Biased Opinion Dynamics: When the Devil is in the Details
Biased Opinion Dynamics: When the Devil is in the Details
Aris Anagnostopoulos, Luca Becchetti, Emilio Cruciani, Francesco Pasquale, Sara Rizzo
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
Main track. Pages 53-59.
https://doi.org/10.24963/ijcai.2020/8
We investigate opinion dynamics in multi-agent networks when there
exists a bias toward one of two possible opinions; for example, reflecting a status quo vs a
superior alternative.
Starting with all agents sharing an initial opinion representing the status
quo, the system evolves in steps. In each step, one agent selected uniformly at
random adopts with some probability a the superior opinion, and with
probability 1 - a it follows an underlying update rule to revise its
opinion on the basis of those held by its neighbors.
We analyze the convergence of the resulting process under two well-known update
rules, namely majority and voter.
The framework we propose exhibits a rich structure, with a nonobvious
interplay between topology and underlying update rule.
For example, for the voter rule we show that the speed of convergence
bears no significant dependence on the underlying topology,
whereas the picture changes completely under the majority rule,
where network density negatively affects convergence.
We believe that the model we propose is at the same time simple, rich, and modular,
affording mathematical characterization of the interplay between bias,
underlying opinion dynamics, and social structure in a unified setting.
Keywords:
Agent-based and Multi-agent Systems: Agent Theories and Models
Agent-based and Multi-agent Systems: Agent-Based Simulation and Emergence
Agent-based and Multi-agent Systems: Agent Societies