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Abstract

We study a generalization of the standard approval-
based model of participatory budgeting (PB), in
which voters are providing approval ballots over
a set of predefined projects and—in addition to a
global budget limit—there are several groupings of
the projects, each group with its own budget limit.
We study the computational complexity of identify-
ing project bundles that maximize voter satisfaction
while respecting all budget limits. We show that
the problem is generally intractable and describe
efficient exact algorithms for several special cases,
including instances with only few groups and in-
stances where the group structure is close to being
hierarchical, as well as efficient approximation al-
gorithms. Our results could allow, e.g., municipal-
ities to hold richer PB processes that are themati-
cally and geographically inclusive.

1

In the standard approval-based model of participatory bud-
geting (PB) [Cabannes, 2004; Shah, 2007], specifically, the
model of Combinatorial PB [Aziz and Shah, 2021], we are
given a set of m projects, each with its cost, n approval
votes (i.e., each voter provides a subset of projects she ap-
proves), and a budget limit. The task is to aggregate the votes
to select a bundle (i.e., a subset) of projects that respects
the budget limit. PB has caught quite considerable atten-
tion lately [Aziz et al., 2018; Talmon and Faliszewski, 2019;
Aziz and Shah, 2021] as it is being used around the world
to decide upon the spending of public (mostly municipal)
money. Indeed, while other ballot types are also natural, most
real-world PB processes use approval ballots.

Here we consider a setting of participatory budgeting in
which the projects are classified into groups that might be in-
tersecting, and each group comes with its own budget con-
straint, so that the result of the PB—i.e., the aggregated
bundle—shall respect not only the global budget limit, but
also the limits of each of the groups. To make things con-
crete and formal, below is the decision version of our problem
(in the optimization version of GROUP-PB, denoted MAX-
GROUP-PB, the goal is to maximize the utility):
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GRrouP-PB

Input: A set P of projects with their cost function
c: P = N, aset V of voters with their approval ballots
& ={P, C P:v € V}, a family of groups of projects
F C 2F with their budget function b: F — N, a global
budget limit B, and a desired utility value u.

Question: Is there a set of projects X C P such that
Yvey [PoNX[>u, 3y c(p) < B, and for every set

FeF, ZpGFﬂX c(p) < b(F)?

W.lo.g., we assume b(F') < B for every F' € F, and that
no two sets in F are identical, i.e., for all S, 5, € F, 51 #
So. Also, w.l.o.g., we assume that every project in P is ap-
proved by at least one voter. (Note that voter utility equals the
number of approved projects that are funded; this is the most
popular definition of utility in PB however other definitions
exist, some of which we discuss later.)

Example 1. Let P = {p1, p2, p3, p4 }. Let the cost of projects
be as follows: ¢(p1) = 2,¢(p2) = 1,¢(ps) = 3,¢(ps) = 1.
Suppose that we have only two voters, say v,v’ and P, =
{p1.p2,p3}, Py = {p3,pa}. Let F = {F1 = {p1,p3}, F> =
{p2,pa}}. Let b(F1) = 3,b(F3) = 2. Note that we are
allowed to take only one project from F;. Let B = 5 and
u = 3. Let X = {ps,ps}. Note that [P, N X| = 1 and
|PyNX| =2 Thus,) . |P,NX]|= 3= u. Furthermore,
¢(ps) + c¢(ps) = 4 < B, and the costs of projects from sets
Fy and F; are 3 and 1, respectively, that is, ZpGFl c(p) =

3=0b(F1)and ) p c(p) =1 < b(Fh).
Our work is motivated mainly by the following use-cases:

1. Geographical budgeting: Consider a city (say, Paris),
consisting of several districts. To not spend all public
funds on projects from, say, only one district, GROUP-
PB is useful: group projects according to districts and
select appropriate budget limits (making sure that, e.g.,
none of Paris’s 20 districts would use more than 10%
of the total budget). Indeed, for other cities the num-
ber of districts may be smaller (e.g., Jerusalem has four
districts). A more fine-grained solution, incorporating
neighborhoods, streets, etc., is also possible. Currently,
such geographic inclusiveness is usually achieved ad hoc
by holding separate per-district elections.

Thematic budgeting: Projects usually can be naturally
grouped into types, e.g., educational projects, recre-
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ational projects, and so on. Note that, in such cases it
might be that groups do intersect: e.g., a recreational
park might be of recreational purposes as well as for
environmental purposes, thus contained in two sets of
projects. GROUP-PB is useful here: group projects ac-
cordingly, making sure that not all the budget is being
spent on, say, projects of only one type.

Non-budgeting use-cases: GROUP-PB is useful in con-
texts other than PB: e.g., to decide which processes to
run on a time-limited computing server, where available
processes can be naturally grouped into types and it is
not desired to use all computing power for, say, pro-
cesses of only one type. (In this examples, voters may
be various stakeholders.)

Remark 2. Note that in some settings the groups may or not
intersect. Indeed, even if the groups do not intersect, we ar-
gue that it is better to hold the election as one global election,
and consider the groupings of the projects as we do in our
model; this is so, as it provides more flexibility of effectively
dividing the global budget between the groups, based on voter
preferences, and not based on some preliminary decision. On
a related note, some projects indeed may be of use to, say,
several districts (e.g., a park positioned in one specific dis-
trict but enjoyed by residents from several districts): in such
cases it might be better to, say, not include such a project
in the group-wise budget of any district; or, consider a more
fine-grained model in which such a project may be counted
partially to each of the districts that are relevant to it—we do
not consider such generalizations of our model here.

1.1 Our Contributions

We introduce and study GROUP-PB, first demonstrating its
computational intractability even for some very restricted
cases (Theorem 10, Theorem 14). Interestingly, GROUP-
PB can be solved in polynomial-time if a project belongs
to at most one group, but becomes NP-hard as soon as a
project can belong to two groups (Theorem 14). Positively,
we show that GROUP-PB can be solved in polynomial-time
for a constant number of groups (Theorem 17) and for in-
stances with hierarchical group structure (i.e., any pair of
groups must be either non-intersecting or in containment rela-
tion; Lemma 11). Note that in some cases, e.g., when group-
ing projects by geographical regions/districts/neighborhoods,
the group structure is indeed hierarchical.

We extend our study to parameterized algorithms. We con-
sider the following parameters: the number of projects (m),
the number of voters (n), the maximum size of an approval
set (app), the budget (B), the maximum size of a group in
the family F (s), the utility (u), the layerwidth (¢) (see Def-
inition 4 for layerwidth), the size of the family F (g), and
bmax = maxper b(F); and obtain both tractability and in-
tractability results. The motivation for considering these is
the following: the number of voters, n, can be small in cases
when we do PB by the council or in a small community; m is
sometimes quite small (e.g., the PB instances of Stanford Par-
ticipatory Budgeting Platform' usually consist of only 10-20

"https://pbstanford.org/
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Result Parameters Reference

paraNP-hard  bpax + s+ app+¢ Theorem 10
paraNP-hard  bp.x +s+n+ /£ Theorem 10
W(1]-hard bmax + s+ app+u Theorem 10
W(1]-hard bmax +S+n+u Theorem 10
paraNP-hard ¢+ D, Theorem 14
FPT D, Theorem 16
XP g Theorem 17
FPT g+u Corollary 19
FPT g+n Theorem 20
FPT g+ B Theorem 21

Table 1: Parameterized complexity of GROUP-PB wrt. bmax =
max{b(F) : F € F}, s = max{|F| : F € F}, the maximum
number app of projects a voter approves, the layerwidth ¢ (see Def-
inition 4), the number n of voters, the required utility u, the number
Dy (D) of groups (resp., projects) to delete to get a hierarchical
structure, the number of groups g = |F|, and the total budget B.

Upper-bound on ¢ Approximation ratio

o) P
log, log(m®M) PTAS
any g g+2

Table 2: Achieved approximation ratios (in polynomial-time) de-
pending on the number g of groups. The smaller g compared to m,
the better approximation for MAX-GROUP-PB we can achieve. The
results are proved in the full version of the paper [Jain et al., 2020b].

Lower-bound on ¢ Inapproximability

Sm no PTAS

m? no g% ~€-approximation algorithm
m? no m!~€-approximation algorithm

Table 3: Achieved polynomial-time inapproximability results de-
pending on the number g of groups. The larger g compared to m, the
higher is the approximation ratio excluded. The results are proved
in the full version of the paper [Jain et al., 2020b].

projects); ¢ and by,.x can be set by designer—they are gen-
erally not small, yet we add them for completeness; B and
u are also generally not small, but added for completeness;
app, s and g can be set by the designer, and they are usually
rather small, e.g. 5 to 10.

Since the problem can be solved in polynomial-time on hi-
erarchical instances, we also consider two distance parame-
ters to a hierarchical instance, D), and D, the minimum num-
ber of projects (respectively, groups) whose deletion leads
to a hierarchical instance; finding efficient algorithms for
such distance parameters implies that not only hierarchical
instances can be solved efficiently, but also instances that are
close to being such. This is particularly useful in the pres-
ence of a few outliers (due to this, distance parameters are
studied frequently in parameterized complexity, including in
voting theory [Bredereck et al., 2014; Gupta et al., 2020a;
Gupta et al., 2020b]).
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In particular, the main focus of our paper is on adding a
group structure on top of a standard PB instance; from this
point of view, PB election designers can choose how com-
plex they want the group structure to be. Thus, studying the
complexity of GROUP-PB wrt. our parameters—in particu-
lar, the parameter g and the distance parameters—sheds light
on the effect of adding groups on the complexity of the prob-
lem (which is polynomial-time solvable when there are no
groups). Following our parameterized tractability results, a
PB election designer can practically use our group structures,
albeit perhaps not with an arbitrary number of groups of un-
limited structural complexity.

Table 1 lists most of our complexity results. Parameter-
ized complexity wrt. g is open (Open Question 18), however
we have an approximation scheme that is FPT wrt. g (Theo-
rem 22). Tables 2 and 3 summarize our (in)approximability
results that we present in the full version of the paper [Jain et
al., 2020b].

Remark 3. While some city planners may not care for com-
plexity results, we are personally aware of some that are hes-
itant to use algorithmic methods that may not be efficient and
thus may require extensive computational resources.”> Thus,
in addition to being of theoretical interest, our complexity
analysis results have practical implications regarding the fea-
sibility of adding group-wise budget upper bounds to PB. (At
least, as much as theoretical results imply practical feasibil-
ity.)

Initial Observations. For completeness, we mention that
GROUP-PB is trivially FPT wrt. m, by a brute-force algo-
rithm in O*(2™) time* (and, as the Exponential Time Hy-
pothesis implies a lower bound of 2°(V1) for INDEPENDENT
SET, we conclude a lower bound of 2°(") following the re-
duction in the proof of Theorem 10). Furthermore, GROUP-
PB is FPT wrt. app + n as every project is approved by at
least one voter, implying m < app - n.

Road Map. In Section 2 we consider a structural property
of family of sets, useful for obtaining a polynomial-time al-
gorithm for hierarchical families and may also be of inde-
pendent interest. Then, in Section 3, we present intractability
results of GROUP-PB. Sections 4 and 5 are devoted to param-
eterized analysis of GROUP-PB. Due to space constraints,
some results, proofs or proof details are deferred to the full
version of the paper [Jain et al., 2020b].

1.2 Related Work

The literature on PB is quite rich [Aziz et al., 2018]; for-
mally, we generalize the framework of Talmon and Fal-
iszewski [2019] by adding group structures to approval-based
PB. Jain et al. [2020a] and Patel et al. [2021] also consider—
albeit significantly simpler—group structures (with layer-
width 1; see Definition 4). Fairness constraints are stud-
ied, e.g., in the contexts of influence maximization [Tsang

In particular, one of the authors, while trying to convince a
deputy mayor of a medium-sized city to implement a participatory
budgeting process, faced significant criticism regarding the worry of
the need of using extensive computational resources.

3O* hides factors that are polynomial in the input size.
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et al., 2019], clustering [Chierichetti et al., 2017], and allo-
cation problems [Benabbou et al., 2018]. Our focus is on
fairness in PB (e.g., not spending all funds on one district).
Recently, Hershkowitz et al. [2021] introduced a district-
fairness notion, allowing projects to have different utility for
different districts. Researchers have also studied fairness and
group structures for multiwinner elections [Izsak et al., 2018;
Celis et al., 2018; Yang and Wang, 2018; Ianovski, 2019;
Gupta et al., 2020b], which is a special case of PB.
Technically, GROUP-PB is a special case of the d-
DIMENSIONAL KNAPSACK problem (d-DK) [Kellerer e al.,
2004, Section 9]: given a set of items, each having a d-
dimensional size-vector and its utility, a d-dimensional knap-
sack capacity vector 5 with an entry for each dimension, and
required integer utility—with all input numbers being non-
negative integers—the goal is to choose a subset of the items
with at least the required total utility and such that the sum
of the chosen items’ sizes is bounded by the knapsack ca-
pacity, in each dimension. d-DK generalizes GROUP-PB:
items in d-DK correspond to projects; fix an order on F, i.e.,
(F1,Fs, ..., Fy), resulting in d = g + 1 many dimensions,
a (g + 1)-dimensional size vector + for an item p € P, de-
fined by 7, (i) = c(p) if p € F; and 7,(i) = 0 otherwise,
~¥p(g + 1) = ¢(p) for every p € P, corresponding to a global
budget, utility of an item p € P equals its approval score, re-
quired utility in d-DK equals u, and the (g + 1)-dimensional
bin f3 is defined via (i) = b(F;) fori € {1,2,...,¢}, with
B(g + 1) = B. So, GROUP-PB is an instance of (g + 1)-
DK where each item p € P has only two possible sizes over
dimensions, i.e., 0 and ¢(p). Crucially, as our model is a spe-
cial case we can use our special instance structure; hence, we
treat results for d-DK as a good benchmark, in particular, the
(in)approximability results for d-DK [Kellerer et al., 2004].

2 Layer Decompositions

Definition 4. A layer decomposition of a family of sets F
is a partition of the sets in F such that every two sets in a
part are disjoint. Each part is a layer. The width of a layer
decomposition is the number of layers in it. The layerwidth
of a family of sets F, denoted by ¢(F) (or simply ¢ if F
is clear from the context), is the minimum width among all
possible layer decompositions of F.

Given a family F of sets and an integer ¢, the decision
problem LAYER DECOMPOSITION asks for the existence of
a layer decomposition with width at most ¢. The following
hardness result follows a reduction from EDGE COLORING.

Theorem 5. LAYER DECOMPOSITION is NP-hard even
when ¢ = 3 and s = 2.

A reduction to 2-GRAPH COLORING gives a polynomial-
time algorithm for layerwidth 2.

Theorem 6. There exists a polynomial-time algorithm that
finds a layer decomposition of layerwidth two, if it exists.

We discuss hierarchical families of sets (also known as
laminar families).

Definition 7. A family of sets F is called hierarchical, if
every two sets I and F; in the family F are either disjoint
or Iy C Fsor Fy C Fi.
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Theorem 8. There exists a polynomial-time algorithm that
solves a given instance (F,{) of LAYER DECOMPOSITION
when F is a hierarchical family.

Remark 9. The general idea of the algorithm described in
the proof of Theorem 8§ is to build a graph with one vertex
for each group and edges corresponding to group intersec-
tions, followed by traversing the graph in topological order
and constructing the corresponding hierarchical tree. Note
that, conveniently, the algorithm can be modified to construct
an ordered layer decomposition such that every set in the ¢-th
layer is a subset of a set in the (i — 1)-th layer.

3 Intractability of General Instances

Next we prove intractability, showing that GROUP-PB is
NP-hard even when some of the input parameters are con-
stant. Note, importantly, that we can solve the standard PB
problem—without project groups—in polynomial-time (as it
can be solved using dynamic programming via equivalence to
UNARY KNAPSACK [Talmon and Faliszewski, 2019]).

The following result is obtained via reductions from the
INDEPENDENT SET (IS) problem on 3-regular 3-edge col-
orable graphs.

Theorem 10. GROUP-PB is NP-complete even when by,.x =
1, s =2, app = 1, and { = 3; and even when by, = 1,
s =2,n =1, and ¢ = 3. Furthermore, GROUP-PB is W[1]-
hard wrt. u even when by,x = 1, s = 2, and app = 1; and
even when by = 1, s = 2, and n = 1.

4 Tractability of Hierarchical Instances

We start our quest for tractability by considering GROUP-
PB instances whose group structure is hierarchical; when F
is hierarchical, we refer to the GROUP-PB problem as
HIERARCHICAL-PB. Fortunately, such instances can be
solved in polynomial-time. Practically, hierarchical instances
are appropriate, e.g., when considering disjoint geographical
districts of a city.

Lemma 11. There exists a polynomial-time algorithm that
solves HIERARCHICAL-PB.

Proof. Let (V,P,E,F,c,B,b,u) be a given instance of
HIERARCHICAL-PB. W.lo.g., assume that P is a set in the
family F (otherwise, add it to F and set b(P) = B). Using
Remark 9, let £ be an ordered layer decomposition of F such
that every set is a subset of some set in the preceding layer,
and note that the first layer is { P}. Let S be a set in some
layer, say L;, such that |S| > 1. Suppose that there exists a
project p € S such that p is not in any set of L; ;. We add
the set {p} to F and L; 1, and set b({p}) = c(p) (if the layer
L, does not exist, then we add this new layer). Note that
we might increase the number of layers by 1. Let £ be the
number of layers.

Now, we solve the problem using dynamic programming.
For a set S € F in the i-th layer, where ¢ € [¢ — 1], such
that |[S| > 1, let Partg denote the partition of a set S such
that every part in Partg is a set in the (¢ + 1)-th layer. For
a singleton set S, Partg = {S}. For every set S € F, we
order the parts in Partg arbitrarily. Let |Partg| denote the
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number of parts in Partg and let Partg(¢) denote the i-th
part in Partg. Our DP table entries are defined as follows:
For every set S € F, j € |Partg|, and utility z € [u],

TS, j, 2] = minimum cost of a subset of projects in first j
parts in Partg that has utility z.

For a project p, let a(p) denote the number of voters who
approve the project p (approval score). For a set S, let
a(S) =) ,csa(p). We compute the table entries level-wise
in bottom-up order, that is, we first compute the value corre-
sponding to sets at lower levels.

Base case: For every set S, where S = Q) or S € F and
0<z<u

R
oo otherwise.

Recursive Step: For every set S € F, j € [|Partg

0 < z < u, we compute as follows:

|, and

T[S,],Z] = Oinzl/gz{T[Sm] - 1,2 - Z/]

+ T[Parts(j), |Parts(j)|, 2']}.

Correctness proof can be found in [Jain et al., 2020b]. O
Some instances might not be hierarchical but only close to
being such, thus we study two distance parameters, namely,
the minimum number D, of groups and the minimum number
D, of projects, respectively, whose deletion results in a hier-
archical instance. Indeed, having efficient algorithms for such
instances means that even more instances can be efficiently
solved (e.g., instances with group structures corresponding to
thematic districts in which some projects fit several groups).
We have the following lemmas—used later in the proofs
for the parameterized complexity of GROUP-PB wrt. D, +
s and D,—which are concerned with computing the set of
groups/projects whose deletion leads to hierarchical instance;
their proofs follow branching arguments, as, for D, at least
one set from each pair of conflicting groups shall be deleted,

and, for D, for a pair of conflicting groups G1, G, either
G1\ G3 or G2 \ G7 or G N G shall be removed.

Lemma 12. There exists an algorithm, running in O* (2P9)
time, that finds a minimum-sized set of groups whose deletion
results in a hierarchical instance.

Lemma 13. There exists an algorithm, running in O*(37»)
time, that finds a minimum-sized set of projects whose dele-
tion results in a hierarchical instance.

Unfortunately, we have the following intractability result.

Theorem 14. GROUP-PB is NP-hard even when D, = 2
and { = 2.

Nevertheless, combining with s helps:
Theorem 15. GROUP-PB is FPT wrt. Dy + s.

In contrast to Theorem 14, parametrization by the delete-
project-distance of an instance to be hierarchical is tractable.

Theorem 16. GROUP-PB is FPT wrt. D,
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5 Tractability with Few Groups

Next we concentrate on the number g of groups as a parame-
ter as, indeed, the groups are the new ingredient we bring to
the standard model of PB. Practically, the number g of groups
may be set by the entity organizing the PB process, thus can
be as small as the organizer wishes. First, we have the follow-
ing result for the parameter g. The proof follows an algorithm
that considers 29 “types” of projects, guesses the joint utility
achieved from projects of each type, and finds corresponding
bundles using dynamic programming.

Theorem 17. GROUP-PB is XP wrt. g.

Unfortunately, we do not know whether GROUP-PB is
FPT wrt. g; indeed, this is the main question left open.

Open Question 18. Is GROUP-PB FPT wrt. g?

Note, however, that in [Jain et al., 2020b] we provide a
proof of W[1]-hardness wrt. g, albeit for a slightly more gen-
eral problem, in which we are also given utility requirements
for each group. Next we consider combined parameters. The
next result follows the proof of Theorem 17.

Corollary 19. GROUP-PB is FPT wrt. g + w.

Careful Mixed Integer Linear Programming (MILP) for-
mulation implies the following.

Theorem 20. GROUP-PB is FPT wrt. g + n.

Proof. Recall that w.l.o.g. we assume that every project is
approved by at least one voter. We construct a MILP by
defining a type of a project by a pair (R, w), where R C F
and w € [n]. A project of type (R, w) belongs to all the
groups in R (and to none of the groups in F \ R) and it is
approved by exactly w voters. Note that we have n - 29 types
of projects. We define an integer variable x g ,, for all R C F
and w € [n], meaning how many projects of type (R, w) are
in a solution. Let |(R,w)| be the number of projects of type
(R, w).
Next, we split x g ,, into a sum of |(R, w)| real variables:

>

i€f|(R,w)|]

TRw = YR,w,i»

where yr.; € [0,1] is a continuous extension of a bi-
nary variable that indicates whether we take the i-th cheap-
est projects of type (R, w) to a solution. From equation (5)
we get also zg ., € {0,1,...,[(R,w)|}. Note that we have
Y RCF 2oweln) (B, w)| = m real variables yp ., because
each project has exactly one type. We implement the budget
function by writing a constraint for each group F' € F:

Z Z Z YRw,i * C(R7 w, 'L) < b(F)7
R:FERCF wen] i€[|(R,w)]]

where ¢(R, w, 1) is the cost of the i-th cheapest project of type
(R, w). We add a global budget limit constraint as follows:

2.2 >

RCF weln] i€[|(Rw)]]

Yrw,i - c¢(R,w,i) < B.

The objective function is:

max E E W TRw-

RCF weln]
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Any optimal solution (z*,y*) of the MILP can be trans-
formed into an optimal solution (z*,y'™*) consisting of inte-

ger variables only: define y'}fgfwd =1fori e {1,...,2%,}
int

and y", , = 0fori € {zp , +1,...,|(R,w)[}.
A proof that (z*, ™) is a feasible and an optimal solution
can be found in [Jain et al., 2020b]. Our MILP can be solved

in O*(?”log(”)'Qo(g)) time [Lenstra, 1983; Bredereck et al.,
2020]. O

Also combining g with the budget B helps, as we can use
the DP for (g + 1)-DK, which runs in time upper-bounded
by O*(n - (bmax +1)7(B+1)) < O*(n- (B + 1))
[Kellerer et al., 2004, Section 9.3.2].

Theorem 21. GROUP-PB is FPT wrt. g + B.

5.1 FPT Approximation Scheme for g

Recall that GROUP-PB is XP wrt. g (Theorem 17) and re-
call our open question regarding whether GROUP-PB is FPT
wrt. g (Open Question 18). Next we show an approximation
scheme for MAX-GROUP-PB that is FPT wrt. g (compare
this result also to that described in [Jain et al., 2020b], show-
ing that there does not exist a constant-factor approximation
algorithm unless P = NP, even if g is as small as m?).

In particular, our approximation notion is the following:
an algorithm has an approximation factor o > 1 if it always
outputs a solution that has at most « factor less utility than
the optimal solution.

Theorem 22. There exists an algorithm that for any fixed
€ > 0 finds a (1 + €)-approximate solution to MAX-GROUP-
PB in FPT time wrt. g.

Proof. The idea of the algorithm is as follows. First, we
reduce the given instance of GROUP-PB to an instance of
GROUP-PB with an additional feasibility restriction, in par-
ticular, such that a feasible solution has to contain exactly one
project from each project type, where a type of a project is
uniquely defined by the family of groups to which the project
belongs. The reduction, shown below, takes FPT time wrt.
g. In the second step we will round down the approval score
of each project to the closest multiplicity of (1 + €), in effect
bounding the number of different approval scores of a project
to the logarithmic function of the input size. Then we will
apply a brute-force enumeration that runs in FPT time wrt. g.

More formally, let us fix ¢ > 0 and an instance 7 =
(V,P,E, F,c, B,b) of MAX-GROUP-PB. Recall that w.1.o.g.
we assumed that each project is approved by at least one
voter. Leta: P — {1,2,...,|V|} be an approval score func-
tion, i.e., a(p) = {v € V : p € B,}|. Notice that the ap-
proval score function a(-) can be encoded in unary (instead
of having voters explicitly). Let A be the total approval score
of all the projects, e.g., A = > . pa(p). Let u*(Z) be the
value (total utility) of an optimal solution to Z. To avoid triv-
iality, w.l.o.g. we assume u*(Z) > 0.

Now, given a subfamily R C F, we say that a project p
is of type R if it belongs to all the groups in IR and to none
of the groups in F \ R (so every project has an unique type).
We have at most 29 types of projects. First, we fix an optimal
solution X* and we do the following preprocessing on the
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instance Z. For every project type, we guess whether at least
one project of the type is contained in X*, and if none, we
delete all gprojects of that type. We can do this preprocessing
in (’)*(22 ) time. Note that, after this step, the number of
project types cannot increase because the number of projects
cannot increase. (As this is just a preprocessing, in our next
steps we override the notation and use P for the set of projects
after the preprocessing.) We define the number of project
types after the preprocessing as ¢, with ¢ < 29,

For every project type R C F we run a dynamic pro-
gramming procedure that outputs the following: For every
value v € {1,2,..., A}, we compute cost(R,v), which is
the minimum cost of a subset of projects of type R whose
total value is exactly v (it is equal to oo if there is no such
subset). Also we store a bundle of projects, bundle(R,v),
that realizes the minimum cost cost(R,v). We can com-
pute cost(R,v) together with bundle(R,v) in time upper-
bounded by O*(t - A - |P|) = O*(29).

Now, we create a new instance Z’ V', P& F [,
B’, V') of GROUP-PB as follows. For every project type
R C F and every value v € {1,2,..., A} such that
cost(R,v) is not co, we define a project proj(R,v) € P’
of cost ¢(proj(R,v)) cost(R,v) and approval score
a'(proj(R,v)) that is equal to v (equivalently, we can de-
fine A many voters in V', where the i-th voter approves all
the projects proj(R, v) such that v > 7). We define the type
of all the projects proj(R,v), v € {1,2,..., A}, as R. Note
that a project proj(R, v) corresponds to a bundle of projects
of type R from the original instance.

We keep the same global budget limit, i.e., B = B. For
every group F' € F, we define a group Tr € F’ that contains
all projects proj(R,v) whose type R contains the group F,
ie., Tr = {proj(R,v) : F € R}. We define b'(Tr) = b(F).

We show correspondence of feasible solutions in both in-
stances. Let Z] be the instance Z’ of GROUP-PB restricted to
solutions containing exactly one project of each type.

Lemma 23. Every feasible solution to I] can be trans-
formed into a feasible solution to T with the same utility in
polynomial-time.

Lemma 24. We have u*(Z) < u*(Z7).

Note that from Lemma 23 and Lemma 24 we could de-
rive u*(Z) = w*(Z;). Although the crucial ingredient of
Lemma 23 is that we can transform a feasible solution to Z}
into a feasible solution to Z (keeping the value of the solution)
in polynomial-time. In the second step (called bucketing) we
round down the approval score of each project to the closest
multiple of (1 + ¢). Let Z} be an instance after the bucketing
procedure (note that we do not change costs and budget limits
when bucketing the approval scores).

u(I})

Lemma 25. We have u*(Z{') > 2.

Because of bucketing, it is possible that two projects of
the same type but with different approval scores are rounded
down to the same value. Hence we keep the project of
minimum cost. So, overall, after bucketing we have at
most log;, (A) projects of each type. For each project
type, we branch on which project of that type is selected
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and we store the best solution X” (it has utility u*(Z}')).
This takes O*((log, . (A))") time, which can be bounded by

O*(2%'4g), i.e., the algorithm runs in FPT time wrt. g. Note
that e (which is a fixed constant) is present only in the poly-
nomial on the input size term.

The solution X" is feasible to Z;, hence using Lemma 23
we can construct a feasible solution to Z with utility equal to

u'(Z) _ (@)
14+e¢ — 1+¢€’

where the first inequality follows from Lemma 25 and the
second inequality follows from Lemma 24. O

u(Iy) =

6 Outlook

Motivated by PB scenarios in which it is useful to consider
geographic constraints and thematic constraints, we enriched
the standard approval-based model of PB by introducing a
group structure over the projects and requiring group-specific
budget limits for each group. We have showed that, while
being computationally intractable in general, the enriching
PB instances with such group structure and its correspond-
ing budget constraints comes at essentially no computational
cost if there are not so many such groups or if the structure of
these groups is hierarchical or close to being such; we com-
plemented our analysis with lower bounds and approximation
algorithms. Practically, while our focus is on a theoretical un-
derstanding of the combinatorial structure of our problems,
some of our results are already showing efficient complex-
ity and thus can be used practically as they are. Other re-
sults giving an evidence of being in FPT or XP, while having
rather high complexity (e.g., double exponential dependency
on the relevant parameter), show nevertheless that efficient al-
gorithms may exist, thus more research might be instructive
in finding algorithms with even better running time.

Further research may concentrate on: solving our open
question regarding the complexity of GROUP-PB wrt. g; con-
sidering other relevant parameters; study group-wise lower
bounds (instead of upper bounds, as we do here), and enrich-
ing GROUP-PB by considering project interactions (e.g., in
the spirit of Jain et al. [2020al).
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