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Abstract
Human beings have a great generalization ability
to recognize a novel category by only seeing a few
number of samples. This is because humans pos-
sess the ability to learn from the concepts that al-
ready exist in our minds. However, many existing
few-shot approaches fail in addressing such a fun-
damental problem, i.e., how to utilize the knowl-
edge learned in the past to improve the predic-
tion for the new task. In this paper, we present a
novel purified memory mechanism that simulates
the recognition process of human beings. This new
memory updating scheme enables the model to pu-
rify the information from semantic labels and pro-
gressively learn consistent, stable, and expressive
concepts when episodes are trained one by one. On
its basis, a Graph Augmentation Module (GAM) is
introduced to aggregate these concepts and knowl-
edge learned from new tasks via a graph neural net-
work, making the prediction more accurate. Gener-
ally, our approach is model-agnostic and comput-
ing efficient with negligible memory cost. Exten-
sive experiments performed on several benchmarks
demonstrate the proposed method can consistently
outperform a vast number of state-of-the-art few-
shot learning methods.

1 Introduction
The success of deep learning stems from a large amount
of labeled data [Noh et al., 2017; Bertinetto et al., 2016;
Long et al., 2015], while humans have a good generaliza-
tion ability by only seeing a few number of samples. The gap
between the two facts brings great attention to the research
of few-shot learning [Vinyals et al., 2016; Finn et al., 2017;
Sung et al., 2018]. Unlike traditional deep learning scenario,
few-shot learning is not to classify unseen samples, but fast
adapts the meta-knowledge to new tasks, where only very few
labeled data and knowledge gained from previous experience
are given.

Recently, significant advantages [Vinyals et al., 2016;
∗Equal Contribution
†Contact Author

Finn et al., 2017; Snell et al., 2017; Sung et al., 2018]
have been made to tackle this problem by using the idea of
meta-learning coupled with episodic training [Vinyals et al.,
2016]. The intuition is to use a episodic sampling strategy,
a promising trend to transfer knowledge from known cate-
gories (i.e., seen categories with sufficient training examples)
to new categories (i.e., novel categories with few examples),
simulating the human learning process. In this framework,
metric-based approaches [Vinyals et al., 2016; Snell et al.,
2017] and graph-based approaches [Garcia and Bruna, 2017;
Liu et al., 2018; Kim et al., 2019; Yang et al., 2020] are two
representative methods by taking the primary advantage of
the transferable meta-knowledge. Due to the ability to learn
from graph data efficiently, graph-based approaches generally
outperform metric-based method, which extends the pairwise
query-support relationship to a graph structure.

In spite of the effectiveness of graph-based approaches
[Kim et al., 2019; Yang et al., 2020], most of them ignore a
critical issue that how the knowledge learned in the past could
be useful for the new task when the episodes are trained one
by one. As a kind of intuition, for an unseen task, human
beings don’t use the whole knowledge, but a few informative
and relevant concepts, to improve the prediction ability for
the new task. For example, if a man has learned the concepts
of horses, tigers and pandas, it is easy to recognize zebras by
finding zebras have the outline like horses, stripes like tigers,
and black and white color like pandas. Motivated by this sim-
ple intuition, we propose an assumption that a few-shot learn-
ing model should explicitly establish the relationship between
episodes and take full use of existing learned knowledge.

However, it raises two fundamental problems hindering ex-
isting graph-based approaches: 1) how to learn a stable and
consistent concepts when episodes are rapidly coming; 2)
how the learned concepts further help the prediction when
adapting to new tasks. In this paper, we propose a purified
memory framework to tackle these two problems. Our ba-
sic idea is simply that simulated the recognition process of
human beings. To keep stable and consistent concepts, we
hold a memory bank during episodic training, which learns an
optimal prototype representation for each category from the
perspective of information bottleneck principle [Tishby and
Zaslavsky, 2015]. By progressively purifying the information
from semantic label, the stored knowledge is supposed to be
generally expressive, consistent and stable.
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To make full use of the purified memory, we present a
Graph Augmentation Module (GAM) as a way of mining
meta-knowledge and establishing the correlation between dif-
ferent episodes. When dealing with a new task, GAM first
retrieves the concepts of k-nearest neighbors by taking class
center from the current task as query. Then retrieved concepts
and episodic training samples are forwarded into a graph
neural network (GNNs) with an adaptive weighting scheme.
Thus the concepts learned in the past and knowledge learned
from the new task are aggregated, which allow our model to
make accurate prediction. It is worth noting our method is a
model-agnostic approach and could be integrated into any ad-
vanced GNNs method flexibly with negligible computational
cost.

Our major contributions are three-fold: (1) we present a
new memory purifying mechanism with efficiency, consis-
tency and vigorous expressive power; (2) the proposed GAM
is able to mine the meta-knowledge and capture the correla-
tion between different episodes; (3) our approach yields state-
of-the-art few-shot results and our intriguing findings high-
light the need to rethink the way we use meta-knowledge.

2 Method
This paper aims to address the problem of few-shot classi-
fication. The problem definition is fundamentally different
from traditional classification, whose objective is not classify
unseen samples but to fast adapt the meta-knowledge to new
tasks. Specifically, a labeled dataset with sufficient training
samples from base classes Cbase is provided, and the goal is
to learn the concepts with very limited data collected from
a set of novel classes Cnovel, where Cbase ∩ Cnovel = ∅.
An effective way to solve the few-shot problem is to use the
episodic sampling strategy. In this framework, the samples in
meta-training and meta-testing are not samples but episodes
{T }, each of which containsN classes (ways) andK shot per
class. In particular, for a N -way K-shot task, a support set
S = {(xi, yi)}N×Ki=1 and a query setQ = {(xi, yi)}N×K+T

i=N×K+1

are sampled. Here, xi and yi ∈ {C1, · · ·CN} are the i-th in-
put data and is from Cbase. In the meta-test, a test task is also
sampled with the same sized episode from unseen categories
Cnovel. The aim is to classify T unlabeled samples in query
set into N classes correctly.

2.1 Overview of Framework
The framework of the proposed method is illustrated in Fig.
1. It mainly consists of three components, i.e., an encoder
for discriminative feature extraction, a memory module for
expressive meta-knowledge storage, a graph augmentation
module for comprehensive inference. In general, our ap-
proach can be summarized into 3 stages (i.e., Pre-Train,
Meta-Train, Meta-Test).
Phase-I Pre-Train. We follow a simple baseline [Chen et
al., 2020]: learning a supervised representation on the meta-
training set Cbase, followed a linear classifier on top of this
representation. It has been shown that this pre-train stage
is beneficial for the downstream few-shot task [Tian et al.,
2020], and the trained feature extractor (e.g., ResNet-12[He
et al., 2016]) and classifier are then used as the initialization
of our encoder and memory bank, respectively.

Phase-II Meta-Train. We first extract the features of support
and query samples as task-relevant embeddings V t. Then to
facilitate fast adaption, our approach holds a memory bank to
store the expressive representations of the support set. This
memory bank is optimized with a new updating scheme to
progressively purify discriminative information (introduced
in Sec. 2.2). Further, the purified memory is incorporated
with a graph augmentation module for robust prediction (in-
troduced in Sec. 2.3). In this module, we mine the relevant
prototypes V m, referred as meta-knowledge in this paper, to
propagate the similarities between V t and V m via a graph
neural network. Consequently, our model is able to general-
ize to new tasks conveniently with negligible memory cost.
Phase-III Meta-Test. The procedure of Meta-Test is simi-
lar with Meta-Train, where the episodic sampling strategy is
also adopted. But unlike Phase-II, the memory bank and other
modules will not be updated throughout the process. In other
words, switch will be closed as shown in Figure 1.

2.2 Refined Memory Updating
Meta-knowledge plays an import role in learning new con-
cepts from unseen samples, and recent FSL advances [Ra-
malho and Garnelo, 2019] often exploit a memory mech-
anism to store this meta-knowledge. In its typical setting,
the memory tries to preserve as much information as possi-
ble (e.g., store the whole features). However, we argue this
strategy is both ineffective and inefficient. In the context
of FSL, the episodic sampling makes the feature extractor
rapidly learn new concept with very few samples, and this
causes a problem that the feature in memory is updated when
the feature extractor is under a very different task context.
From this perspective, the representation learned from differ-
ent tasks requires a purification process to be a stable concept.

To alleviate the above issues, we propose to refine the
memory via learning an optimal prototype for each category.
Specifically, considering a N-way K-shot task in FSL, we use
f lsup ∈ R[N×K,d] to denote the feature representations of the
support set in the l-th episode, and M ∈ R[C,d] to denote the
memory bank, where C and d indicate the total number of
categories and the dimension of the prototype, respectively.

To progressively purify semantic information from labels,
we firstly conduct category-wise averaging to f lsup to obtain
the centroids f lcen ∈ R[c,d], each of which is then concate-
nated with the prototype f lp ∈ R[c,d] (stored in the memory)
that belongs to the same category. We forward the concate-
nation f lcat ∈ R[c,2×d] to a fully-connected layer to reduce
the dimension, and utilize the output to refine the memory.
Here we propose to use the information bottleneck principle
to purify the concept. The following constraint is used to en-
sure the IB to be well working, i.e., preserve semantic label
information while avoiding task-irrelevant nuisances.

max I(f lp;Y )− βI(f lcat; f lp), (1)

where I(.; .) denotes the mutual information, Y represents
the label, and β is the Lagrange coefficient, respectively.

Specifically, Eq. (1) aims to learn prototype f lp that is max-
imally informative about the target Y while being maximally
compressive about f lcat. However, Eq. (1) requires estimating
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Figure 1: The flowchart of proposed method. We take 2-way 2-shot setting as an example.

mutual information in high dimension, which is intractable in
such a high-dimension space. Fortunately, since our goal is
to purify the concept, we show a self knowledge distillation
loss could be strictly consistent with Eq. (1), where the math-
ematical deduction is shown in supplementary materials.

In practice, the following constraint is enforced to purify
the discriminative information and further refine the memory:

Lr = Ef l
cat

[
Ez∼φ(z|f l

cat)

[
DKL[p(y|f lcat)||p(y|f lp)]

]]
. (2)

Here, θ and φ denote the parameters of the encoder and the
FC layer, DKL[.||.] represents the KL-divergence, y denotes
the label. Note that both p(y|f lcat) and p(y|f lp) denote condi-
tional distribution, and, in practice, are the output of an extra
linear linear (detailed descriptions are shown in supplemen-
tary materials).

The refining of M is, in essence, iteratively aggregating
discriminative information and diluting task-irrelevant nui-
sances. A naive solution is to append the output of the IB
to M for every episode. But this solution leads to tremendous
spatial and time cost and yields poor performance (see Sec.
3.4). In the view of above, we propose to refine the memory
bank by momentum update. Formally, M is updated by:

f lp ← λf lp + (1− λ)f lB , (3)

where λ ∈ [0, 1) is a momentum coefficient and f lB ∈ Rd
denotes the output of the IB at current episode.

In this way, the memory is supposed to be generally ex-
pressive, consistent and much more efficient. The refined
prototype representations further incorporate and aggregate
with meta-knowledge mining and is applied to facilitate the
inference of FSL, as described next.

2.3 Graph Augmentation Module
For an unseen task, human beings don’t use the whole knowl-
edge, but a few informative and relevant concepts, to ab-

stract the new task. Motivated by this, we propose a Meta-
knowledge Mining approach to simulate this behavior. The
core idea behind our approach is to aggregate similar features,
rather than the entire memory bank, to help our model learn
new concepts for an unseen task. In particular, we use a graph
augmentation module (GAM) to capture the relationship be-
tween a specific task context and relevant concepts. Their
similarities are then propagated through a graph neural net-
work [Kim et al., 2019], in which each layer performs node
feature and edge feature update, to realize fast and compre-
hensive inference.
Meta-knowledge Mining. For each class centroid f lcen[i]
in l-th episode, we first compute the cosine similarities be-
tween f lcen[i] and each prototype in the memory M. Then we
select k-nearest-neighbors of f lcen[i], which are denoted as
MK = {m1,m2, ...,mk}. In order to perform the aggrega-
tion, we use an attention coefficient calculated by the centroid
f lcen[i] and selected embeddings mj :

aj =
exp(τ ·

〈
f lcen[i],mj

〉
)∑

ĵ exp(τ ·
〈
f lcen[i],mĵ

〉
)
, (4)

where 〈·, ·〉 denotes the cosine similarity between two vectors
and τ is a scalar parameter. Finally, the meta-knowledge node
of each class is calculated as:

vmi =
∑k

j=1
ajfagg

([
mj ; f

l
cen[i]

]
; θagg

)
, (5)

where [·; ·] is the concatenation operation and fagg(·; θagg)
performs a transformation : R2d → Rd on the concatenated
features which is composed of a fully-connected layer, with
the parameter set θagg .
Augmented Graph Initialization. For a N-way K-Shot
task, given the features extracted from the encoder and the
mined meta-knowledge, a fully connected graph G = (V,E)

is constructed, where V = {vti}
N×K+T
i=1 ∪ {vmi }Ni=1 =
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{vi}N×(K+1)
i=1 and E = {eij}i,j=1,...,|V | denote the set of

nodes and edges, respectively. The node contains two types of
points i.e., task-relevant nodes V t and meta-knowledge nodes
V m. The edge represents the similarity between two nodes
and is initialized as:

e0ij =


1, if yi = yj and vi, vj ∈ Ŝ,
0, if yi 6= yj and vi, vj ∈ Ŝ,
0.5, otherwise,

(6)

where Ŝ = S ∪ V m denotes the union of support set and
augmented meta-knowledge. Thus the meta-knowledge is
augmented to existing inference task and allow the model to
adapt to new task by taking advantage of learned concepts.
Node Feature Update. Given v`−1i and e`−1ij from layer
`− 1, the feature node v`i at layer ` is updated by a neighbor-
hood aggregation procedure. This aggregation is weighted by
the edge similarity between two neighbors. A feature trans-
formation is also conducted to normalize the feature. Mathe-
matically, the node feature update is defined as:

v`i = fnode([v
`−1
i ,

|V |∑
j=1,j 6=i

v`−1i e`−1ij ]; θnode), (7)

where [·; ·] is the concatenation operation and fnode(·; θnode)
is a transformation block consisting of two convolutional
layers[Glorot et al., 2011; Ioffe and Szegedy, 2015], a
LeakyReLU activation and a dropout layer.
Edge Feature Update. Edge feature update is done based
on the newly updated node features v`i . The similarities be-
tween every pair of nodes are re-calculated, and the feature
of each edge e`ij is updated by combining the previous edge
feature value e`−1ij and the updated similarities as:

e`ij =
fedge(‖vi − vj‖ ; θedge)e`−1ij∑

k fedge(‖vi − vj‖ ; θedge)e
`−1
ik /

∑
k e

`−1
ik

, (8)

where fedge(·; θedge) is a metric network parameterized by
θedge, which includes four convolutional blocks, a batch nor-
malization layer, a LeakyReLu activation and a dropout layer.
It is worth noting our GAM can be implemented with any
other GNN, and substantially improve their performance.

2.4 Prediction and Optimization
When the optimization is complicated, the predicted proba-
bility of a node vi belonging to Ck can be denoted as:

P ki =
∑

j 6=i∧(xi,yi)∈Ŝ

eLijδ(yj = Ck), (9)

where δ(yj = Ck) is the Kronecker delta function that is
equal to one when yj = Ck and zero otherwise, eij denotes
the edge feature between two nodes vi and vj . A softmax
layer is then used to normalize this probability.

During the meta-training stage, our model is optimized by
minimizing the binary cross-entropy loss (BCE):

Lq =
L∑
`=1

λ`

T∑
i=1

BCE(ei, ŷ
`
i ), (10)

where ei and ŷ`i are the ground-truth of query node edge-label
and the query-edge predictions, respectively, and λ` is the co-
efficient for `-th layer. In order to make the meta-knowledge
nodes consistent with the predicted label, we also introduce
another binary cross-entropy loss (BCE) Lm to estimate the
discrepancy between the ground-truth and the predictions of
meta-knowledge nodes edge-label.

Finally, the total loss L can be defined as:

L = Lq + αLm + βLr, (11)

where α is the coefficient to balance Lq and Lm. In our ex-
periments, we fix α = 0.2 and β = 0.01.

3 Experiments
3.1 Experimental Setup
Datasets. We evaluate our approach on four few-shot learn-
ing benchmarks followed by [Yang et al., 2020]: miniIm-
ageNet [Vinyals et al., 2016], tieredImageNet [Ren et al.,
2018], CUB-200-2011[Wah et al., 2011] and CIFAR-FS
[Bertinetto et al., 2018]. Among them, miniImageNet and
tieredImageNet are collected from ImageNet, and CIFAR-FS
is a subset from CIFAR-100. Unlike these datasets, CUB-
200-2011 is a fine-grained bird classification dataset.
Evaluation. For evaluation, all the results are obtained un-
der standard few-shot classification protocol: 5-way 1-shot
and 5-shot task. No matter in 1 or 5-shot setting, only 1 query
sample each class is used to test the accuracy. We report the
mean accuracy (%) of 10K randomly generated episodes as
well as the 95% intervals on test set. Notice that all the hyper-
parameters are determined from the validation sets.

3.2 Implementation Details
Network Architecture. We utilize two networks as our
encoder backbone,(i.e., ConvNet and Resnet12 [Kim et al.,
2019; Lee et al., 2019]). ConvNet contains four blocks,
and each block includes a 3x3 convolutional layer, a batch
normalization layer and a LeakyReLU activation. Similarly,
ResNet12 consists of four residual blocks. Please refer to
[He et al., 2016] a comprehensive understanding. After the
backbone network, there is a global average pooling layer and
a fully-connected layer to produce 128-dimensional instance
embeddings.
Training. In the pre-training stage, the baseline follow-
ing prior work [Chen et al., 2020] is trained from scratch
with a batch size of 128 by minimizing the standard cross-
entropy loss on base classes. After that, we randomly se-
lect 40 episodes per iteration for training the ConvNet in the
meta-train stage. This sampling strategy is slightly different
for ResNet12, where 5-way 5-shot task, we only sample 20
episodes per iteration due to the memory cost. The Adam op-
timizer is used in all experiments with the initial learning rate
of 10−3. We decay the learning rate by 0.1 per 8000 iterations
and set the weight dacay to 10−5. We train 50,000 epochs in
total, and the encoder are frozen for the first 25000 iterations.

3.3 Main Results
In this section, we demonstrate the effectiveness of our ap-
proach against state-of-the-arts methods. For a fair compari-
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miniImageNet 5-way tieredImageNet 5-way

Model Backbone Venue 1-shot 5-shot 1-shot 5-shot
ProtoNet [Snell et al., 2017] ConvNet NeurIPS’17 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74
EGNN [Kim et al., 2019] ConvNet CVPR’19 58.65 ± 0.55 76.34 ± 0.48 62.76 ± 0.52 80.24 ± 0.49
Ours (EGNN) ConvNet Ours 63.82±0.53 78.58±0.43 66.67±0.51 82.27±0.43

Meta-Baseline [Chen et al., 2020] ResNet12 ArXiv’20 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18
Distill [Tian et al., 2020] ResNet12 ECCV’20 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49
Neg-Cosine [Liu et al., 2020] ResNet12 ECCV’20 63.85 ± 0.81 81.57 ± 0.56 - -
CBM [Wang et al., 2020] ResNet12 MM’20 64.77 ± 0.46 80.50 ± 0.33 71.27 ± 0.50 85.81 ± 0.34
DPGN [Yang et al., 2020] ResNet12 CVPR’20 67.77±0.32 84.60±0.43 72.45±0.51 87.24±0.39
EGNN+[Kim et al., 2019] ResNet12 CVPR’19 60.27 ± 0.48 77.50 ± 0.44 64.58 ± 0.51 81.66 ± 0.48
Ours (EGNN) ResNet12 Ours 65.87±0.49 82.23±0.40 71.69±0.49 84.43±0.39
DPGN+ [Yang et al., 2020] ResNet12 CVPR’20 67.08 ± 0.48 84.28 ± 0.44 70.88 ± 0.49 85.87 ± 0.41
Ours (DPGN) ResNet12 Ours 69.19±0.53 85.87±0.41 74.81±0.51 88.14±0.39

CIFAR-FS 5-way CUB-200-2011 5-way
MAML [Finn et al., 2017] ConvNet ICML’17 58.9 ± 1.9 71.5 ± 1.0 55.92 ± 0.95 72.09 ± 0.76
RelationNet [Sung et al., 2018] ConvNet CVPR’18 55.0 ± 1.0 69.3 ± 0.8 62.45 ± 0.98 76.11 ± 0.69
Ours (EGNN) ConvNet Ours 76.9±0.3 88.2±0.3 74.96±0.48 87.08±0.36

Distill [Tian et al., 2020] ResNet12 ECCV’20 73.9 ± 0.8 86.9 ± 0.5 - -
Neg-Cosine [Liu et al., 2020] ResNet12 ECCV’20 - - 74.6 ± 0.4 89.9± 0.3
DPGN [Yang et al., 2020] ResNet12 CVPR’20 77.9 ± 0.5 90.2 ± 0.4 75.71±0.47 91.48±0.33
EGNN+ [Kim et al., 2019] ResNet12 CVPR’19 66.5 ± 0.5 81.3 ± 0.5 70.24± 0.52 84.26 ± 0.42
Ours (EGNN) ResNet12 Ours 77.4±0.3 89.2±0.2 75.36±0.32 89.23± 0.28
DPGN+ [Yang et al., 2020] ResNet12 CVPR’20 76.6 ± 0.5 88.7 ± 0.4 72.66 ± 0.85 89.40 ± 0.36
Ours (DPGN) ResNet12 Ours 78.2±0.4 91.2±0.3 76.26±0.51 90.56±0.35

Table 1: Few-shot classification accuracies on four few-shot learning benchmarks. “+” denotes that our re-implemented result with the official
code. Red color indicates the best performance and blue color indicates the second best performance. Bold text means our results.

Figure 2: Ablation study when using different memory mecha-
nism. ”B”: our baseline (EGNN); “Non-Mem”: meta-knowledge
nodes are implemented by the class center from the current episode;
“Naive-Mem”: a memory storing the entire features; “PB-Mem”:
prototype-based memory.

son, we adopt two representative few-shot graph neural net-
works i.e., EGNN and DPGN as our GAM module. Further,
by using two kinds of backbone ConvNet and ResNet12, we
report the results under 5-way 1-shot and 5-way 1-shot setting
on all benchmark datasets for a comprehensive evaluation.
Results on Generic Object Recognition. For the generic
object classification, we evaluate our approach on miniIma-
geNet, tieredImageNet and CIFAR-FS and report the results
in Table 1. The main observations are as follows: 1) The
proposed method outperforms all competitors demonstrating
the effectiveness of our method. Further, the performance
obtained by using ResNet12 is superior to that using Con-
vNet due to better representational capacity. 2) No matter
which graph neural network are used, the proposed method
evidently outperform the baseline with a clear margin. 3) In
both 1-shot or 5-shot setting, our method is basically stable

at the top performance. The improvement is more significant
under 1-shot setting due to the purified memory. Hence it
appears that our methods will be more effective when facing
new tasks with fewer samples.
Result on Fine-grained Classification. For the fine-grained
bird classification problem, the results of CUB-200-2011 is
reported in Table 1. In particular, our method also outper-
forms other competitors by a large margin. Notice that on
this dataset, different graph neural networks and backbones
have less impact on the performance.
Discussion. Since the proposed method is based on the
GNNs framework, Our approach could be integrated into
any advanced GNNs method flexibly. Our results show that
with purified memory and GAM module, the performance of
GNNs would be remarkably promoted.

3.4 Ablation Study

We present experiments to confirm our main claims: 1) Puri-
fied memory can facilitate fast adaption. 2) Meta-knowledge
with GAM is able to promote the existing GNNs models. All
the experiments are conducted on tieredImageNet under 5-
way 1-shot setting with ResNet12. Also the quantitative
results of 5-shot are shown in supplementary materials.
Impact of Purified Memory. We compare four different
memory banks and the results are illustrated in Fig. 2. Note
that the baseline degenerates to EGNN when without mem-
ory. We can draw the following conclusions: 1) Without the
help of memory, GAM can boost the performance of GNNs
model, even incorporating with the class center in the current
episode. 2) Three different memory banks are evidently supe-
rior to Non-Mem baseline, showing the importance of meta-
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Figure 3: t-SNE visualization results obtained from our method and
EGNN. Different colors represent different categories.

Figure 4: The performance impact of k-nearest neighbor.

knowledge. 3) The prototype-based memory is more efficient
and effective, which confirms our assumption that storing the
whole features is a sub-optimal solution. 4) The experimental
results support our motivation of obtaining an optimal proto-
type representation for each category. Meanwhile, it seems
that the memory cost of the proposed method is keeping the
same level compared with the baseline.
Impact of GAM. To demonstrate the effectiveness of our
graph augmented module, we first visualize the embedding
space in Fig 3. In particular, we randomly select 5 classes,
each of which contains 200 samples from tieredImageNet.
We project the features trained by EGNN and our EGNN
equipped with GAM into a 2D plane via t-SNE. The results
show that the embedding space is mixed in EGNN, such that
the discriminative ability of learned model is naturally lim-
ited. On the contrary, our model is able to distinguish differ-
ent categories with a large inter-class margin, hence we get
a substantial improvement. This indicates that with the help
of purified meta-knowledge, the discriminative information
could be further highlighted via the GAM.

Additionally, to visualize how the meta-knowledge help
the prediction process, we choose a test scenario where the
ground truth classes of five query images are non-overlapping
(i.e., 5-way 1-shot) and visualize instance-level similarities
as shown in Figure 5. Specifically, we select two kinds of
instance-level similarities to demonstrate the effectiveness of
our approach. Notably, the heatmap shows GAM refines the
instance-level similarity matrix after several layers and makes
the right predictions for five query samples in the final layer
compared with EGNN. We can also find this refinement is
owing to the augmentation of meta-knowledge node. Due
to the purified concept, the heatmap is essentially clean and
hence the meta-knowledge provides auxiliary strong supervi-
sion. These similarities are then further propagated through
the graph neural network, allowing the model to take the ad-
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Figure 5: The visualization of edge prediction in each layer of our
method. The sub-figure from left to right denotes the prediction from
layer 1 to layer 3 of graph neural network. The dark denotes higher
score and the shallow denotes lower confidence. The left axis stands
for the index of 5 query images and the bottom axis stands for 5
support classes or our meta-knowledge node.

vantages of memorized concept and knowledge learned from
new tasks. This experimental result convincingly supports
our hypothesis.
Impact of k-nearest neighbor. In the Meta-knowledge Min-
ing stage, we retrieve the most similar k samples from mem-
ory to augment the graph. Here we discuss its impact when
the k varies. As shown in Figure 4, few-shot recognition per-
formance keeps improving when k increases, and when k in-
creases to a certain value, the accuracy begins to decline on
both datasets. Hence it s recommended to set this value as 6,
empirically.

4 Conclusion
In this work, we have presented a new memory updating
scheme for few-shot learning, which progressively purifies
the semantic label information from the perspective of in-
formation theory. Purified memory is generally expressive,
consistent, efficient, and then naturally cooperated with a
graph augmented module. GAM further exploits the meta-
knowledge and the knowledge learned from the new task to
make a precise prediction. This scheme is a model-agnostic
module and could be integrated into any advanced GNNs
method flexibly.
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