
Perturb, Predict & Paraphrase: Semi-Supervised Learning using
Noisy Student for Image Captioning

Arjit Jain1 , Pranay Reddy Samala1 , Preethi Jyothi1 , Deepak Mittal2 and Maneesh Singh2

1Indian Institute of Technology Bombay
2Verisk Analytics

{arjit,pranayr,pjyothi}@cse.iitb.ac.in,{deepak.mittal,maneesh.singh}@verisk.com

Abstract
Recent semi-supervised learning (SSL) methods
are predominantly focused on multi-class classifi-
cation tasks. Classification tasks allow for easy
mixing of class labels during augmentation which
does not trivially extend to structured outputs such
as word sequences that appear in tasks like image
captioning. Noisy Student Training is a recent SSL
paradigm proposed for image classification that is
an extension of self-training and teacher-student
learning. In this work, we provide an in-depth anal-
ysis of the noisy student SSL framework for the
task of image captioning and derive state-of-the-art
results. The original algorithm relies on compu-
tationally expensive data augmentation steps that
involve perturbing the raw images and computing
features for each perturbed image. We show that,
even in the absence of raw image augmentation,
the use of simple model and feature perturbations
to the input images for the student model are ben-
eficial to SSL training. We also show how a para-
phrase generator could be effectively used for label
augmentation to improve the quality of pseudo la-
bels and significantly improve performance. Our
final results in the limited labeled data setting (1%
of the MS-COCO labeled data) outperform previ-
ous state-of-the-art approaches by 2.5 on BLEU4
and 11.5 on CIDEr scores.

1 Introduction
Semi-supervised learning (SSL) has been a long-standing
problem of interest, with the potential to leverage large vol-
umes of unlabeled data in conjunction with relatively smaller
amounts of labeled data. SSL techniques have seen a resur-
gence in recent years by incorporating data augmentation
into the training pipeline, along with loss functions that
are robust to the label noise introduced by these augmenta-
tions. These techniques have been shown to yield impressive
performance improvements even with using small amounts
of labeled data [Berthelot et al., 2019; Xie et al., 2020a;
Sohn et al., 2020]. While prior work has predominantly fo-
cused on image classification, the application of SSL tech-
niques to sequence prediction tasks (e.g. image captioning)

has been far less explored. In this work, we present the first
detailed investigation of a popular SSL technique for the task
of image captioning and propose new enhancements that help
significantly outperform existing state-of-the-art approaches
on image captioning in limited labeled data settings.

Our proposed techniques are based on the popular SSL
paradigm of self-training within a teacher-student framework.
This involves a teacher model that is trained on a small
amount of labeled data and subsequently used to annotate un-
labeled data. A student model is then trained on the combina-
tion of labeled data and unlabeled data (with pseudo labels
generated by the teacher model). Recent work introduced
Noisy Student Training [Xie et al., 2020b] that augments this
training regime by introducing noise in the student during
training and iterating the process. This approach has led to
consistent improvements in performance across diverse tasks
including image classification [Xie et al., 2020b], object de-
tection [Zoph et al., 2020], machine translation [He et al.,
2020] and speech recognition [Park et al., 2020].

In this work, we adapt and improve noisy student training
for image captioning. We present two main improvements to
the existing noisy student training paradigm:

• We propose “Object Dropout” that directly perturbs ob-
ject features in an image for noisy student training. This
technique performs at par with standard data augmenta-
tion techniques while being significantly faster than the
latter to implement.

• We propose the use of label augmentation in self-
training for sequential outputs using a paraphrase gener-
ator that is trained on unpaired caption text data. This
module also fixes errors and improves the quality of
low-confidence predictions of unlabeled images. This
is a very effective augmentation step that helps improve
CIDEr scores on the test set of MS-COCO over previous
state-of-the-art approaches by 11.5 points.

Code, models, and datasets will be made publicly available at
https://github.com/csalt-research/perturb-predict-paraphrase.

2 Related Work
2.1 Semi-Supervised Learning (SSL)
SSL is an established area of machine learning, with nu-
merous survey articles outlining the main techniques and ap-
proaches in SSL [Zhu and Goldberg, 2009; Chapelle et al.,
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Figure 1: Illustrative overview of our approach. We use a Feature Extractor pretrained on unpaired images and a Label Augmenter finetuned
on unpaired captions. We use a Teacher model, trained on paired image-caption data, to generate pseudo labels for unlabeled images. The
labeled data and the perturbed unlabeled images with the corresponding paraphrased pseudo labels are used to train the student model.

2010]. Self-training is a very popular SSL paradigm that
uses model predictions on unlabeled data as pseudo-labels
(after suitable filtering based on confidence thresholds) [hyun
Lee, 2013]. Self-training has seen success in various tasks
such as domain adaptation [Zou et al., 2018], speech recogni-
tion [Kahn et al., 2020; Park et al., 2020] and object detection
[Rosenberg et al., 2005; Zoph et al., 2020]. A promising new
technique that uses self-training and teacher-student learning
is the Noisy Student Training framework [Xie et al., 2020b].
Ours is the first work to use this framework for the task of
image captioning.

A key idea in SSL, that noisy student also exploits, is
that of consistency regularization. Consistency regulariza-
tion utilizes unlabeled data by assuming that perturbations
in inputs and model weights should not affect model pre-
dictions. This idea was initially brought to the forefront by
[Sajjadi et al., 2016; Tarvainen and Valpola, 2017; Laine
and Aila, 2017] and has since been utilized in several re-
cent SSL methods [Sohn et al., 2020; Xie et al., 2020a;
Berthelot et al., 2019] to obtain state-of-the-art SSL results.
The perturbations involved could be of various forms includ-
ing stochastic weight transformations like dropout [Srivas-
tava et al., 2014] and/or data augmentations like AutoAug-
ment [Cubuk et al., 2019]. We explore the use of feature
augmentations which has not been sufficiently explored.

2.2 Image Captioning
A wide array of approaches have been employed to lever-
age partially annotated images and unannotated text for im-
age captioning. [Feng et al., 2019; Kim et al., 2019;
Gu et al., 2019; Laina et al., 2019] propose GAN-based tech-
niques, [Liu et al., 2018] describes a self-retrieval module and
[Guo et al., 2020] proposes visual concept to caption genera-
tion. Most of these techniques try to map images and captions
to the same latent space by utilizing complex task-specific ar-
chitectures. Orthogonal to these techniques, our method does
not rely on complex task-specific modules, it is model agnos-
tic and hence easy-to-use.

To the best of our knowledge, Self Distillation [Chen et al.,

2021] is most closely related to our work; they utilize self-
training and share our characteristics of model agnosticism.
The key novelties of our method compared to Self Distillation
include a) the use of noisy student training, b) our proposal
of a paraphrasing model to fix and diversify pseudo labels c)
consistency-based training through novel and efficient feature
augmentation techniques such as object dropout. Moreover,
we significantly outperform Self Distillation on all metrics in
the limited labeled data setting.

3 Our Noisy Student Training Approach
Figure 1 illustrates our approach with a schematic diagram
and Algorithm 1 outlines our noisy student training algorithm
for image captioning. Consider a set of labeled examples
L = {(x1, y1), (x2, y2), . . . , (xm, ym)}, a set of unlabeled
images UI = {xm+1, xm+2, ..., xm+n}, and a set of unpaired
captions UC = {y1, y2, ..., yn} where x refers to an image
and y refers to a caption. The first step in noisy student train-
ing is to train the teacher model T to minimize cross-entropy
loss on the labeled dataset L; this is denoted by `(yi, T (xi))
for the ith instance, where T (xi) refers to the caption pre-
dicted by T for xi. This step is followed by N self-training
iterations. In each iteration, the model T is used to predict
captions for each of the unlabeled examples in UI using a se-
quential decoder. A student model S is trained from scratch
on the combined datasets L and UI (with its corresponding
pseudo labels ŷm+1, . . . , ŷn) to optimize a joint cross-entropy
loss function LS . At the end of each iteration, the newly
trained student becomes the teacher for the next iteration.

Introducing stochasticity into student training helps it gen-
eralize better than the teacher. The sources of stochasticity
can be broadly classified as input noise and model noise.
In [Xie et al., 2020b], dropout and stochastic depth are
used for model noise and data augmentation via RandAug-
ment [Cubuk et al., 2019] is used for input noise. In [He et
al., 2020] that uses noisy student training for machine transla-
tion and text summarization, input word tokens are corrupted
for input noise and dropout contributes to model noise. Sim-
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Algorithm 1 Noisy Student Training for Captioning.
Input: N , L, UI , UC , Paraphraser P , Student model S ,
Teacher model T

1: Train T on L to minimize LT = 1
m

∑m
i=1 `(yi, T (xi))

2: Fine Tune P using captions in UC
3: for t← 1 to N do
4: {ŷm+1, . . . , ŷn} ← T (UI)
5: Add noise to the student model S
6: Train S to minimize LS

=
1

m

m∑
i=1

`(yi,S(xi)) +
1

n

m+n∑
i=m+1

`(P(ŷi),S(xi))

7: T ← S
8: end for

ilar to prior work, we also use dropout as a source of model
noise. For input noise, we do not use data augmentation in the
typical sense where image transformations (e.g. rotate, pos-
terize, etc.) are applied to raw images. Instead, we directly
perturb image features via a simple technique that we refer to
as object dropout. Additionally, we introduce stochasticity in
the label space with the help of a paraphrase module, that is
independently trained on caption text.

3.1 Object Dropout
One of the most popular feature representations for image
captioning makes use of the bottom-up attention model [An-
derson et al., 2018]. This feature extractor identifies image
regions, that typically coincides with objects in the image,
and produces corresponding feature vectors. The number of
feature vectors per image can thus be variable, depending on
the number of salient image regions that are identified. Ran-
domly dropping feature vectors per image would have the
effect of restricting information only to a subset of objects.
More concretely, we define an object dropout probability pobj,
such that an object-based feature vector within an image can
be entirely dropped (i.e. zeroed out) with probability 1−pobj.
We use object dropout as a source of input noise. Unlike
standard data augmentation techniques that require transfor-
mations of raw images followed by bottom-up feature extrac-
tion, object dropout is a feature augmentation technique that
is directly applied to the bottom-up features making it much
more computationally efficient.

3.2 Label Augmentation via Paraphrasing
Unlike classification tasks where class labels can be eas-
ily augmented using simple techniques like linear interpola-
tion [Zhang et al., 2018a], augmenting sequence labels is a
non-trivial task. Our solution to this problem is to use a para-
phrase module trained on caption data and use it to transform
predicted captions for unlabeled images into multiple para-
phrased forms. For our paraphraser, we start with a pow-
erful pretrained text-to-text model and further finetune it on
a paraphrase task involving caption text. To train the para-
phraser, one would need access to groups of similar captions
which can serve as paraphrases of each other. Identifying

these groups and its impact on performance is discussed fur-
ther in the experiments in Section 5.5.

Apart from providing different ways in which the same
caption can be expressed, the paraphraser module also acts as
a language model and fixes syntactic issues in the predicted
captions which are otherwise non-trivial to fix. We will elab-
orate on this further, along with providing illustrative exam-
ples, in Section 5.5.

4 Experimental Setup
Datasets. We conduct experiments on the MSCOCO
dataset [Lin et al., 2014], the standard benchmark used for
image captioning. This dataset contains 123k images with up
to 5 captions per image. We adopt the standard “Karpathy”
split used in all prior work, with 113k images used in train-
ing, and 5k images each used for validation and testing. For
unlabeled data, we use the “Unlabeled COCO” split from the
official MSCOCO Caption challenge. (This allows for con-
sistent usage of unlabeled data across different amounts of
labeled data, as in Table 3.) This unlabeled dataset contains
123k images with no corresponding captions.
Evaluation Metrics. We use the standard metrics used
to evaluate image captioning systems, namely BLEU, ME-
TEOR, ROUGE, SPICE, WMD and CIDEr. Consistent with
prior work on image captioning, we select the model check-
point with the best CIDEr score on the validation set to evalu-
ate on the test set. Beam decoding is used for evaluation with
the beam width set to 5.
Implementation Details. We use the Attention on Atten-
tion Network (AoANet) [Huang et al., 2019] as our base
model for the teacher and student. In the fully supervised set-
ting, AoANet was recently shown to achieve state-of-the-art
performance on the MSCOCO image captioning dataset, thus
making it a good choice for us to adopt as our teacher/student
models. A Faster-RCNN model, pretrained on ImageNet and
Visual Genome, is used to extract bottom-up feature vec-
tors of images, as described in Section 3.1. Unless speci-
fied otherwise, we use beam decoding to generate pseudo la-
bels with a beam width of 2. For the teacher model, we use
model dropout with probability p = 0.3, no object dropout
and label smoothing with probability 0.1. The student model
is randomly initialized, and trained from scratch. The stu-
dent model uses the same AoANet architecture as the teacher
model.The labeled batch size is 16, with 5 captions per im-
age, and the unlabeled batch size is 96 with 1 caption per
image. The number of noisy student iterations N = 1.For the
paraphraser, a pre-trained sequence-to-sequence transformer-
based model, BART [Lewis et al., 2020] is fine-tuned to para-
phrase captions. More details about the data used to train the
paraphraser is mentioned in Section 5.5.

5 Experiments and Results
Unless specified otherwise, we mainly focus on the low la-
beled data setting i.e., using 1% of MSCOCO labeled data.
This is similar to the setup adopted in both prior works on
SSL for image captioning [Kim et al., 2019; Chen et al.,
2021]. We also provide results on varying amounts of labeled
data, including 100% of the labeled data in MSCOCO.
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Approach B@1 B@2 B@3 B@4 M R CIDEr S WMD

Unsupervised Methods

Pivoting [Gu et al., 2018] 46.2 24.0 11.2 5.4 13.2 − 17.7 − −
GAN [Feng et al., 2019] 58.9 40.3 27.0 18.6 17.9 43.1 54.9 11.1 −
SME [Laina et al., 2019] − − − 19.3 20.2 45.0 61.8 12.9 −

SGA [Gu et al., 2019] 67.1 47.8 32.3 21.5 20.9 47.2 69.5 15.0 −
Semi-Supervised Methods

Adversarial Learning [Kim et al., 2019] 63.0 − − 18.7 20.7 − 55.2 − −
Deep Mutual Learning [Zhang et al., 2018b] 63.7 44.9 31.1 21.6 19.5 46.2 58.3 12.3 14.1
Mean Teacher [Tarvainen and Valpola, 2017] 62.8 44.2 30.6 21.3 19.5 45.5 59.3 12.2 14.3

Self Distillation [Chen et al., 2021] 67.9 49.8 35.4 25.0 21.7 49.3 73.0 14.5 16.6
Ours (w/o paraphrasing) 69.2 52.1 37.7 26.6 22.5 50.6 76.3 15.3 17.2
Ours (with paraphrasing) 68.8 51.4 37.6 27.5 23.4 51.0 84.5 16.1 18.5

Table 1: Comparisons with state-of-the-art unsupervised and semi-supervised methods using 1% MSCOCO labeled data. Our noisy student
training-based models (with and without paraphrasing) outperform prior work on all metrics.

5.1 Comparisons with Prior Work
Table 1 presents a comparison of our best numbers using 1%
labeled data with previous state-of-the-art approaches in both
semi-supervised and unsupervised image captioning. For a
fair comparison, we utilize the base AoANet model with-
out fusion or ensembling, which is similar in performance to
the Up-Down architecture utilized in Self Distillation [Chen
et al., 2021]. We observe that noisy student training, both
with and without paraphrasing, performs significantly better
across all metrics. Particularly notable is the large improve-
ment in performance, especially on CIDEr scores, by using
the paraphraser for label augmentation.

5.2 Proportions of Labeled and Unlabeled Data
The ratio of labeled to unlabeled data used during training is
an important factor that influences the performance of SSL
algorithms. We analyze the impact on performance in both
directions. We first fix the amount of labeled data and vary
the amount of unlabeled data. Next, we fix the amount of un-
labeled data and study the impact on performance by varying
the amount of labeled data.

Table 2 shows the performance of the student model on
using a fixed 1% of labeled data and varying the amount
of unlabeled data from 1% to 100%. There is a clear trend
of improvement in performance as we increase the amount

% COCO Unlabeled data B@4 CIDEr

Teacher 25.2 73.8

Student-1% 23.0 56.9
Student-10% 25.9 74.8
Student-25% 25.7 74.5
Student-50% 25.9 75.2
Student-100% 26.6 76.3

Table 2: Comparing student models with different amounts of unla-
beled data and 1% of labeled data.

of unlabeled data. A key observation here is that when the
amount of unlabeled data is comparable to the amount of la-
beled data, the performance of the student is worse than the
teacher. However, as the amount of unlabeled data becomes
an order of magnitude higher than labeled data, the student
begins to outperform the teacher. (Similar observations were
made in [Xie et al., 2020b] as well.)

From Table 3, we find that the performance improvements
of the student compared to the teacher diminish as the ratio
of unlabeled to labeled data decreases. In fact in the 100%
labeled data setting, we observe that the student performs
worse than the teacher. (In Section 5.6, we show that hav-
ing more unlabeled data results in the student outperforming
the teacher, even in the high labeled data regime.)

Related to the overall proportions of labeled and unlabeled
data, ratio between unlabeled and labeled batch sizes is also
an important factor to be considered. More so in our setting,
where we have multiple captions per image in our labeled
dataset, which affects the labeled batch sizes.

5.3 Student Initialization
An important part of the noisy student algorithm is that the
student be trained from scratch. Here, we compare training a
student model from scratch, i.e. the student parameters are
randomly initialized, with training a student model with a

% COCO Labeled data B@4 CIDEr

Teacher-1% 25.2 73.8
Student-1% 26.6 76.3

Teacher-50% 35.2 111.9
Student-50% 36.3 112.8

Teacher-100% 37.0 116.5
Student-100% 36.8 115.6

Table 3: Comparing teacher and student models with a fixed amount
of unlabeled data, across different labeled data settings.
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Model B@4 CIDEr

Teacher 25.2 73.8

Student-Scratch 26.6 76.3
Student-Warm Start 25.9 74.8

Table 4: Comparison on initialization strategy used for the student
model. Randomly initialized student outperforms teacher initialized
student.

warm start, i.e. the trained teacher parameters are used to
initialize the student.

Table 4 shows that both random initialization, and teacher
initialization result in student models that outperform the
teacher. However, the student trained from scratch outper-
forms the student with warm start. Similar observations were
made for noisy student training used with image classification
tasks [Xie et al., 2020b].

5.4 Sources of Stochasticity
We use model dropout probability p to control model noise,
and object dropout probability pobj to control input noise.

In Table 5, we report scores on both the test set and val-
idation set to show that both sources of noise appear to be
useful. While the best test scores were obtained by setting
p = 0.3, the best validation scores were obtained by setting
pobj = 0.3. Here, we only considered object dropout on the
unlabeled data.

Table 6 compares image augmentation as a source of
stochasticity for student training. With color jittering as the
primary augmentation, we notice that inclusion of data aug-
mentation does not provide significant gains, if any, over
our approach. We also consider strengthening the baseline
augmentation system by using a larger student model with
more number of attention heads, including random flips and
rotations for augmentation, and using object dropout. Out
of these systems, student using color jittering with object
dropout performs the best. Finally, we note that our approach
is 12× faster than noisy student training with data augmen-
tation, and achieves comparable performance.

5.5 Paraphrasing
As motivated in Section 3.2, label augmentation via para-
phrasing can be extremely effective in low resource settings
with sequential outputs. The paraphraser is trained on the set
of unpaired captions UC . To train a paraphraser, we first need

Dropout Object Dropout B@4 CIDEr

p = 0 pobj = 0 25.6(26.0) 74.8(75.8)
p = 0.3 pobj = 0 26.6(26.6) 76.3(76.1)
p = 0.5 pobj = 0 25.8(26.1) 74.9(76.0)
p = 0 pobj = 0.3 26.1(26.6) 75.2(76.3)
p = 0.3 pobj = 0.3 26.0(26.2) 75.8(76.3)

Table 5: Comparing the impact of model and input noise, controlled
via dropout and object dropout respectively, on student training.

Model B@4 CIDEr

Student with Model + Object Dropout 26.6 76.3

Student with Jitter 26.3 76.2
Student with Jitter (+ Flips/Rotations) 26.3 75.8
Student with Jitter (+ Larger model) 26.2 74.8
Student with Jitter (+ Object Dropout) 26.3 76.0

Table 6: Comparison with Image Augmentation as input noise.

to create groups of similar captions. When available, multi-
ple captions present for each image can be used to create the
respective groups. Otherwise, we can perform clustering on
the available captions in a meaningful embedding space and
use the resulting clusters.

Paraphrasing Fine-tune Data B@4 CIDEr

No Finetuning 26.7 75.7

Multiple Captions 27.2 84.2
Clustering 27.9 81.4

Table 7: Comparison of datasets used to finetune the paraphraser.

Table 7 shows the impact of paraphrasers trained using
both the above-mentioned grouping techniques (“Multiple
Captions” and “Clustering”) on student training. The num-
ber of available captions per image is 5; hence, we set the
number of clusters such that each cluster has at most 5 cap-
tions. A pretrained BERT model [Devlin et al., 2019] is
used to compute caption embeddings, and k-means cluster-
ing [Johnson et al., 2019] is used to compute clusters in this
embedding space. It is clear that the use of the paraphraser
leads to large improvements in performance compared to not
using a paraphraser at all (as in Table 5). Interestingly, we
observe that the BLEU-4 scores with clustering captions are
higher than annotated caption groups, while CIDEr scores are
lower. We hypothesize that the BERT-based clustering para-
phraser maintains sentence semantics such as n-grams better
than human annotated text and hence yields high BLEU-4
scores. However, since it is not conditioned on image ob-
jects and the clusters might tend to bias the paraphraser more
towards general words (rather than content-specific words),
the BERT-based clustering paraphraser does not do as well as
the “Multiple Captions” paraphraser on CIDEr scores that re-
wards retention of content words. “No Finetuning” refers to
using the BART model as-is, without any finetuning on cap-
tion text. As expected, finetuning the paraphraser on caption
text is critical to derive performance improvements.

Figure 2 shows test predictions using a student model
trained with and without paraphrasing. It is clear that the
use of the paraphraser in the student model helps produce
captions that are superior in quality compared to the student
model without the paraphraser. Since the paraphraser scaf-
folds on BART that has a strong in-built language model,
the paraphraser also has the additional benefit of fixing poor-
quality caption predictions containing repeated words and ill-
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Figure 2: Qualitative examples from test evaluation of models: T (Teacher model), S (Student w/o paraphrasing), SP (Student with Para-
phrasing) in the low labeled data regime, along with GT (Ground Truth) captions.

Figure 3: Examples of low-quality pseudo labels with errors (in red) by the teacher and the paraphrased model correcting these errors.

formed sentences. This allows us to make effective use of
the unlabeled data and not have to filter out low-confidence
pseudo labels. Instead, our approach using the paraphraser
attempts to correct the errors in the pseudo labels. Some ex-
amples are listed in Figure 3 where the errors in red are fixed
by the paraphraser.

We also do an ablation on the benefits of using multiple
paraphrased captions for each unlabeled image. We see clear
improvements on CIDEr scores going from 1 caption per im-
age (82.4) to 5 paraphrased captions per image (84.2); the
BLEU-4 scores stayed roughly the same.

5.6 Noisy Student and High Labeled Data
As described in Section 5.2, our approach works well in the
low labeled data regime where the amount of unlabeled data
is much larger than the labeled data. However, when the
sizes of the unlabeled and labeled data are comparable, we
find that the student fails to outperform the teacher. We iden-
tify two strategies that mitigate this issue: (1) Decaying the
weight of unlabeled data during student training and (2) Us-
ing a larger unlabeled dataset. Decaying the weight of the
unlabeled data in the training objective smoothly interpolates
separate-training [He et al., 2020] and joint-training [Xie et
al., 2020b]. For a larger unlabeled dataset, we consider the
Conceptual Captions Dataset [Sharma et al., 2018] that con-
tains roughly 3.3M image-caption pairs.

Model B@4 CIDEr

Teacher 37.0 116.5

Student-MSCOCO 36.8 115.6
Student-Conceptual Captions 37.1 116.7
Student-MSCOCO with weight decay 37.6 116.7

Table 8: Comparing different student models using 100% MSCOCO
labeled data.

Table 8 compares the effect of the two above-mentioned
strategies on student training using 100% of the MSCOCO
labeled data. We use only the images from the Conceptual
Captions dataset as unlabeled data. Due to computational
constraints, we restricted ourselves to using 1M images. We
implement the student with weight decay by linearly decay-
ing the contribution of the unlabeled data to the training loss
LS from 1 to 0 in 10 epochs. We observe that both of these
strategies successfully extend our noisy student training to be
effective even in the high labeled data regime.

6 Conclusion
This is the first work to present a comprehensive analysis of
the noisy student framework, a state-of-the-art approach in
semi-supervised learning, for image captioning. We show
the effectiveness of simple model and feature perturbations to
precomputed features and show that they perform at par with
data augmentation, while being significantly more computa-
tionally efficient. We additionally propose the use of label
augmentation in self-training for sequential outputs, wherein
instead of filtering out low confidence pseudo labels, we “fix”
them using a paraphraser that is trained on unpaired caption
text. We show a large performance boost using label augmen-
tation, which is additive to input data augmentation, and sig-
nificantly improves performance on low-resource image cap-
tioning over current state-of-the-art results by over 15%.
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