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Abstract

Our work focuses on a generalization of the clas-
sic Minisum approval voting rule, introduced by
Barrot and Lang (2016), and referred to as Con-
ditional Minisum (CMS), for multi-issue elections.
Although the CMS rule provides much higher lev-
els of expressiveness, this comes at the expense of
increased computational complexity. In this work,
we study further the issue of efficient algorithms
for CMS, and we identify the condition of bounded
treewidth (of an appropriate graph that emerges
from the provided ballots), as the necessary and
sufficient condition for polynomial algorithms, un-
der common complexity assumptions. Additionally
we investigate the complexity of problems related
to the strategic control of such elections by the pos-
sibility of adding or deleting either voters or alter-
natives. We exhibit that in most variants of these
problems, CMS is resistant against control.

1 Introduction
This work focuses on a voting rule for multi-issue elections
that couples approval voting with the possibility of express-
ing dependencies among issues. As a first example, imagine
a group of friends who have to decide on the menu of a buffet
for the party they are hosting. It is expected that their pref-
erences on certain dishes are conditioned on whether some
other (e.g., complementary) dishes will be selected or not. We
can consider another example with conditional preferences,
taken from recommendation systems for online advertising.
Suppose an ad management service needs to make a person-
alized selection of ads, to be shown on Alice’s favorite news
website. For each slot (or area) in the advertising region of
the site, there is a set of possible ads to choose from and the
overall goal is to maximize Alice’s satisfaction (the probabil-
ity of an ad to be clicked by her). If we think of the slots as
corresponding to issues, a recommendation could be made by
looking at the data from users “similar” to Alice (voters), and
their clicking behavior (approvals). The voters have condi-
tional preferences, as the clicking probability is affected when
an ad appears in a nearby slot with a related one (e.g. it is in-
creased for frequently bought together products).

It seems obvious in the examples above, that deciding in-
dependently for each issue would not be a wise choice. Moti-
vated by these considerations, the work of [Barrot and Lang,
2016] introduced an expressive framework that handles con-
ditional ballots within the approval voting format, and de-
fined, among others, the Conditional Minisum (CMS) voting
rule. CMS can be thought of as a natural, intuitive general-
ization of the well known Minisum rule in approval-based
elections, under preferential dependencies.

At the moment however, the power and limitations of CMS
are still under-explored, and further studies are needed to ar-
rive at a better evaluation of this relatively new rule. First, it
has been shown that the higher level of expressiveness comes
at the price of increased computational complexity; although
the Minisum rule is easy to implement in the standard (uncon-
ditional) setting, CMS was proved to be intractable already by
[Barrot and Lang, 2016]. Given this negative result, it be-
comes important to understand which properties can play a
crucial role on obtaining efficient algorithms. The subsequent
work of [Markakis and Papasotiropoulos, 2020] made some
progress along this front, providing a sufficient condition for
fast algorithms, but this has been far from a complete under-
standing. Second, we still know very little about the complex-
ity of controlling and/or manipulating a CMS election. This
is a very prominent research agenda within computational so-
cial choice, and further results would provide more insights
on the benefits or drawbacks of conditional voting.

Contribution. Our main goal is to investigate algorithmic
and complexity aspects of solving and controlling elections
under CMS. More precisely, our results in Section 3, provide
characterizations for the families of CMS instances that can
be placed in P and FPT. The main insight gained out of this,
is that the condition of bounded treewidth (of an appropri-
ate graph, aggregating all the provided dependencies) serves
as the lynchpin between expressiveness of preferences and
efficiency of computation. These results also establish a con-
nection between winner determination under CMS and a well
studied class of Constraint Satisfaction Problems, which can
be of independent interest. Moving on, in Section 4, we ini-
tiate for CMS the study of some standard notions of election
control. These problems concern the attempt by an external
agent to enforce a certain outcome by adding or deleting ei-
ther voters or alternatives in the election. Our findings reveal
that CMS is sufficiently resistant against such moves.
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Related Work
The works most related to ours are [Barrot and Lang, 2016]
and [Markakis and Papasotiropoulos, 2020]. The former in-
troduced the rule we study, and provided computational hard-
ness results, along with other interesting properties, whereas
the latter focused on algorithms for special cases of the prob-
lem. For surveys on approval voting, we refer to [Brams and
Fishburn, 2010] and [Kilgour, 2010]. Beyond approval vot-
ing, we point to the work of [Chevaleyre et al., 2008] for
the relation of similar solution concepts within AI and to the
enlightening survey of [Lang and Xia, 2016], for an exposi-
tion of solution concepts, proposed as attempts for a tradeoff
between expressiveness and computational cost over combi-
natorial domains.

Regarding election control, the versions that we consider
fall within the standard approaches that have been used for
studying the complexity of affecting election outcomes. For
an extensive study on this topic, we refer to [Faliszewski and
Rothe, 2016]. Indicatively, the study of such problems with
adding or deleting voters or alternatives began with the semi-
nal paper of [Bartholdi III et al., 1992] and some of the subse-
quent works are, among others, [Hemaspaandra et al., 2007;
Faliszewski et al., 2011; Liu et al., 2009].

2 Formal Background
For the relevant definitions of our setting, we closely fol-
low the framework of [Barrot and Lang, 2016]. Let I =
{I1, . . . , Im} be a set of m issues, where each issue Ij is as-
sociated with a finite domain Dj of different alternatives. Let
D = D1×D2×· · ·×Dm be the set of all feasible outcomes.

We consider a set V = {1, . . . , n} of n voters who have
to reach a common decision for every issue in I . The vot-
ers can express dependencies among issues in the following
manner: we assume each voter i provides a directed graph
Gi = (I, Ei), referred to as her dependency graph. For an is-
sue Ij , we denote byNi(Ij) the set of in-neighbors of the ver-
tex corresponding to Ij in the dependency graph Gi. For an
issue Ij where the set of in-neighbors is non-empty, the opin-
ion of voter i on Ij is dependent on the outcome of the issues
in Ni(Ij). A useful quantity in the sequel is the maximum
in-degree for a voter i, which is ∆i = maxj∈[m]{|Ni(Ij)|}.
Definition 1. A conditional approval ballot of a voter i over
the issues of I = {I1, . . . , Im} is a pair Bi = 〈Gi, {Aj , j ∈
[m]}〉, where Gi is the dependency graph of voter i, and for
each issue Ij , Aj is a set of conditional approval statements
{t : dj}, for some t ∈

∏
k∈Ni(Ij)

Dk and some dj ∈ Dj .

The rationale in Definition 1 is that the set Aj expresses
the combinations of values that make the voter satisfied with
respect to issue Ij . We note that when Ni(Ij) = ∅, voter
i can express a simple unconditional ballot for approving an
alternative d of issue Ij , which for simplicity, will be denoted
as {d}. We also stress that our setting is incomparable with
the semantics of the CP-nets framework, as already pointed
out by [Barrot and Lang, 2016].
Definition 2. The global dependency graph of a set of voters
is the undirected1 simple graph that emerges from ignoring

1Defined as a directed graph in [Markakis and Papasotiropoulos,

the orientation of edges in the graph (I,
⋃

i∈[n]Ei).

Let B = (B1, . . . , Bn) denote the voters’ conditional bal-
lots. An instance of a conditional approval election is called
a profile, given by a tuple (I,D, V,B). An outcome of the
election is a vector (s1, s2, . . . , sm) ∈ D (with sj ∈ Dj).
Definition 3. Given an outcome s = (s1, s2, . . . , sm), we
say that voter i is dissatisfied (or disagrees) with issue Ij , if
either Ni(Ij) = ∅ and {sj} /∈ Bj

i , or if the projection of s
on Ni(Ij), say t, satisfies {t : sj} /∈ Bj

i , where Bj
i is the

restriction of the ballotBi on the issue Ij . We denote as δi(s)
the total number of issues from s that dissatisfy voter i.

For illustrative examples concerning the definitions, we
refer to [Barrot and Lang, 2016] and [Markakis and Papa-
sotiropoulos, 2020]. We focus on the following voting rule
within the framework of conditional approval elections.
Problem: CONDITIONAL MINISUM (CMS)
Instance: A profile of a CMS election (I,D, V,B).
Output: An outcome that achieves mins∈D

∑
i∈[n] δi(s).

If the global dependency graph of an instance is empty, i.e.,
∆i = 0, ∀i ∈ [n], then the election degenerates to Uncondi-
tional Minisum which is simply the classic Minisum rule in
approval voting over multiple independent issues. In the se-
quel, we will make extensive use of the treewidth parameter
of a graph G, denoted as tw(G). For the relevant definition,
we refer to [Robertson and Seymour, 1986] or to any textbook
of parameterized complexity such as [Cygan et al., 2015]. Fi-
nally, we note that all missing proofs can be found in the full
version of this work.

3 Winner Determination of CMS Elections
The price we pay for the higher expressiveness of CMS is its
increased complexity, as already established by the work that
introduced the rule [Barrot and Lang, 2016]. Here, we focus
on understanding the properties that allow CMS to be imple-
mented in polynomial time. For this, we stick to the non-
trivial case where ∆i ≤ 1 for every voter i, which is already
NP-hard, and investigate what further restrictions can make
the problem tractable. More specifically, we utilize the global
dependency graph of an instance, defined in Section 2, aggre-
gating all the dependencies of the voters into a single graph.
The role of the global dependency graph was highlighted in
[Markakis and Papasotiropoulos, 2020], where an optimal al-
gorithm was described when the treewidth is at most 2. In
this section, we first provide a generalization of this result
for any constant treewidth (Theorem 1), resolving one of the
open questions by [Markakis and Papasotiropoulos, 2020].
But more importantly, we also show that this is tight, and we
cannot hope to go beyond constant treewdith (Theorem 2 and
Corollary 1), under standard complexity assumptions.

In our results, we make extensive use of Constraint Sat-
isfaction Problems (CSPs), a prominent class of problems as
they can model numerous applications in AI. A CSP instance
is described by a tuple (V,D,C), where V is the set of vari-
ables, D is the Cartesian product of the domains of the vari-
ables, and C is a set of constraints. Each constraint involves a

2020], but their results utilized its undirected version.
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subset of the variables, and is represented by all the combina-
tions of variables that make it satisfiable. We will pay partic-
ular attention to the so-called binary CSPs, where each con-
straint involves at most two variables. The decision problem
for a CSP asks whether we can find an assignment to the vari-
ables of V so that all constraints of C are satisfied, whereas
a natural optimization version [Freuder and Wallace, 1992] is
to minimize the number of unsatisfied constraints. When an-
alyzing CSPs, a useful concept in the literature is the primal
or Gaifman graph of an instance, defined below.
Definition 4. The primal (or Gaifman) graph of a CSP in-
stance is an undirected graph, whose vertices are the variables
of the instance and there is an edge between two vertices, if
and only if they co-appear in at least one constraint.

The proof of the following theorem is based on formulat-
ing our problem as minimizing the number of unsatisfied con-
straints in an appropriate binary CSP instance, whose primal
graph has constant treewidth. For these classes of CSPs, one
can then use known results from [Freuder, 1990]2 or [Koster
et al., 2002] for solving them efficiently.
Theorem 1. If the global dependency graph of a CMS in-
stance with ∆i ≤ 1 for every voter i, has constant treewidth,
then the problem is optimally solvable in polynomial time,
even for arbitrary domain cardinality for each issue.
Remark 1. Theorem 1 does not seem to have any direct gen-
eralization to instances where ∆i ≥ 2 for some voter i, since
in that case the global dependency graph will not necessar-
ily coincide with the primal graph of the corresponding CSP
(which is an essential part of the proof). Tackling higher de-
grees is left as an open problem. On the other hand, Theorem
1 can be generalized when there is a weight for each voter so
as to optimize the weighted sum of the dissatisfaction scores.

Theorem 1 shows that ∆i ≤ 1 for each i, along with con-
stant treewidth on the global dependency graph form a suffi-
cient condition for polynomial time solvability. We argue that
such conditions are not overly restrictive for election rules.
Instances with ∆i ≤ 1 can be thought of as a natural first-step
generalization of the unconditional approval voting case, by
adding at most one dependence per issue. Constant treewidth
also provides an adequate degree of expressiveness and can
be encountered when the aggregate dependencies are not too
dense. Graphs with low treewidth can arise when there is a
commonly accepted hierarchy between issues or when voters
have a high level of agreement on the type of dependencies in
combination with the fact that ∆i ≤ 1 for each voter i.

A natural question is whether we can solve other classes of
instances, containing graphs of non-constant treewidth, under
the assumption of ∆i ≤ 1 for each i, by focusing on other
parameters of the problem. Quite surprisingly, it turns out that
the constant treewidth is essentially the only property that can
yield efficiency guarantees. To establish this claim, we first
show a “reverse” direction to Theorem 1, that binary CSPs
can be reduced to CMS. Hence, together with Theorem 1,
this means that CMS is computationally equivalent to binary

2The original results in [Freuder, 1990] do not deal with the opti-
mization version, but as demonstrated in later works (e.g., Proposi-
tion 4.3 from [Knop et al., 2019]), can be extended for this version.

CSPs, and thus to any other problem that is already known
to have this property, such as the PARTITIONED SUBGRAPH
ISOMORPHISM problem [Marx, 2010]. This reveals further
connections between CMS and other combinatorial problems.

Theorem 2. Every binary CSP with primal graph G, can be
reduced in polynomial time to a CMS instance with ∆i ≤ 1
for every voter i, and withG as the global dependency graph.

Proof. For convenience, we will work with the decision ver-
sion of CSP asking for a solution that satisfies every con-
straint. Let P be a binary CSP instance, and without loss of
generality, assume that every constraint involves exactly two
variables. We construct a CMS instance P ′, where the issues
correspond to the variables and the voters correspond to the
constraints of P . In particular, for every variable xj of the
CSP instance, we add an issue Ij and for every constraint we
add a voter, with the following preferences: let xj , xk be the
two variables involved in the constraint. We pick one of the
two variables (arbitrarily), say xk, and we set Ik as the issue
that the voter cares about, conditioned on Ij . We also set her
conditional ballot for issue Ik in such a way, so that the voter
becomes satisfied precisely for all combinations of values for
xj and xk that make the constraint satisfied. The voter is also
satisfied unconditionally with every outcome for every other
issue of the produced instance. Obviously, the dependency
graph of every voter has maximum in-degree equal to one.

As an example, suppose that a constraint is of the form
x1∨x2 and the variables x1, x2 have binary domain. Then we
introduce a voter, and two issues I1, I2 (if they have not been
introduced already by other constraints), and we can select I2
as being dependent on I1. The conditional ballot regarding
the satisfaction of the voter for I2 is {x1 : x2}, {x1 : x2},
{x1 : x2}. In addition, the voter approves unconditionally
every outcome of any issue other than I2.

To complete the reduction, we consider the decision ver-
sion of CMS where we ask for an assignment with no dis-
satisfactions, i.e., the instance P ′ has an affirmative solution
only when all voters are satisfied with all the issues. Observe
that this is a polynomial time reduction (the conditional ballot
of each voter for her single issue of interest can be described
in O(d2) time, where d is the maximum domain cardinality
of the CSP variables). The following is quite obvious.

Claim 1. The primal graph of CSP instance P is identical to
the global dependency graph of the CMS instance P ′.

It remains to see that there exists a solution to P that sat-
isfies every constraint if and only if there exists a solution to
P ′ that satisfies every voter, which can be easily verified.

Theorem 2 allows us to apply some known hardness results
on binary CSPs with large domain size, namely [Grohe, 2007;
Grohe et al., 2001], which imply that one cannot hope to have
an efficient algorithm for a class of CMS instances, if the class
contains instances with non-constant treewidth. Hence, The-
orem 1 is essentially tight, and this resolves the problem of
finding a characterization for instances that admit polynomial
time solutions for CMS, subject to a standard computational
complexity assumption.
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Corollary 1. Let G be a recursively enumerable (e.g., decid-
able) class of graphs, and let CMS(G) be the class of instances
with a global dependency graph that belongs to G, and with
∆i ≤ 1 for every voter i. Assuming FPT6= W[1], there is a
polynomial algorithm for CMS(G) if and only if every graph
in G has constant treewidth.

Remark 2. If we strengthen the complexity assumption used,
from FPT6=W[1] to the Exponential Time Hypothesis (ETH),
we can obtain an even stronger impossibility result. In par-
ticular, by exploiting the result of [Marx, 2010], and the re-
duction in the proof of Theorem 2, we can show that under
ETH, one cannot even hope for an algorithm on CMS(G) that
runs in time f(G)||P ||o(tw(G))/log(tw(G)), where ||P || is the
size of the CMS instance and G ∈ G. This implies that the
O(ntw(G)) algorithm from Theorem 1 is best possible up to
an O(log (tw(G))) factor in the exponent.

Parameterized complexity of CMS. The algorithm used in
the proof of Theorem 1, runs in time exponential in tw(G),
where G is the global dependency graph and thus it places
CMS in XP w.r.t the treewidth parameter. One can wonder
if anything more can be said concerning the fixed parame-
ter tractability of the problem. Given the equivalence of our
problem with binary CSPs, we can use known results [Samer
and Szeider, 2010; Gottlob and Szeider, 2008], to extract
some further characterizations and obtain an almost complete
picture with respect to the most relevant parameters. On the
positive side, we can show that our problem is in FPT w.r.t.
the parameter “treewidth + domain size”. On the negative
side, we cannot hope to prove FPT only w.r.t the treewidth
parameter, independent of the domain size, as stated below.

Corollary 2. When ∆i ≤ 1 for every voter i, CMS is in FPT
w.r.t the parameter tw + d, where tw is the treewidth of the
global dependency graph and d is the maximum domain size.
Moreover, it is W[1]-hard w.r.t. tw and w.r.t. d.

4 Strategic Control of CMS Elections
In this section, we consider strategic aspects of CMS and
study questions related to controlling an election of interde-
pendent issues, which falls under the broad and well studied
umbrella of influencing election outcomes in computational
social choice. Suppose that there is an external agent (called
controller) who has a strong preference for a specific value
of some (or every) issue in a CMS election. One of the in-
struments for enforcing a desirable value for the issue(s) the
controller cares about, is by enabling new voters to participate
or respectively, by disabling some existing voters, which can
be done for example by changing the criteria for eligibility of
voters (e.g., age, permanent residence, or even more special-
ized criteria in committee elections). Furthermore, a different
instrument for the controller is to add more choices for the
issues under consideration or delete existing ones, towards
enforcing her will. We refer to [Chen et al., 2017] for related
examples. It is reasonable to assume that the controller does
not have unlimited power, and therefore, she is capable of
adding/deleting only a certain number of voters/alternatives.

Each combination of control features gives rise to a differ-
ent control type. In this manner, we obtain 8 distinct algo-

rithmic problems that we study in this work, the formal def-
initions of which are presented in the following subsections.
These are adaptations to CMS elections, of the original defi-
nitions provided in [Bartholdi III et al., 1992]. Following the
terminology of [Hemaspaandra et al., 2007], we say that a
voting rule is vulnerable to a certain control type, if the cor-
responding problem is always solvable in polynomial time. If
the problem is C-hard for a complexity class C, we consider
the rule to be resistant to the specific control type (typically
C is the class NP). In the cases where it is not possible for a
controller to affect the election towards fulfilling her will, we
say that the rule is immune to the corresponding control type.
As noted in [Hemaspaandra et al., 2009], the “dream case”
would be an efficiently computable voting rule which would
be either resistant or immune to all control types. Hence,
given the results of Section 3, we are mainly interested in
elections that satisfy the conditions identified there. For an
overview of the results of this section, we refer to Table 1.

4.1 Controlling Voters
We start with the problems of adding or deleting voters for
enforcing a specific outcome either for a single issue or for
every issue of the election.
Instance: A CMS election (I,D, V,B), where V is the set
of registered voters, a set V ′ of yet unregistered voters with
V ∩ V ′ = ∅ (for use only by CAV), an integer quota q, a
distinguished alternative pj ∈ Dj for a specific issue Ij or
an outcome p ∈ D specifying an alternative for every issue.
Problem CAV-1 (resp. CDV-1): Does there exist a set V ′′ ⊆
V ′ (resp. V ′′ ⊆ V ), with |V ′′| ≤ q, such that pj is the
value of issue Ij in every optimal CMS solution of the profile
(I,D, V ∪ V ′′, B) (resp. of the profile (I,D, V \ V ′′, B))?
Problem CAV-ALL (resp. CDV-ALL): Does there exist a set
V ′′ ⊆ V ′, (resp. V ′′ ⊆ V ) with |V ′′| ≤ q, such that p is the
unique optimal CMS solution of the profile (I,D, V \V ′′, B)
(resp. of the profile (I,D, V \ V ′′, B))?

Remark 3. One has the option of either breaking ties in fa-
vor of the controller, if there are multiple optimal solutions
in CMS (as in [Davies et al., 2011]), or demand that the con-
troller’s will is fulfilled in every optimal outcome. We focus
on the second case, as is also done in the seminal paper of
[Bartholdi III et al., 1992]. Additionally, it is possible that
the controller has a strong opinion not just for a single or all
issues, but for a subset of issues. As a starting point, we have
chosen to consider the two (intuitively simpler) extremes.

We now present our results for these 4 problems, exhibiting
that it is not generally easy for a controller to enforce her will
in such elections. In fact, resistance to control by adding or
deleting voters can be established even for very simple forms
of elections, without even the presence of conditional ballots.

Theorem 3. CAV-ALL and CDV-ALL are NP-hard even for
Unconditional Minisum and for binary domain in each issue.

Theorem 3 may not be very surprising, since controlling all
issues appears to be a quite strict requirement. The next step
is to see whether such hardness results go through when the
controller wishes to control just a single issue. For Uncondi-
tional Minisum this is not the case, if we insist on a constant
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CDV CAV CDA CAA
∆ = 0

d = O(1)
∆ = 0

d = ω(1)
∆ = 0

d = O(1)
∆ = 0

d = ω(1)
∆ = 0

d = Ω(1)
∆ = 1

d = O(1)
∆ = 1

d = Ω(n)
∆ = 0

d = Ω(1)
∆ = 1

d = Ω(n)
∆ = 2

d = O(1)

ALL R R R R V ? R I I I

1 V R V R V V R I R R

Table 1: Results on Controlling CMS elections. R stands for Resistant, V for Vulnerable and I for Immune. For a CMS instance, we denote as
∆ the maximum in-degree of every voter’s dependency graph (∆ = maxi∈[n] ∆i), d the maximum domain size and n the number of voters.

domain size for the designated issue. The reason is that this
can be reduced to an FPT version of the SET MULTI-COVER.
Proposition 1 (implied by [Bredereck et al., 2020]). CAV-1
and CDV-1 can be solved in polynomial time for Uncondi-
tional Minisum if the domain size of each issue is constant.

As a consequence, any potential hardness result for CAV-1
and CDV-1 would have to consider either non-constant do-
main or conditional ballots. Indeed, it suffices to move to
non-constant domain size, to establish NP-hardness.
Theorem 4. CAV-1 and CDV-1 are NP-hard, even for Un-
conditional Minisum, but with non-constant domain size in at
least one issue.

We now have a complete picture for the unconditional set-
ting, the results of which, transfer to the conditional case too.
The status of CDV-1 and CAV-1 for constant domain size in
the presence of conditional ballots, remains unresolved.

4.2 Controlling Alternatives
We now consider the analogous control problems, regarding
the addition or deletion of alternatives, instead of voters.
Instance: A CMS election (I,D, V,B), where D = D1 ×
· · ·×Dm, andDk is the set of qualified alternatives of each
issue Ik, a setD′

k of spoiler alternatives for each Ik (for use
only by CAA), an integer quota q, a distinguished alterna-
tive pj ∈ Dj for a specific issue Ij or an outcome p ∈ D
specifying an alternative for every issue.
Problem CAA-1 (resp. CDA-1): Does there exist a set
D′′ ⊆ tk∈[m]D

′
k (resp. D′′ ⊂ tk∈[m]Dk), with |D′′| ≤ q,

such that pj is the value of the issue Ij in every optimal
CMS solution of the profile where the domain of each issue
Ik is enlarged by the alternatives inD′′∩D′

k (resp. reduced
by the alternatives in D′′ ∩D′

k)?
Problem CDA-ALL: Does there exist a set D′′ ⊂
tk∈[m]Dk, with |D′′| ≤ q, such that p is the unique op-
timal CMS solution of the profile where the domain of each
issue Ik is reduced by the alternatives in D′′ ∩D′

k?
Note: For CDA-1 and CDA-ALL, we also require that for
every k, |Dk \D′′| ≥ 1.

In the definitions above, we use t to denote the disjoint
union of sets, having in mind that we could consider alterna-
tives of different domains as distinct, even if they correspond
to the same values (e.g. in boolean domains).
Remark 4. We first note that we have not included CAA-
ALL in the definitions as CMS is trivially immune to adding
alternatives in order to enforce a qualified alternative in every
issue. Concerning CAA-1, we assume that the voters may ex-
press an opinion about any outcome of every issue, whether it

concerns a qualified or a spoiler alternative. Additionally, an-
other way to define such problems would be to allow the con-
troller to completely delete or add issues, however, given the
existence of dependency graphs, erasing an issue can make
the preferences of a voter ill-defined. Lastly, the constraint
|Dk \D′′| ≥ 1, for CDA-1 and CDA-ALL, is to ensure that the
controller cannot eliminate all the alternatives of an issue.

It turns out that the picture differs significantly from the
problem of adding or removing voters.
Proposition 2. CDA-1 and CDA-ALL can be solved in poly-
nomial time whereas CAA-1 is immune, for Unconditional
Minisum, with arbitrary domain size.

As soon as we move however to instances with conditional
ballots, the problems do become hard (with the exception of
Proposition 3). We start with the hardness of CDA-ALL.
Theorem 5. CDA-ALL is NP-hard, when ∆i ≤ 1 for every
voter i, and even when the treewidth of the global dependency
graph is at most one, but with non-constant domain size in at
least one issue.

Next, we move to CDA-1 and CAA-1. When we allow a
large domain size, we show that they have a similar behavior,
and they are both resistant. The proof of Theorem 6 below,
shows a connection with some natural problems on directed
graphs, that have been linked to election control in the past
for different voting rules [Betzler and Uhlmann, 2009].
Theorem 6. CAA-1 and CDA-1 are NP-hard, when ∆i ≤ 1
for every voter i, and even when the treewidth of the global
dependency graph is at most one, but with non-constant do-
main in at least one issue.

Proof. We will prove hardness for CDA-1 (the proof for CAA-
1 is similar) using a reduction from the NP-hard MAX OUT-
DEGREE DELETION (MOD) [Betzler and Uhlmann, 2009].
Instance: A directed graph G = (V,E), a distinguished
vertex p ∈ V and an integer k ≥ 1.
Problem: Does there exist V ′ ⊆ V with |V ′| ≤ k such that
p is the only vertex of maximum out-degree in G[V \ V ′]?

For S ⊆ V , we denote by degS(u) the out-degree of vertex
u in a graphG = (V,E), when we count only outgoing edges
towards the vertices of S. Let P = (G = (V,E), p, k) be an
instance of MOD in a directed graph with n vertices and m
edges. We create a CDA-1 instance, where we have one issue
Ij for every vertex vj , j ∈ [n] and an extra issue I0, hence
I = {I0, I1, I2, . . . , In}. For j ∈ [n], the domain of issue Ij
is binary in the form Dj = {dj , dj}. The domain of I0, say
D0, contains (k + 1)(n− 1) + 1 alternatives. In particular, it
contains an alternative bp that corresponds to the designated

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

346



vertex p ∈ V , and for every vertex v ∈ V \ {p}, there are
k + 1 alternatives b`v , for ` ∈ [k + 1]. Essentially, these are
identical k+ 1 ’copies’ encoding the selection of v in I0, and
play a significant role in the reverse direction of the reduction.
As for the voters, there are two types of voters, edge voters
and vertex voters. There is one edge voter for every edge
(i, j) ∈ E, with a dependency graph having one edge from
Ij to I0, and voting as follows:

• For the issue I0, she votes conditioned on Ij for {dj : bi}
if i = p or otherwise for {dj : b`i}, ∀` ∈ [k + 1].

• For all other issues she is satisfied with any outcome.

For every vertex other than p, we also have a block of L iden-
tical voters, where it suffices to take L = m + 1. Each voter
in the j-th block, with j ∈ V \ {p} has a dependency graph
with 1 edge, from I0 to Ij and votes as follows:

• For the issue Ij , she is satisfied with the combinations
{b`j : dj} for any `. Also, if the value of I0 differs from
b`j , for any `, she is satisfied with any value on Ij . Hence,
the only restriction is that when the value of I0 comes
from an alternative corresponding to vertex j, the voter
can be satisfied w.r.t. Ij only by dj .

• For all other issues, she is satisfied with any outcome.

In total, we have m + (n − 1)L voters. We also use k as
the quota parameter, and we suppose the controller wants to
enforce the outcome bp at issue I0. Clearly, for every voter i,
∆i ≤ 1, and the global dependency graph is a star centered
on I0. The maximum domain cardinality isO(kn) = O(n2).

Suppose there exists a set S of vertices in G of size at most
k, say WLOG that S = {1, . . . , k} ⊆ V , whose deletion
leaves p as the only vertex of maximum out-degree. We now
choose to delete the corresponding alternatives {d1, . . . , dk}
from the issues {I1, . . . , Ik}. If we select bp for the issue I0,
then the total dissatisfaction score can be brought down to
m − degV \S(p), by choosing dj for every issue Ij where dj
has not been deleted. On the other hand, if we select for I0
some b`j for any ` ∈ [k + 1], we need to consider two cases,
depending on j. If j ∈ V \ S, then by the same reason-
ing as before, the best we could achieve is a dissatisfaction
score equal to m− degV \S(j). But since p has the maximum
out-degree, this would yield a worse solution. For the sec-
ond case, suppose j ∈ S, then dj has been deleted from Ij .
Hence, the j-th block of vertex voters will be dissatisfied w.r.t.
Ij , and since L > m, this cannot yield an optimal solution.
To conclude, after the deletion of the selected alternatives, bp
has to be selected for I0 in any optimal solution.

For the reverse direction, suppose that there is a set D′′

of at most k alternatives, the deletion of which, forces bp
to be selected for I0 in every optimal solution. We claim
that the deleted alternatives must come from distinct issues
among I1, . . . , In, and they all correspond to some dj for
j ∈ [n]. It is now easy to observe that deleting from V the set
S formed by the vertices corresponding to these alternatives
in D′′, makes p the unique vertex of maximum out-degree
in the induced subgraph of G. If not, there is a vertex, say
v ∈ V \ S, with greater or equal out-degree. In that case, if
we select b`

′

v for I0 for some arbitrary `′, and dj for all issues

Ij , for which dj has not been deleted, we will obtain a solu-
tion with at most the same dissatisfaction score as the one that
used bp. Indeed, we will have fewer or equal dissatisfactions
from the edge voters w.r.t. I0, and also all the blocks of the
vertex voters will be satisfied which contradicts the fact that
bp was elected for I0 in every optimal solution.

Let us now move to a constant domain size for CDA-1 and
CAA-1. Here, the problems seem to behave differently.

Proposition 3. CDA-1 can be solved in polynomial time,
when ∆i ≤ 1 for every voter i, the treewidth of the global
dependency graph is constant, and the domain size is also
constant for every issue.

Hence, constant domain size makes a difference for CDA-1
when we stick to the assumptions from Section 3 on each ∆i

and on the treewidth. For CAA-1, we are not yet aware if the
same result holds (but the proof arguments certainly do not
go through). However, we have established intractability, as
soon as we move to slightly richer instances with ∆i ≤ 2.

Theorem 7. CAA-1 is NP-hard, when ∆i ≤ 2 for every voter
i, even when the treewidth of the global dependency graph is
at most one and even for binary domain size in every issue.

Overall, we end the current section, concluding that CMS is
computationally resistant in most of the variants of the control
problem considered.

5 Conclusions
Our work has mostly focused on the natural, first-step gener-
alization of the classic Minisum rule into conditional voting,
i.e., with ∆i ≤ 1 for every voter i. For this case, we con-
clude that CMS provides a satisfactory tradeoff between ex-
pressiveness and efficiency under the assumption of bounded
treewidth, and at the same time exhibits sufficient resistance
to control in the considered settings.

There are still several interesting problems for future re-
search. Algorithmic results for instances with even higher ex-
pressiveness, e.g., with ∆i ≤ 2, seem more challenging (the
problem remains NP-hard and we are not aware of any prop-
erties that could lead to optimal algorithms for special cases).
From a strategic point of view, some questions have been
left open for the models we considered, including also pa-
rameterized complexity aspects. More interestingly, one can
go further and study other strategic moves such as destruc-
tive versions of control or bribery aspects in a CMS election.
Along this spirit, CMS was proven to be non-strategyproof by
[Barrot and Lang, 2016], but the complexity of finding a ma-
nipulation has not been examined. Lastly, an experimental
evaluation of the CMS election rule would also be an interest-
ing pursuit, complementary to our theoretical analysis.
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