5 foreach v ∈ (dom(x)− y) do
6 children←

MAKE-NODE({n[z] ∪ {x = v}}, n);
7 end
8 end
9 return children;

In order to learn bounding conflicts in the hybrid state esti-
mation domain, we propose an approach that augments the
derivation of the system’s continuous state dynamics for a
given mode (Equations 2 and 3) with causal analysis [Nayak,
1995; Trave-Massuyes and Pons, 1997]. This analysis al-
lows the state estimator to work backward from observations
that are far from their expected values, to the equations that
were used to produce those expected values, and finally to
the mode assignments that activated those equations. This al-
lows the state estimator to nearly trivially generate bounding
conflicts using the output from the Kalman filter based con-
tinuous estimator.

4 Results
To demonstrate the effectiveness of the A*BC algorithm as a
best-first enumerator for hybrid state estimation, it was imple-
mented and compared to HME without bounding conflicts on
two example systems. The first is a reproduction of the three
PHA system from Hofbaur [2004]. The second is an analog
for a shipboard cooling system consisting of sixty non-trivial
components (a mixture of pumps, valves, loads, check valves,
and flow meters).

Direct comparison to HME without A*BC as the search
algorithm on the simple three PHA system shows that using
A*BC results in approximately 25% fewer derivations and
runs of Kalman filters and a corresponding approximate 25%
reduction in runtime for a variety of values of k. Previous
work has already shown that HME without A*BC is faster
than alternative methods such as IMM on this problem.

The gains of using the A*BC search algorithm become
more apparent on larger systems. For the cooling system test,
we ran the proposed A*BC approach and the A* based HME
approach for a fixed period of time and recorded the number
of sub-beliefs the estimator was able to prove had the highest
weights as a function of time. Typical results are summarized
in Figure 4.

These results show that the proposed approach generates
sub-beliefs at the same rate as HME in the beginning, but is
quickly able to generate sub-beliefs faster than HME. This
allows the proposed A*BC approach to generate more sub-
beliefs in a fixed period of time, meaning that its estimates

Figure 4: Typical results of A*BC vs. A* on a fluid system ana-
log. The top graph shows the number of sub-beliefs produced as a
function of Kalman filter invocations (a proxy for time). The bottom
graph shows the (unnormalized) probability mass covered.

cover more probability mass in its approximation. This re-
sults in the proposed approach being less likely to prune the
correct mode assignment.

5 Conclusion
In this paper, we have introduced bounding conflicts, a novel
extension of conflicts that describe both where a search al-
gorithm’s bounding function is not tight and a tighter bound-
ing function for that region of the state space. Additionally,
we have provided a best-first enumeration algorithm based on
bounding conflicts (A*BC) and have described a state estima-
tor for hybrid discrete and continuous systems built on top of
this enumerator.

This new state estimator using A*BC outperforms the pre-
vious state of the art estimator for large-scale hybrid systems.
It produces the best sub-beliefs with fewer Kalman filter exe-
cutions, allowing a better state estimate to be produced in less
time.

Acknowledgments
This work was funded by the Office of Naval Research
through the Johns Hopkins University Applied Physics Lab-
oratory and by the NASA Planetary Science and Technology
through Analog Research (PSTAR) program.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Journal Track

5133



References
[Ackerson and Fu, 1970] G Ackerson and K Fu. On state

estimation in switching environments. IEEE Transactions
on Automatic Control, 15(1):10–17, 1970.

[Blackmore et al., 2008] Lars Blackmore, Stanislav Funiak,
and Brian C. Williams. A combined stochastic and greedy
hybrid estimation capability for concurrent hybrid models
with autonomous mode transitions. Journal of Robotic and
Autonomous Systems, 56(2):105–129, February 2008.

[Blom and Bar-Shalom, 1988] Henk AP Blom and Yaakov
Bar-Shalom. The interacting multiple model algorithm
for systems with markovian switching coefficients. IEEE
Transactions on Automatic Control, 33(8):780–783, 1988.

[Dago and Verfaillie, 1996] Pierre Dago and Gérard Verfail-
lie. Nogood recording for valued constraint satisfaction
problems. In Proceedings Eighth IEEE International Con-
ference on Tools with Artificial Intelligence, pages 132–
139. IEEE, 1996.

[De Kleer and Williams, 1987] Johan De Kleer and Brian C
Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, 1987.

[Feldman et al., 2010] Alexander Feldman, Gregory Provan,
and Arjan Van Gemund. Approximate model-based diag-
nosis using greedy stochastic search. Journal of Artificial
Intelligence Research, 38:371–413, 2010.

[Garcia-Fernandez et al., 2012] Ángel F Garcia-Fernandez,
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