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Abstract

We develop a new framework for designing truth-
ful, high-revenue (combinatorial) auctions for
limited supply. Our mechanism learns within
an instance. It generalizes and improves over
previously-studied random-sampling mechanisms.
It first samples a participatory group of bidders,
then samples several learning groups of bidders
from the remaining pool of bidders, learns a high-
revenue auction from the learning groups, and fi-
nally runs that auction on the participatory group.
Previous work on random-sampling mechanisms
focused primarily on unlimited supply. Limited
supply poses additional significant technical chal-
lenges, since allocations of items to bidders must be
feasible. We prove guarantees on the performance
of our mechanism based on a market-shrinkage
term and a new complexity measure we coin par-
tition discrepancy. Partition discrepancy simulta-
neously measures the intrinsic complexity of the
mechanism class and the uniformity of the set of
bidders. We then introduce new auction classes
that can be parameterized in a way that does not
depend on the number of bidders participating, and
prove strong guarantees for these classes. We show
how our mechanism can be implemented efficiently
by leveraging practically-efficient routines for solv-
ing winner determination. Finally, we show how to
use structural revenue maximization to decide what
auction class to use with our framework when there
is a constraint on the number of learning groups.

1

In a (limited-supply) combinatorial auction, a seller has m
indivisible items to allocate among a set .S of n bidders. Com-
binatorial auctions have various real-world applications. Two
examples include auctions for allocating licenses for bands of
the electromagnetic spectrum and sourcing auctions for sup-
ply chain management. The design of truthful, high-revenue
combinatorial auctions is a central problem in mechanism de-
sign. A comprehensive account of combinatorial auctions
may be found in Cramton et al. [2006].

Introduction
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A common strategy for designing truthful, high-revenue
auctions when there is an unlimited supply of each good
has been to use a random-sampling mechanism. A random-
sampling mechanism splits the bidders into two groups, and
applies the optimal auction for each group to the other group
(thereby achieving truthfulness, since the auction run on any
bidder’s group is independent of her reported valuation). In
unlimited-supply settings, random-sampling mechanisms sat-
isfy strong guarantees [Goldberg et al., 2001; Balcan et al.,
2005; Alaei et al., 2009].

However, until now, there has been no unified, general-
purpose method of adapting the random-sampling approach
to analyze the limited-supply setting. Limited supply poses
additional significant technical challenges, since allocations
of items to bidders must be feasible. For example, random-
sampling with any mechanism class that allows bidders to
purchase according to their demand functions would violate
supply constraints. Most adaptations of random-sampling
to limited supply deal with feasibility issues in complicated
ways, for example, by constructing intricate revenue bench-
marks to limit the number of buyers who can make a pur-
chase [Balcan et al., 2007], or by placing combinatorial con-
straints on the environment [Devanur and Hartline, 2009;
Devanur et al., 2015].

In this paper we circumvent these issues by applying auc-
tion formats that generalize the classical Vickrey-Clarke-
Groves (VCG) auction [Vickrey, 1961; Clarke, 1971; Groves,
1973] to sell all m items to a random group of participatory
bidders. These auctions prescribe feasible allocations and
payments (and are incentive compatible). Several parame-
terized generalizations of the VCG auction have been studied
with the aim of increasing revenue by introducing weights
to favor certain bidders or allocations. Examples include
affine-maximizer auctions (AMAs) [Roberts, 19791, virtual-
valuations combinatorial auctions (VVCAs) [Likhodedov
and Sandholm, 2004; Likhodedov and Sandholm, 2005;
Sandholm and Likhodedov, 20151, A-auctions [Jehiel et al.,
2007], mixed-bundling auctions with reserve prices [Tang
and Sandholm, 2012], and mixed-bundling auctions [Jehiel et
al., 2007]. However, little is known when it comes to formal
approximation guarantees for these auction classes.

A direct adaptation of vanilla random sampling can do
poorly when the auction class is rich. Suppose we randomly
partition the set of bidders into two groups S* and S2, and ap-
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ply the optimal mechanism for S! to S2. Consider learning
a second-price auction with a reserve in the case of selling
a single item. Suppose there is one bidder who values the
item at 10 and the remaining buyers’ values are in [0, 9]. The
high bidder is in S! with probability 1/2. So with probabil-
ity 1/2, the optimal reserve price for S! is 10, and the rev-
enue obtained from S2 is 0. More generally, since we study
large parameterized auction classes, the optimal auction for
S potentially overfits to a small number of bidders. Another
adaption along the lines of vanilla random sampling to pre-
vent overfitting would be to partition the set .S of bidders into
N groups, use the first N — 1 groups to learn a high-revenue
auction, and then apply that auction to the Nth group. The is-
sue with this approach is that generalization guarantees would
require N large. Thus the final mechanism only sells items to
a tiny fraction of bidders, incurring a large revenue loss.

Our main learning-within-an-instance (LWI) mechanism
alleviates these issues by randomly drawing a set of participa-
tory bidders Spq,, and then sampling several proportionally-
sized learning groups from Sy, := S\ Sy, to learn an auc-
tion that is close-to-optimal in expectation for a random learn-
ing group. Our approach is a form of automated mechanism
design [Conitzer and Sandholm, 2002; Sandholm, 2003].

1.1 Setup and the Main Mechanism

In our model, the seller has m indivisible items to allocate
among a set S of n bidders/buyers. Each buyer is described
by her valuation function v; : 2817} — R>q over bundles
of the m items. (We implicitly assume that each buyer’s value
for getting the empty bundle is zero.) We do not assume that
b C ¥ implies v(b) < v(b') (a common assumption called
free disposal). For an allocation «, v;(«) denotes the value
buyer ¢ assigns to the bundle she receives according to o (we
assume that buyers valuations are independent of what other
buyers’ receive). For an allocation o, W(a) = Y " | v;(c)
denotes the welfare of a, and W_;(a) = >, vj(a) de-
notes the welfare of o when bidder ¢ is absent. For a set of
bidders S, W(S) = max, W («a) denotes the welfare of an
efficient allocation, that is, an allocation that maximizes wel-
fare. The VCG auction uses the efficient allocation a*, and
bidder ¢ pays max, W_;(a) — W_;(a*). The auctions we
study in this paper are parameterized generalizations of the
VCG auction that modify the welfare function by applying
boosts to specific allocations with the aim of increasing rev-
enue. For an auction M and a set of bidders S’ C S, we
denote by Revj(S”) the sum of the payments made by bid-
ders in S’ when the seller runs M among bidders in S’. We
write S” ~,, S to denote a subset S’ being sampled from S by
including each bidder in S” independently with probability p.
We now present the main mechanism of this paper.
Learning-within-an-instance mechanism (LWI) Parame-
ters: p,q, N

1. Draw a group of participatory buyers Spar ~p S.

2. SN ~g S\ Spar-

3. Find the mechanism M € M that maximizes empirical
revenue Zi\; 1 Revas(Sy) over the learning groups.

Draw learning groups of buyers S, . .

Apply mechanism Mto Spar-
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When M is a class of incentive-compatible mechanisms,

LWTI is incentive-compatible since M does not depend on the
valuations of the bidders in Sy

1.2 Summary of the Contributions of this Paper

In section 2 we provide the main guarantees satisfied by our
LWI framework. The guarantees are derived using learning-
theoretic techniques. Informally, they provide (high proba-
bility) lower bounds on the performance of LWI of the form
Rev 7 (Spar) > W(S)(Lam — em(N,6)) — T, where Lyg
measures the revenue loss incurred by allocating items only
to participatory bidders, € is a standard learning-theoretic
error term that depends on the intrinsic complexity of M, and
T 18 an additional error term we coin partition discrepancy.
Partition discrepancy is also a measure of the intrinsic com-
plexity of M, but is simultaneously a measure of the level of
uniformity in the set S of bidders. We provide examples and a
general bound to illustrate properties of partition discrepancy.

In section 3 we introduce a new class of auctions called
bundling-boosted auctions. These auctions are parameterized
in a way that does not depend on the number of bidders who
participate in the auction (unlike most previous generaliza-
tions of the VCG auction). We prove bounds on the intrin-
sic complexity of bundling-boosted auctions (and a few other
natural subclasses of auctions) that have no dependence on
the number of bidders. We show that under certain condi-
tions LWI on the class of bundling-boosted auctions yields an
(O(p) — €)-approximation with high probability.

In section 4 we show how our learning-within-an-instance
mechanism can be implemented in a sample and compu-
tationally efficient manner for bundling-VCG auctions and
sparse bundling-boosted auctions by leveraging practically
efficient routines for solving winner determination.

In section 5 we show how to use structural revenue maxi-
mization to decide what auction class to use with LWI when
there is a constraint on the number of learning groups.

1.3 Additional Related Research

There have been various alternate approaches to revenue
maximization for limited supply. Balcan, Blum, and Man-
sour [2008] obtain a O(2Vlcemloglogm) approximation for
bidders with subadditive valuations, which was improved
to a O(log® m)-approximation by Chakraborty, Huang, and
Khanna [2013]. Both these works studied item-pricing mech-
anisms. Sandholm and Likhodedov [2005; 2015] obtain a
(2 + 2log(h/1))-approximation when bidders have additive
valuations, where [ and h are lower and upper bounds on the
valuation of any bidder for any item. Our results significantly
improve upon these existing results in various situations. For
example, for W (.S) sufficiently large, we prove that our LWI
mechanism run on the class of bundling-boosted auctions
yields an (O(p) — €)-approximation. In addition, previous
approximations are on expected revenue, while we give the
much stronger guarantee of high-probability revenue approx-
imation. Furthermore, our results do not require restrictions
on valuation functions, giving them very broad applicability.

A recent line of work studies learning revenue-maximizing
auctions for limited supply across instances [Mohri and Med-
ina, 2014; Morgenstern and Roughgarden, 2015; Balcan et
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al., 2018]. These works laid down the framework for under-
standing learning-theoretic quantities related to auctions in
order to prove generalization guarantees. Our paper studies
the significantly tougher and unsolved problem of learning
from a single instance for limited supply. We extend the tech-
niques of Balcan et al. [2005] (that can be viewed as learning
within an instance for unlimited supply) and show that learn-
ing theory combined with the power of parameterized auc-
tions provides a way to meaningfully learn within an instance
in the more challenging setting of limited supply.

2 Main Guarantees of our Framework

In this section we present the main guarantees satisfied by
LWI in terms of structural properties of the auction class and
the set of bidders. Our guarantees are in terms of partition dis-
crepancy, delineability, and the following quantity that con-
trols the revenue loss incurred by selling only to bidders in
Spar. For §" C S, let OPT 0((S") = supj e Revar(S’)
and let L (S”) = OPT p(S")/W(S).

For a given participatory set of bidders Syq,, partition dis-
crepancy measures the worst-case deviation in an auction
class between the revenue on S, versus the expected rev-
enue on a set of bidders sampled from S\:Sy,,. For0 < ¢ < 1
and Sy, C S, partition discrepancy is defined as

TMm(q, Spar) = sup |Revas(Spar) — [RevM(So)}‘.

MeM So~qS\Spar
Partition discrepancy is a measure of both the intrinsic com-
plexity of the class M and the amount of uniformity in the set
S of bidders. We now present general guarantees for LWI in
terms of partition discrepancy (the full derivations are in the
appendix). The guarantees follow from uniform convergence
results, and depend on the expected Rademacher complexity
Rp(N; S\ Spar) of M with respect to S\ Spq, and the
pseudodimension Pdim(M) of M. We provide definitions
and some standard results from learning theory that we use in

our proofs in the appendix. M denotes the empirical-revenue-
maximizing mechanism used by LWI.

Theorem 1. Let S, denote the participatory set of bidders
chosen by a run of LWI. Then, with probability > 1 — 26
over the draw of S1,..., SN ~q¢ S\ Spar, (a) Revi;(Spar) >

W (S) (LM(S,M) — ARM(N;S \ Spar) — ,/21n(1/5)/N) -
2704(q, Spar) and (b) Rever(Spar) > W(S) (LM(SW) -
240+/Pdim(M)/N — /21In(1/9) /N) — 27(q, Spar)-

Proof sketch. Uniform convergence results relate the empir-

ical revenue of M on the learning groups to the optimal ex-
pected revenue on a random learning group. Partition dis-
crepancy ties both these quantities to revenue on Sy 0

If M has finite pseudodimension (this is not necessarily the
case if we only have a bound on Rademacher complexity), we
can give an equivalent sample-complexity version of the guar-
antee. Let N (e, §, Pdim(M)) = 480? Pdim(M) In (§) /2.

Corollary 1. Let Sy, denote the participatory set of bid-
ders chosen by a run of LWI with parameters p,q, N, where
N > N(e,d,Pdim(M)). Then, with probability > 1 — 20
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>

over the draw of S1,...,Sn ~¢ S\ Spar, ReVi7(Spar)
W(S)(LM (Spar) - 5) - 27—./\/1 (qv Spa'r)~

To understand the pseudodimension of various mechanism
classes, Balcan et al. [2018] introduced the notion of deline-
ability. A class of mechanisms M is (d, h)-delineable if (1)
every M € M can be parameterized by a vector § € R, and
(2) for every set S of bidder valuations, there are at most h
hyperplanes partitioning R? such that Revg(6) := Revg(9) is
linear in @ over each connected component of R¢ determined
by the hyperplanes. The way we have stated delineability re-
quires h to be independent of the number of bidders in S.
We include an analysis of the case where h is allowed to be
a function of n in the appendix. The following example il-
lustrates delineability in a simple case. Balcan et al. [2018]
provide more examples and a more detailed discussion.

Example 1 (Second-price auctions with a reserve price). The
class of second-price auctions with reserve prices for selling
a single item is (1,2)-delineable. Indeed, if vi and vy are
highest and second-highest values for the item, respectively,
then for r < vy the revenue of a second-price auction with
reserve 1 is va, for vo < r < wy itisr, and forr > vy itis 0.

Rademacher complexity, pseudodimension, and delin-
eability are connected through the following relations:
R (N; Sirn) < 60W(S)4/Pdim(M)/N [Dudley, 1987]
and if M is (d, h)-delineable, Pdim(M) < 9dIn(4dh) [Bal-
can et al., 2018].

We present our main guarantee in terms of delineability:

Theorem 2. Suppose M is (d,h)-delineable. Let
Spar denote the participatory set of bidders chosen by
a run of LWI with parameters p,q, N, where N >
N(e,6,9d1In(4dh)). Then, with probability > 1 — 2§ over
the draw of Si,...,Sn ~¢ S\ Spar, Reviz(Spar) >
W(S)(Lm(Spar) =€) — 27Mm(4; Spar)-

We provide analogous guarantees for mechanism classes

that satisfy a version of delineability that is dependent on the
number of bidders in the appendix.

2.1 Partition Discrepancy

In this section we develop a further understanding of partition
discrepancy. We first provide two examples illustrating struc-
tural properties of partition discrepancy. We then provide a
general-purpose high-probability bound on partition discrep-
ancy based on pseudodimension of the mechanism class.
The first example relates the failure of vanilla random sam-
pling to large partition discrepancy using the scenario given
in the introduction. We show how LWTI alleviates that issue.

Example 2 (LWI versus random sampling). Consider the ex-
ample from the introduction where a single item is for sale
and M is the class of second-price auctions with reserve.
There is one bidder with value 10, and all remaining bid-
ders’ values are in [0,9]. Suppose LWI is run with parameters
p = 1/2,q = 1 (which corresponds to vanilla random sam-
pling). Then, for any participatory set Spar, Trt(1, Spar) =
10 = W(S), achieved by setting a reserve price of 10. If
instead LWI was run with parameters p = q < 1, the high
bidder is in S\ Spqr with probability 1 — p, and in this case
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Trm(q, Spar) = 10q If; for example, p = q = 1/20, this is a
small additive loss in the overall revenue guarantee.

The next example involves replica economies, where the
set of bidders is composed of several copies of a ground set
of bidders. Replica economies have been studied extensively
in economics (and recently from an algorithmic viewpoint) in
the context of convergence to equilibria [Debreu and Scarf,
1963; Aumann, 1964; Barman and Echenique, 2020].

Example 3 (Replica economies). Suppose So = {v1,v2,v3},
and S consists of ng replicas of So. Let M be a population-
size-independent auction class. We show in the appendix that
if ng is sufficiently large, Taq(1, Spar) = O with high proba-
bility over the draw of Spar ~1/2 S.

We now present a general bound on partition discrepancy
in terms of the learning-theoretic complexity of M when LWI
is run with parameters p = 1/3 and ¢ = 1/2. For each bidder
i, let 9; = Max|g/|>n/3-5/mn SUPpem |Revar(S U {i}) —
Revys(S7)| and let © = (91,...,0,) € R™. These terms
measure how sensitive the mechanism class is to the addition
of a single bidder to an already large set of bidders. In the
following results on partition discrepancy, we condition on
the (probability > 1 — e~2%) event that | Spar| > n/3 — 5y/n.
Theorem 3. With probability > 1 )
the draw of Spar ~173 S, Tm(1/2,Spar)

||3] |2\/2n Pdim (M) In 2EPAmMW(S),

over
<

Proof sketch. We bound 7, for a single mechanism M us-
ing concentration bounds. We then apply a union bound over
a learning-theoretic cover of M. Classical learning-theory
results bound the cover size in terms of Pdim(M). O

Combined with Corollary 1, we have:

Theorem 4. Run LWI with parameters N, p = 1/3, ¢ =
1/2, where N > N(e,d,Pdim(M)). Then, with proba-
bility > 1 — 30, Revg;(Spar) = W(S)(Lm(Spar) — €) —
21[]]2/2n Pdim(M) In 22 PAmOMOW(S),

When W (S) is sufficiently large, we can condense the
bound on partition discrepancy to contribute at most an € loss.
Corollary 2. Run LWI with parameters N, p 1/3,
q 1/2, where N >  N(g,6,Pdim(M)).
If W(S)2 SnHTJHSF;dim(M) 111(W(S>)
8n||3]|2 Pdim(M) In 4e? Pdim(./\/l))

2

>
2

- , Revi#(Spar)
W (S) (L (Spar) — 2¢) with probability > 1 — 30.
Remark. We emphasize that small partition discrepancy (for
example, stipulating that 74 is a fixed constant) should be
viewed as a uniformity condition on the set of bidders. The-
orem 3 provides just one way of understanding partition dis-
crepancy by relating it to learning-theoretic quantities.

3 Population-Size-Independent Auctions

In this section we instantiate our main guarantee for spe-
cific mechanism classes M to obtain more concrete revenue
approximations. The following is a naive lower bound on
L p(Spar) for auction classes that can run a second-price
auction on the grand bundle {1, ..., m} with a reserve price.
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Proposition 1. Let v; > --- > v, denote the valuations of
each bidder in S on the grand bundle. For any 0 < o <1
such that an is an integer, any mechanism class M contain-
ing the second-price auction on the grand bundle with reserve

price 1 for every r satisfies Lyi(Spar) > v&fé) with proba-

bility > 1 — e~ *"P over the draw of Spar ~p S.

However, any bidder’s value for the grand bundle can be an
arbitrarily bad approximation to W (.S). In the remainder of
the paper we introduce some new auction classes and prove
more fine-tuned approximations for those classes.

We now study a handful of population-size-independent
auction classes, that is, auction classes that can be parame-
terized in a way that does not depend on the number of bid-
ders. Traditional variants to the VCG auction including A-
auctions and AMAs specify boosts based on particular alloca-
tions and are thus not independent of the population size (and
in particular cannot be used with LWI in a natural way since
S1,..., 5N, Spar can all vary in size). In contrast to these,
our auctions specify boosts based on bundles and bundlings.

A bundling is a partition of items {1,...,m} into bun-
dles. We say that an allocation respects a bundling if no two
items in the same bundle are allocated to different buyers.
For an allocation 3, let blg(3) denote the finest bundling re-
spected by £, that is, the bundling with the fewest number of
bundles that 5 respects. For example, if 5 allocates items
1 and 3 to bidder 1, and the remaining items to bidder 2,
blg(8) = {{1,3},{2,4,...,m}}. Let ® denote the collec-
tion of all bundlings. |®| < (0.792m/In(m + 1))™ [Berend
and Tassa, 2010]. We now introduce two new auction classes
that can be viewed as population-size-independent analogues
of A-auctions and VVCA:s, respectively.

The class of bundling-boosted auctions is the class auctions
parameterized by real |®|-dimensional vectors w € RI®! that
specify additive boosts w(¢) for each bundling ¢ € ®. The
overall allocation a* used by a bundling-boosted auction w is
chosen to maximize W («a) + w(blg()), and bidder 7 pays
maxq(W-i(a) + w(blg(a))) — (W_i(a*) — w(blg(a®))).
Equivalently, w is the A-auction with A(«) = w(blg(a)).

The class of bundle-boosted auctions is the class of auc-
tions parameterized by real 2™-dimensional vectors w €
R?" that specify additive boosts w(b) for each bundle b C
{1,...,m}. The overall allocation * is chosen to maximize
W () + 3 pebig(a) @(b), and bidder i pays maxq (W_;(a) +

> beblg(a) W) — (W_i(@®) + 3 pepig(a-) w(b)). Equiva-
lently, the class of bundle-boosted auctions is the subclass of
VVCAs where the parameters are constant across bidders.

The class of bundling-VCG auctions [Kroer and Sandholm,
2015] consists of all ¢-VCG auctions, where a ¢-VCG auc-
tion runs VCG while treating each bundle in ¢ as an indivisi-
ble item. The class of bundling-VCG auctions is a subclass of
the class of bundle-boosted auctions: the ¢-VCG auction can
be represented by the bundle-boosted auction with w(b) = 0
if b can be represented as a union of bundles from ¢, and
w(b) = —oo otherwise. The class of bundle-boosted auc-
tions is a subclass of the class of bundling-boosted auctions:
a bundle-boosted auction is a bundling-boosted auction with
the restriction that w(¢) = > ¢, w(b).

Since bundling-boosted and bundle-boosted auctions are
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boosted auctions
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Mixed-bundling auctions

Figure 1: Containment relations between auction classes. New auc-
tion classes introduced in this paper are in boldface.

subclasses of A-auctions, they are both delineable with
h(n) = (n 4+ 1)?>™*1 due to Balcan et al. [2018] (see the ap-
pendix for a derivation of LWI guarantees when only weaker
delineability parameters that depend on the number of bidders
are known). The following is a much stronger delineability
result that has no dependence on the number of bidders.

Theorem 5. The class of bundling-boosted auctions is
(|®],|®|*> + m|®|3)-delineable and the class of bundle-
boosted auctions is (2™, |®|? 4+ m|®|3)-delineable.

Proof sketch. We prove that there are at at most m|®| bidders
whose absence affects the allocations used by any bundling-
boosted auction. This allows us to count the relevant hyper-
planes delineating RI®! in a way that is independent of n. [

Sandholm and Likhodedov [2005; 2015] (implicitly) study
properties of the class of auctions parameterized by vectors
w € R™ that specify additive boosts depending on the size of
the bundle. We call this class of auctions bundle-size-boosted
auctions. Bundle-size-boosted auctions are a subclass of
bundle-boosted auctions: the equivalent bundle-boosted auc-
tion satisfies w(b) = w(|b|). For the class of bundle-size-
boosted auctions, we can prove a stronger delineability result.

Theorem 6. The class of bundle-size-boosted auctions is
(m, me® V™) delineable.

Figure 1 summarizes the containment relations between the
various auction classes.

3.1 Guarantees for Bundling-Boosted Auctions

The class of bundling-boosted auctions is a rich class of auc-
tions. If the efficient allocation when bidder ¢ is absent also
maximizes welfare when all bidders are present among all
allocations respecting the same finest bundling, there is a
bundling-boosted auction that extracts revenue equal to the
welfare of the efficient allocation. More generally:

Theorem 7. Given a set of S bidders, let B denote
the efficient allocation and let B_; denote the efficient
allocation when bidder i is absent.  Let A;(S)
MaXq:pig(a)=blg(s_;) W(a) — W(B_;). There exists a
bundling-boosted auction with revenue W (S) — Y. A;(S).

Proof sketch. Let ¢ = blg(8) and let ¢_; = blg(5_;). The
bundling-boosted auction with w(¢) = 0, w(¢p_;) = W(5)—
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W(B_;), and w(¢’) = —oc for all other bundlings ¢’ € ® \
yh—1,...,P_n} extracts the claimed revenue.

We give a simple example of bidder valuations that satisfy
A;(S") = 0 for every 4 and every S’ C S in the appendix.

Concentration inequalities enable us to provide bounds
on La(Sper) for the class of bundling-boosted auctions.
We have Eg . [OPTA((Spar)] > Eg,,, [W(Spar) —
> i Ai(Spar)] = pW(S) — >, Ai(Spar). If we run LWI
with parameters p,q, N, we have (assuming for readabil-
ity that A;(Sper) = 0 for all 4) Lag( par) > (1 —n)p
with probability > 1 — e=20"P"W(S)*/II5l5 where v
(maxpcyi,... m} vi(b))ics € R™, by McDiarmid’s inequality.

Combined with Theorem 2, we get our main guarantee for
the class of bundling-boosted auctions. For readability, we
state our guarantees assuming A;(.Sp,,) = 0 for every 1.
Theorem 8. Let M be the class of bundling-boosted auc-
tions. Let N > N(e,,Pdim(M)) and run LWI with pa-
rameters N, p, q. As long as W (S)? > ||9]3In(1/8)/2n*p?
Rev 7 (Spar) = W(S)((1 —n)p — &) — 27Mm(q, Spar) with
probability > 1 — 36 conditional on A;(Spa,) = 0 for all i.

Removing the assumption on A;(.S,,,) would replace the
(1 —n)ploss term with (1 — n)(p — >, Ai(Spar)/W(S5)).

4 Efficient Learning Within an Instance

We now explore two mechanism classes for which LWI can
be implemented efficiently by leveraging efficient routines for
solving winner determination (a generalization of the prob-
lem of computing efﬁment allocatlons) Though computing

M = argmaxre pm Zt 1 Revar(S;) is NP-hard since it
involves solving winner determination (which is well known
to be NP-hard) winner determination can be solved efficiently
in practice [Sandholm er al., 2005].

For the class of bundling-VCG auctions, we show that the
branch-and-bound technique of Kroer and Sandholm [2015]
is compatible with LWI. We did not derive a revenue-
guarantee for this class of auctions, however. For the class
of sparse bundling-boosted auctions, which are bundling-
boosted auctions with a constant number of positive boosts,
we show that a revenue guarantee similar to (but more sample
efficient than) Theorem 8 holds. We then show how LWI can
be efficiently implemented for this class.

4.1 Bundling-VCG Auctions

Kroer and Sandholm [2015] give a branch-and-bound al-
gorithm to compute the revenue-maximizing bundling-VCG
auction for a given set of bidders. While our setting is dif-
ferent than theirs, their integer-program techniques can be
directly used by LWI. Let f denote a function used as an
upper bound in branch-and-bound to compute the optimal
bundling. For learning groups Si,...,Sy and x a node
in the search tree (corresponding to a partial bundling), let
f(z) + 30, f(x;S;). Recall that f is admissible if its
value at any node is an upper bound for the maximum revenue
obtainable in the subtree rooted at that node, and f is mono-
tonic if it decreases down each path in the search tree. These
properties ensure that branch-and-bound finds the revenue-
optimal bundling.
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Proposition 2. If f is admissible for computing the optimal
bundling, f is admissible for computing the empirically opti-
mal bundling. The same holds for monotonicity.

4.2 Sparse Bundling-Boosted Auctions

Let &y C @ with |§y| = B, and let mg be the number
of bundles in the finest bundling in ®y. Consider the sub-
class of bundling-boosted auctions for which w(¢) > 0 only
if 9 € &y (and w(¢) = 0 otherwise), which we call ®-
bundling-boosted auctions. The same argument used to prove
Theorem 5 shows that the class of ®,-bundling-boosted auc-
tions is (B, B2 +mB?3)-delineable. Let W®0(S) denote the
welfare of the welfare-maximizing allocation to bidders in S,
subject to the constraint that the finest bundling respected by
the allocation is in ®3. The same arguments used to obtain
Theorem 7 yield a guarantee with respect to W %0 (S).

Theorem 9. Let M be the class of ©y-bundling-boosted auc-
tions. Let N > N (g, 6, Pdim(M)) and run LWI with param-
eters N,p,q. As long as W (S)? > ||9|31n(1/68)/2n%*p?,
Revi7(Spar) = WP (S)((1 —n)p —€) — 27M1(q; Spar) with
probability > 1 — 36 conditional on A;(Spar) = 0 for all i.

For B a fixed constant, the number of learning groups N
required by LWI is O(BIn(moB)) (hiding the dependence
on ¢ and §). In contrast, optimizing over the entire class of
bundling-boosted auctions as in Theorem 8 would require N
to be exponential (in m). For this class of auctions, we de-
scribe an algorithm that implements LWI with run-time expo-
nential in B but polynomial in all other parameters (includ-
ing the run time of the winner determination routine used). A
similar algorithm was used in Balcan et al. [2020], though in
a different setting than ours.

Theorem 10. Let B = |®y|, and let mo be the num-
ber of bundles in the finest bundling in ®y3.  Given
learning groups Si,...,Sn, the empirical-revenue maxi-
mizing ®g-bundling-boosted auction can be computed in
(NmoB)P®B) 4 2w(mg,n) NmgB time, where w(mg,n) is
the time required to solve winner determination for n buyers
with valuations over my items.

Proof sketch. We first show that there is a set H of at most
NB? + NmgB? hyperplanes partitioning R? such that em-
pirical revenue is linear in w within each region. Writing
these hyperplanes down requires at most N B 4+ Nm B calls
to our winner determination routine. The maximum empiri-
cal revenue in each region can be found by solving a linear
program with B variables and at most || constraints. O

4.3 Structural Revenue Maximization

Suppose the mechanism designer can only sample a limited
number NN of learning groups (due to a run-time constrant,
for example). We introduced several new auction classes,
but which one should the mechanism designer use in con-
junction with LWI? Structural revenue maximization (SRM)
helps answer this question. SRM suggests maximizing em-
pirical revenue minus a regularization term that penalizes
more complex mechanisms to ensure that the chosen auc-
tion is indeed likely to generalize well, rather than overfit-
ting to the learning groups. Our generalization guarantee in
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Theorem 1 provides the appropriate regularizer € pq (N, ) =
240/Pdim(M)/N + /2In(1/5)/N. Say the mechanism
designer is deciding between auctions in M; and auctions in
M. Let M, 1 Z/W\g be the empirical-revenue-maximizing auc-
tions from M and M, respectively, for one run of LWI. The

mechanism designer should use mechanism My, k € {1,2},
that maximizes + >, Revyz (Si) — €, (IV, 6) since empir-
ical revenue minus €4 (IV, ¢) is a more accurate lower bound
on expected revenue than empirical revenue alone. An SRM
approach combined with LWI is incentive compatible since
the final mechanism only depends on the learning groups of
bidders. Our use of SRM is similar to SRM across instances,
which was discussed in Balcan et al. [2018]. SRM for auc-
tion design was first proposed by Balcan et al. [2005], also
for learning within an instance (but for unlimited supply).

5 Conclusions and Future Research

We developed a new framework for designing truthful, high-
revenue combinatorial auctions for limited supply. Our mech-
anism learns within an instance. It generalizes and improves
over previously-studied random-sampling mechanisms.

We proved guarantees on the performance of LWI based
on a market-shrinkage term and a new complexity measure
we coined partition discrepancy, which simultaneously mea-
sured intrinsic complexity of the auction class and unifor-
mity in the set of bidders. We explored examples and proved
a general bound on partition discrepancy. We then intro-
duced new population-size-independent auction classes, and
proved strong generalization bounds for these classes. We
showed how LWI can be implemented efficiently by lever-
aging practically-efficient routines for solving winner deter-
mination, and showed how structural revenue maximization
helps choose the right auction class to prevent overfitting.

Many interesting new directions arise from this work.
First, developing a fuller picture of partition discrepancy
would be of independent interest both in mechanism design
and learning theory more broadly. Next, population-size-
independent auctions are more versatile than other auction
formats since they may be designed and specified without
knowledge of the number of bidders participating. A fur-
ther study of such auctions could yield insights into other
revenue-maximization settings (for example, when the dis-
tribution over bidders is known) when the number of bidders
is unknown. Finally, LWI-like frameworks could be applica-
ble to more general mechanism design settings that involve
optimization subject to incentive-compatibility constraints.
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