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Abstract

The present paper addresses the study of cross-
linguistic and cross-modal iconicity within a deep
learning framework. An LSTM-based Recurrent
Neural Network is trained to associate the pho-
netic representation of a concrete word, encoded
as a sequence of feature vectors, to the visual rep-
resentation of its referent, expressed as an HCNN-
transformed image. The processing network is then
tested, without further training, in a language that
does not appear in the training set and belongs to
a different language family. The performance of
the model is evaluated through a comparison with
a randomized baseline; we show that such an imag-
inative network is capable of extracting language-
independent generalizations in the mapping from
linguistic sounds to visual features, providing em-
pirical support for the hypothesis of a universal
sound-symbolic substrate underlying all languages.

1 Introduction

How do words refer? How is a sound of the vocal tract
mapped onto an object, event or state that is external to the
mind? The conventional perspective on vocabulary structure,
rooted in the structuralist tradition [Saussure, 1964], advo-
cates an arbitrary origin of the lexicon, where words would
have developed historically as a cultural and social product
and passed along by tradition [Bloomfield, 1994]. However,
the denial of any correspondence between linguistic sounds
and their denotation is inherently problematic: seeing the lex-
icon as an arbitrary cultural product prevents any attempt of
inquiry into its structure and its relationships with other as-
pects of human biology, irrevocably confining it outside of
the scope of scientific explanation [Allott, 2001].

An alternative to arbitrariness is iconicity, the idea that
phonemes can convey meaning per se, i.e. not only through
contrastive relations with other sounds but also through their
intrinsic sound qualities. While several modern linguistic
theories reject iconic principles at the lexical level, they en-
dorse them at the syntactic level with various degrees of ex-
plicitness, acknowledging a parallelism between the struc-
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ture of language and various facets of the structure of expe-
rience [Levinson, 2000]. For instance, sequences of forms
tend to correspond to sequences of occurrences [Bybee, 1985;
Perniss et al., 2010]: in the sentence “I studied, walked, and
showered” the reader will typically assume that the three ac-
tions were performed in the order in which they were uttered.
Widening our focus to non-arbitrariness in general, it is safe
to state that most linguistic theoretical frameworks do not
posit that languages can be structured without any account-
able principle (see for instance Bickerton [2012], Chomsky
[2002]). Nonetheless, the idea of a principled systematicity
of any kind in the lexical domain is sometimes dismissed as
a doubtful exception at best. As noted by Allott [2001], the
tension between the syntactic schematicity and the alleged
lexical randomness raises the question of how a functional
interface between these domains is even possible.

The idea that phonemes can carry inherent meaning had
a long-standing tradition in philosophy before being nearly
eradicated by the Saussurean axiom of the arbitrariness of the
sign (see Magnus [2013] for a historical introduction). This
fascinating hypothesis was revived in the late 1920s by two
remarkable studies, which evidenced a surprising link be-
tween the participants’ intuitions about a figure’s name and
its size [Sapir, 1929] or its shape [Kohler, 1929]. In the first
study, participants were asked to match two tables of different
sizes with the non-words ‘mil’ and ‘mal’, showing that the
phonetic sequence containing the phone [a] was four times
more likely to be associated with the larger object than the
one containing the phone [i]. In the second study, when asked
to match two novel shapes with the non-words ‘maluma’ and
‘takete’, English-speaking adults tended to label as ‘maluma’
the curled shape, and as ‘takete’ the sharp one. The lat-
ter experiment on shape symbolism had a higher resonance
than the former in the cognitive science community: several
studies exploited slight variations in the shapes and the pho-
netic forms of the non-words, and repeatedly demonstrated
the psychological reality of the so-called ‘maluma-takete’ ef-
fect [Kohler, 1947; Werner, 1948], or ‘bouba-kiki’ effect, re-
ferring to the stimuli used by Ramachandran and Hubbard
[2001]. These research efforts paved the way to a number of
inquiries that replicated the former phonovisual correspon-
dences in various geocultural contexts [Bremner er al., 2013;
Ramachandran and Hubbard, 2001] and at different devel-
opmental stages [Maurer et al., 2006; Ozturk et al., 2013].
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The results of the studies that employed explicit matching
tasks were complemented by a body of findings that suc-
ceeded in identifying an implicit cross-modal correspondence
between phonological form and shape [Hung er al., 2017,
Sidhu and Pexman, 2017], suggesting that the aforemen-
tioned effects might be pre-semantic and presumably lexical,
at least in part. Besides shape and magnitude symbolism,
other visual attributes that showed a correspondence with the
respective phonetic linguistic sign are colour [Johanssohn ef
al., 2020] and lightness [Hirata er al., 2011].

Iconicity is not limited to oral languages: a growing weight
of evidence is disclosing analogies between the form of a con-
siderable subset of signs and their referents [Emmorey, 2001;
Kuhn, 2020; Schlenker and Lamberton, 2012]. Neither it is a
privileged attribute of human languages, as it has been doc-
umented also in bee dances [Bermidez, 2007] and primate
calls [Burling et al., 1993]. Recently, linguistic iconicity has
gone from being a marginal — although appealing — matter to
being integrated into broader theories of language evolution
[Ramachandran and Hubbard, 2001], processing [Lockwood
and Tuomainen, 2015] and acquisition [Asano et al., 2015;
Imai et al., 2008]. Rejecting the assumption of a totally arbi-
trary mapping between referens and referent sensibly reduces
the problem space of language emergence, establishing con-
straints on the consensus in word choice. Hence, the reviewed
findings on phonosymbolic mappings could provide a pivotal
clue for understanding the origins of proto-languages, sug-
gesting that there may be natural constraints on the modal-
ities in which objects are referred to through sounds. Fur-
thermore, in the context of language learning, a propensity
to induce an iconic referentiality of the linguistic sign allevi-
ates both Quine’s logically insurmountable problem of link-
ing the phonological form of a novel word with its meaning
[Quine, 1960], and the speech segmentation (or word discov-
ery) problem, i.e. the initial difficulty in the localization of
word boundaries in a continuous speech stream without the
knowledge of any word. Iconic links would then help chil-
dren learn perceptually grounded semantic concepts, and dis-
cover structures across spoken and contextual input. Phonovi-
sual correspondences have been shown to affect different cog-
nitive faculties, such as memory [Ramachandran and Hub-
bard, 2001], categorization [Lupyan and Casasanto, 2015],
and emotion recognition [Slavova and others, 2019]; more-
over, they exert an influence on actional processes such as
phonatory behaviour [Parise and Pavani, 2011], spatial nav-
igation [Rabaglia et al., 2016], and hand grip [Vainio et al.,
2013].

Iconic sound-to-referent relations have been disclosed in
different perceptual modalities, such as haptic touch [Fryer
et al., 2014; Graven and Desebrock, 2018], kinesthesis
[Fontana, 2013], and taste [Gallace et al., 2011]. Nonethe-
less, vision seems to hold a privileged relationship with the
phonetic representation of the denotatum: cross-modal corre-
spondences in the olfactory-gustative modality do not seem
to exhibit cross-cultural consistency [Bremner et al., 2013],
and phonotactile biases might be at least partially mediated
by the role of visual imagery [Fryer er al., 2014]. Hence, the
present work aims to explore the multifarious topic of lexical
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iconicity with the physical attributes of the referent intended
as its visual features.

Within the computational framework, the analysis of iconic
biases has mainly followed two general trends [Gutiérrez et
al., 2016]: a localist approach, aimed at identifying some
islands of non-arbitrariness in language [Abramova et al.,
2013; Sagi and Otis, 20081, and a global program, directed
toward an assessment of the pervasiveness and systematicity
of linguistic iconicity [Dautriche er al., 2017; Monaghan et
al., 2014; Tamariz, 2008; Pimentel et al., 2019]. Our work
fits into the second trend, and aims to extend the previous
findings through an exploration of iconic regularities beyond
the limits of a single language.

To our knowledge, few studies have tackled the topic of
sound symbolism from a cross-linguistic perspective; those
that have done so, have generally focused on a small set of
concepts or words on a massively multilingual scale [Blasi et
al., 2016; Wichmann et al., 2010] (although see Pimentel ef
al. [2019] and de Varda and Strapparava [2021] for lexicon-
wide studies). Our work, in contrast, aims to perform an
analysis on phonosensory (and specifically phonovisual) cor-
respondences on a representative sample of concrete objects
in a selected set of languages. We evaluated the performance
of a Long Short-Term Memory network (LSTM) in associ-
ating phonetic vector sequences with visual vectors picturing
their referents, reporting an above-chance performance of the
model on an unseen language. To the best of our knowledge,
this is the first cross-modal and cross-linguistic study exploit-
ing deep learning methodologies to find an iconic relation
between a linguistic sound and the physical-geometrical at-
tributes of its denotation. This effort provides an example of
rewarding contamination between methodological advances
driven by artificial intelligence research, and theoretical ques-
tions stemming from philosophy, linguistics and psychology.

2 Methods

In the present study, an LSTM-based Recurrent Neural Net-
work is trained to associate the phonetic representation of a
word to the visual representation of its referent. Visual rep-
resentations consist in the output of a pre-trained Hierarchi-
cal Convolutional Neural Network (HCNN) in response to
a forward pass of a given image, whereas the phonetic fea-
tures corresponding to each image’s label are expressed as
sequences of phonetic vectors in 22 dimensions. The experi-
mental pipeline is summarized in the flowchart in Figure 1.

2.1 Dataset

Our analyses were performed on the THINGS database
[Hebart er al., 2019], a resource that comprises 26,107 high-
quality naturalistic images depicting a set of 1,854 diverse
object concepts. The concepts were sampled systematically
from concrete picturable and nameable nouns in the Amer-
ican English language, and the corresponding images (12
or more for each concept) were extracted through a large-
scale web image search and cropped to square size. Each
item of the dataset was composed by an image and a corre-
sponding label, that were preprocessed independently as de-
scribed in the following subsections. In order to limit the
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Figure 1: Schematic representation of the experimental pipeline. The upper stream reflects the processing stages of the image, whereas the
inferior stream represents the phonetic vectorization of the letter string. For typographical reasons, only five layers of the VGG16 network

are graphically depicted.

effect of morphological noise in the labels, we excluded from
the database all the compound words before any subsequent
analysis; with this exclusion criterion, the resulting dataset
consisted of 22,268 images, depicting a set of 1,549 concrete
words.

2.2 Translation

With the intention of maximizing the linguistic distance be-
tween the training and the test set, each image label in the
dataset was translated in five languages belonging to five lan-
guage families (see Table 1)!. In order to define a pipeline
that could guarantee a high-quality translation for a suffi-
ciently large amount of items, we first searched for lexical
matches through word2word [Choe et al., 2020], a collec-
tion of bilingual lexicons constructed from the publicly avail-
able OpenSubtitles2018 dataset [Lison et al., 2018]; then, for
the items for which a translation was not available through
the aforementioned package, we employed the ground-truth
bilingual dictionaries based on fastText, released by Face-
book Research? [Conneau et al., 2017]. We then included in
the analyses only the words for which a translation was avail-
able in all the languages considered in the study — in other
words, the set intersection of the translated items. The re-
sulting dataset consisted of 16,820 images, depicting a set
of 1,161 concrete words. The percentage of translations ob-
tained with each translation tool for all the languages con-
sidered in the study is reported in Table 1, along with the
percentage of missing items.

2.3 Phonetic Representations

For each word in the multilingual dataset, we obtained its
phonemic transcription with Epitran, a Python library for

Following the Omniglot genealogical classification of lan-
guages at https://omniglot.com/writing/langfam.htm

2Publicly available at https://github.com/facebook
research/MUSE
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Language Family word2word fastText Missing
Arabic Afroasiatic 84.38% 271% 1291%
Hungarian  Uralic 82.18% 336% 14.46%
Indonesian  Austronesian 87.42% 1.48% 11.10%
Vietnamese Austroasiatic 88.26% 0.06% 11.68%
Turkish Turkic 81.15% 4.65% 14.20%
English Indoeuropean NA NA NA

Table 1: Languages, relative language families and translation data

transliterating orthographic text in the International Phonetic
Alphabet (IPA) format. Then, we converted the IPA string
into a sequence of feature vectors with PanPhon, a pack-
age that traduces IPA segments into subsegmental articula-
tory features [Mortensen ef al., 2016]. We agree with Jakob-
son and Waugh [2011] when they assert that “most objec-
tions to the search for the inner significance of speech sounds
arose because the latter were not dissected into their ultimate
constituents” (p. 182). Hence, we chose not to directly hot-
encode the IPA strings in order to allow the network to exploit
the underlying similarities that make different phones more or
less related to each other. For instance, [p] and [b] are similar
in that they only differ in the feature [+/— voiced], whereas
[t] and [u] differ by 13 subsegmental features. These inter-
nal similarities would have been lost with a raw hot-encoding
over the IPA vocabulary, along with the information-rich rep-
resentation offered by a phonetic feature decomposition.

Before being loaded into the LSTM model, all the se-
quences were padded, with a maximum length of 15.

2.4 Visual Representations

The visual representations included in this study consisted
of the outputs of the fifth max-pooling layer of the HCNN
VGG16, a deep convolutional network for large-scale image
recognition [Simonyan and Zisserman, 2015], in response to
a forward pass of each image in the dataset. HCNNs con-
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sist of serial blocks of layers containing simple patterns re-
peated across the visual input. Despite the relative simplic-
ity of every single layer, deep convolutional networks can
compute complex transformations of the input data. We fed
each image x in our stimulus set through the network to ex-
tract the resulting feature maps @(x) of block5_pool. The
weights of the VGG16 network had been configured accord-
ing to its pretraining on ImageNet. The outputs of the tar-
get layer were flattened before being processed by the LSTM
model. We employed the output of the VGG16 network as a
proxy of a representational format proper of the human visual
processing system. Indeed, HCNNs have been employed to
model different encoding steps of the mapping of visual stim-
uli to neural responses as measured in the brain, without being
explicitly optimized to fit neural data [Yamins and DiCarlo,
2016].

2.5 Neural Architecture

An LSTM-based Recurrent Neural Network was trained to
map the chains of phonetic feature vectors in input into the vi-
sual vectors in output. In contrast with standard feedforward
neural networks, LSTMs are endowed with feedback connec-
tions, that allow them to process not only single data points,
but also data sequences. The model was built with Keras, a
deep learning framework for Python [Chollet, 2015]; it in-
cluded a masking layer, followed by a single LSTM layer
with 500 units, a dropout of 0.2 and a recurrent dropout of
0.2. The LSTM layer was connected to a dense layer with the
number of units (25088) matching the dimensionality of the
target visual vector, and equipped with the rectification non-
linearity (ReLU). Cosine similarity was used as both objective
function and metric, and the Adam optimization method was
employed for training [Kingma and Ba, 2014]. The hyperpa-
rameters were set without tuning.

2.6 Experimental Conditions

In defining the experimental conditions, we followed two
main principles to limit to the furthest extent the effect of
the etymological relatedness between the items in the train-
ing and the test set: we established for none of the images and
none of the concepts to appear in both sets, and we applied
the same constraint to the languages in which the concepts
were translated. Therefore, we randomly divided the con-
crete concepts into two subsets with a train-test split ratio of
0.2. Following this partition, the training set consisted of 929
concepts depicted by 13,397 images, whereas the test set was
composed of 232 concepts represented by 3,423 images. We
trained six different cross-lingual models with identical con-
figurations following a non-random 6-fold cross-validation
procedure. Each model was trained to associate the phonetic
vector sequences corresponding to the label’s translation in
five languages to the respective visual vector in the training
set; then, it was validated on the samples of the test set in the
language that was excluded from the training. Thus, the train
and test sets in all the experimental conditions were disjoint
with respect to the concepts, the images representing them
and the languages from which the phonetic vectorization was
extracted. In order to define a baseline for the evaluation of
each model’s performance, we compared its results with the
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ones achieved by a parallel model, trained on a dataset where
the correspondence between phonetic and visual vectors had
been randomized; in practice, the mismatch between input
and output vectors was obtained by randomly shuffling the
order of the visual vectors in the training set. We will refer to
this manipulation as the random condition. All models were
trained on 66,985 samples (13,397 x 5 languages) and tested
on 3,423 items.

3 Results

Table 2 reports the results of the cross-lingual models paired
with their random counterparts. The first column of the ta-
ble specifies the language of the fold on which the validation
was performed, implying that the training had been carried
out on all the languages but the one in the test set, as spec-
ified in the previous subsection. The following six columns
of the table present the mean, the standard deviation and the
95% confidence intervals of the cosine similarity between the
target visual vector and the cross-lingual (c/) or the random
(r) model’s prediction for every item in the test set. We eval-
uated the statistical significance of our results through a set of
paired samples t-tests between the element-wise cosine sim-
ilarity of the target visual vector with the vectors generated
by the two alternative models for each experimental condi-
tion. The eighth and ninth columns of the table present the ¢
statistic and the associated p-value for each of the contrasts
evaluated by the test. As a measure of effect size, we report
in the last column of the table the Cohen’s d relative to the
standardized difference between the mean metric of the two
alternative models.

Across all the experimental conditions, the cross-lingual
models outperformed the randomized baselines, with all the
comparisons reaching high statistical significance. Although
there are considerable differences in the results of the alter-
native models reported in Table 2, the multilingual settings
always yielded higher performance scores with respect to
the randomized baselines. The confidence intervals of the
cl models do not overlap with the intervals of the r mod-
els, suggesting that the phonovisual correspondences in the
lexicon can be learned in any direction and generalized to
all the languages included in our analyses. Additionally, the
measures of effect size suggest a medium-to-large difference
across models, with the only marginal exception of the zero-
shot transfer to Vietnamese.

4 Discussion

The LSTM network trained on multilingual data showed
the ability to induce cross-linguistic regularities in sound-to-
vision mappings, suggesting that linguistic data alone contain
the sufficient amount of information to encode for phonovi-
sual biases. Hereby, we wish to clarify our intentions in using
the two neural architectures for processing the images and
their link to linguistic sounds. Our purposes were structurally
different for the HCNN VGG16 and the LSTM: in the for-
mer case, we employed the convolutional neural network to
transform the raw RGB images in input into cognitively in-
spired visual representations; hence, the neural network was



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Language  Cosine, Scl 95% Cl; Cosine, Sy 95% CI, t )/ d

Arabic 0.2343  0.0411 [0.2329,0.2357] 0.2243  0.0382 [0.2230,0.2256] 10.42 3.017%  0.6600
Hungarian 0.2382  0.0410 [0.2368,0.2396] 0.2278  0.0386 [0.2266,0.2291] 10.78 6.837% 0.6321
Indonesian 0.2391  0.0394 [0.2378,0.2404] 0.2243  0.0399 [0.2229,0.2256] 15.45 6.1373  1.4385
Vietnamese ~ 0.2320  0.0431 [0.2306,0.2335]  0.2224  0.0384 [0.2211,0.2237] 9.77 2.16722 0.4544
Turkish 0.2381  0.0404 [0.2367,0.2394] 0.2257 0.0387 [0.2244,0.2270] 12.99 3.94738  1.1956
English 0.2380  0.0418 [0.2375,0.2403] 0.2228 0.0384 [0.2216,0.2241] 16.60 1.0170 1.3220

Table 2: Results by experimental condition

intended as an approximation of the human perceptual sys-
tem. In the latter case, we adopted the LSTM-based Recur-
rent Neural Network in order to uncover hidden correspon-
dences between two different representational formats — a
task that arguably requires the use of complex transforma-
tions.

While the behavioural studies presented in the Introduc-
tion disclosed a strong and consensual link between mean-
ingless speech sounds and magnitude, colour and geometri-
cal shape, we aimed to explore the link between meaningful
speech sounds and visual representations. In the light of the
evidence that highlights the role of visual imagery in shaping
cross-modal phonosymbolic biases [Fryer et al., 2014], we
built an imaginative network trained to elicit a visual repre-
sentation relying on a word’s sound. The network was shown
to learn a generational process where the images produced in
response to the phonetic inputs resembled their actual refer-
ents more than what would be expected by chance. Our strict
manipulation of the linguistic distance between the languages
in the training and in the test set allows us to rule out the
effect of any etymological relatedness between the different
languages’ vocabularies.

We believe that the central interest of our findings resides
in the learning process being cross-linguistic, yielding gen-
eralizations that are language-independent. Indeed, cross-
lingualism is a crucial testbed for the purpose of identifying a
universal sound-symbolic substrate underlying all languages,
as opposed to language-specific idiosyncratic systematicity;
whether this symbolic underpinning is to be considered in-
nate [Ramachandran and Hubbard, 2001] and possibly rem-
iniscent of a primordial state of neonatal synesthesia [Mau-
rer and Mondloch, 2005] or implicitly induced by statistical
correlations in shared sensorimotor experiences [Ernst, 2007;
Spence, 2011] is beyond the scope and the explanatory power
of the present study.

5 Conclusion and Future Directions

The present paper aims to contribute to the growing body of
evidence against a purely cultural and arbitrary origin of the
lexicon. Its purpose is to demonstrate that the vocabulary
is profoundly entangled with the visual world, and that the
correspondence between linguistic sounds and visual repre-
sentations is a candidate universal feature underlying word-
formation, shared across languages and language families.
Moreover, it shows that this correspondence can be efficiently
captured by a computational system in a selected subset of
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the lexicon. Crucially, the regularities detected by the net-
work were not language- or item-specific, since in each exper-
imental condition the items in the test set consisted of novel
concepts, expressed in a previously unseen language and de-
picted by original images.

We wish to highlight the fact that the present work does not
disclaim in any way the significance of a certain degree of ar-
bitrariness as a fundamental property of language: without
dissociating form and meaning it would not be possible to
denote a potentially infinite set of concepts [Lockwood and
Dingemanse, 2015]. Iconic and arbitrary principles are not
mutually exclusive [Sidhu and Pexman, 2018]: on the con-
trary, they complement each other enriching the lexicon with
their specific qualities.

Once the pervasiveness of lexical iconicity in the concrete
vocabulary is acknowledged, a number of questions must
be addressed to properly understand the phenomenon under
scrutiny. Substantiating the claim of a cross-linguistic cou-
pling between phonetics and vision was an imperative step,
but it does not inform us on the locus of the biases that shape
the cross-modal correspondences. We leave for future re-
search an assessment of the precise visual attributes that show
a privileged link with certain phonetic features, as well as an
analysis of the relative contribution of shape, magnitude and
colour to the phonovisual correspondences.
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