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Abstract

Multilayer perceptrons (MLPs) have been success-
fully used to represent 3D shapes implicitly and
compactly, by mapping 3D coordinates to the corre-
sponding signed distance values or occupancy val-
ues. In this paper, we propose a novel positional en-
coding scheme, called Spline Positional Encoding,
to map the input coordinates to a high dimensional
space before passing them to MLPs, for helping to
recover 3D signed distance fields with fine-scale ge-
ometric details from unorganized 3D point clouds.
We verified the superiority of our approach over
other positional encoding schemes on tasks of 3D
shape reconstruction from input point clouds and
shape space learning. The efficacy of our approach
extended to image reconstruction is also demon-
strated and evaluated.

1 Introduction

Implicit neural representations learned via multilayer percep-
trons (MLPs) have been proved to be effective and compact
3D representations [Park et al., 2019; Mescheder et al., 2019;
Chen and Zhang, 2019] in computer vision and graphics fields.
The MLPs take 3D coordinates as input directly, denoted by
coordinate-based MLPs, and output the corresponding signed
distance values or the occupancy values. They essentially
define continuous implicit functions in 3D space whose zero
level set depicts shape surfaces. Compared with conventional
3D discrete representations like point clouds or voxels, the
MLP-based implicit representation has infinite resolutions
due to its continuous nature, while being extremely compact.
Apart from representing 3D shapes, coordinate-based MLPs
are also capable of representing images, 3D textures, and 5D
radiance fields, serving as general-purpose mapping functions.

In this paper, we are interested in learning the signed dis-
tance field (SDF) effectively from an unorganized input point
cloud sampled from a 3D shape, by MLPs. SDF defines the
distance of a given point x from the shape surface, with the
sign determined by whether x is inside the shape volume or not.
SDFs are needed by a broad range of applications [Jones et al.,
2006], including, but not limited to, 3D reconstruction [Curless
and Levoy, 1996], constructive solid geometry (CSG), colli-
sion detection [Bridson, 2015] and volume rendering [Hart,
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Figure 1: SDF learning via MLP-based methods. Upper: the ex-
tracted zero level set via marching cubes. Lower: a slice view of
SDFs. SIREN [Sitzmann et al., 20201, FPE [Tancik et al., 2020] and
our SPE fit the input point coordinates and normals well, but FPE
contains many unwanted small branches. The SDFs from IGR [Gropp
et al., 2020] and SPE are more faithful to the ground-truth, while SPE

recovers more details.

1996]. The recent MLP-based approaches [Gropp et al., 2020;
Atzmon and Lipman, 2020a] introduce the Eikonal equa-
tion constraint |VF(x)| = 1 to the mapping function F' :
x € R3 to enforce F to be an SDF, while its zero level
set passes through the point cloud. However, due to the
of neural networks [Rahaman et al., 2019;
Mildenhall et al., 2020; Tancik et al., 20201, coordinate-based
MLPs with ReLLU activation are incapable of reconstructing
high-frequency details of surfaces. An example produced by a
coordinate-based MLP — IGR [Gropp et al., 2020] is shown in
Fig. 1(a), where the output shape is over-smoothed compared
to the ground-truth.

To circumvent this problem, SIREN [Sitzmann et al., 2020]
uses Sine as the activation function in place of ReLU to
improve the expressiveness of MLPs, and the Fourier Posi-
tional Encoding (abbreviated as FPE) [Mildenhall er al., 2020;
Tancik et al., 2020; Zhong et al., 2020] is proposed to im-
prove network capability by lifting input coordinates to a high-
dimensional Fourier space via a set of sinusoidal functions
before feeding the coordinates as the input of MLPs. However,
both approaches fail to recover SDFs in good quality and are
even worse than IGR (see Fig. 1(b)&(c)), although their zero
level sets may fit the point cloud well.

In this paper, we propose a novel Spline Positional Encoding
(abbreviated as SPE), with which the MLP can not only recover
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the high-frequency details of the surface but also recover the
SDF well, as shown in Fig. 1(d). Our SPE maps the input
coordinates into a high-dimensional space via projecting them
onto multiple trainable Spline functions, instead of hard-coded
sinusoidal functions as FPE. The Spline functions are defined
as the weighted sum of a series of uniformly spaced local-
support B-Spline bases, and the weights are trainable. As the
Spline function can be used to approximate other continuous
functions, our SPE can be regarded as a generalization of FPE.
SPE greatly increases the fitting ability of MLPs to reproduce
high-frequency details. By subdividing the B-Spline bases,
SPE can also be progressively refined. Based on this property,
we also design a multi-scale training scheme to help MLPs
converge to better local minima, which enables our network to
recover SDFs and geometric details progressively and robustly.

Through experiments and ablation studies, we demonstrate
the efficacy and the superiority over other state-of-the-art en-
coding schemes of our SPE on the tasks of learning SDFs
from a point cloud or a set of point clouds. Additionally, to
test the generalizability of SPE, we also apply it to image
reconstruction and achieve good performance.

2 Related Work

Coordinate-based MLPs. The coordinate-based MLPs
have caught great research interest as a continuous representa-
tion of shapes [Park et al., 2019; Mescheder er al., 2019;
Chen and Zhang, 20191, scenes [Sitzmann et al., 2019],
images [Tancik et al., 2020; Sitzmann et al., 2020], tex-
tures [Oechsle et al., 2019] and 5D radiance fields [Milden-
hall ef al., 2020]. These methods train MLPs by regress-
ing the ground truth SDFs, point/pixel colors, or volume ra-
diance values. Our work is motivated by the works [Atz-
mon and Lipman, 2020b; Atzmon and Lipman, 2020a;
Gropp et al., 2020] that use MLPs to reconstruct SDFs from
raw point clouds, without knowing the ground truth SDFs.

The limitation of coordinate-based MLPs with ReL.U
activation has been revealed by [Rahaman er al., 2019;
Mildenhall er al., 2020]: the high-frequency fitting error de-
creases exponentially slower than the low-frequency error. To
overcome this issue, there are multiple attempts to improve
the representation power of MLPs as follows.

Activation function. SIREN [Sitzmann et al., 2020] use
Sine as the activation function and proposes a proper ini-
tialization method for training. It greatly improves the ex-
pressiveness of MLPs, and it is capable of recovering fine
geometry details in the 3D reconstruction task. However,
ReLU can provide strong implicit regularization when being
under-constrained [Gropp et al., 2020] and offer a good ap-
proximation to SDF in the whole space. In our work, we
choose Softplus as our activation function, which can be re-
garded as a differentiable ReLU.

Positional encoding. Sinusoidal encoding is a kind of posi-
tional encoding that is first used for representing 1D positions
in natural language processing [Vaswani et al., 2017]. This
type of positional encoding has proved to be able to improve
the performance of MLPs in radiance fields fitting [Mildenhall
et al., 2020] and 3D protein structure reconstruction [Zhong et
al., 2020]. Tancik et al. [2020] build a theoretical connection
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between Sinusoidal mapping and Neural Tangent Kernels [Ja-
cot et al., 2018] for proving the efficacy of sinusoidal mapping
and further improve its performance by using random Fourier
features [Rahimi and Recht, 2008]. Their Fourier Positional
Encoding (FPE) maps input points to a higher dimensional
space with a set of sinusoids. However, FPE is not suitable
to minimize the loss function containing function gradient
constraints as we reveal in Section 4.

Local MLPs. Local MLPs improve the performance of a
global MLP by dividing complex shapes or large-scale scenes
into regular subregions [Peng et al., 2020; Chabra ef al., 2020;
Jiang et al., 2020; Genova et al., 2020] and fitting each sub-
region individually with the consideration of fusing the local
output features or local output results. Our Spline Positional
Encoding is composed of uniformly spaced locally supported
basis functions along with different project directions. It shares
the same sprite to local MLPs, but executes the local represen-
tation at the beginning of MLP.

3 Spline Positional Encoding

In this section, we first briefly review the loss functions for
learning SDFs from a point cloud in Section 3.1, then intro-
duce our spline positional encoding and its relations to prior
arts in Section 3.2, and our training scheme in Section 3.3.

3.1 SDF Learning

Given a set of points with oriented normals sampled from
the unknown surface S of a 3D shape, denoted by X =
{(xi,1n;) }iez, the goal is to train an MLP F'(x) which rep-
resents the SDF of S and keeps F'(x;) = 0, VF(x;) = n,,
Vi € Z. To ensure F'(z) is an SDF, an additional constraint
from the Eikonal equation |V F(z)|| = 1 is added as recom-
mended by [Gropp et al., 2020]. The final loss function is in
the following form.

Logp = (Pl + 7|V Fxs) — mill?)+
€T (1)
AEL([VF ()] — 1)2

After training, F'(x) approximates the underlying SDF in-
duced by the input point clouds, and the zero level set
F(x) = 0 approximates S, which can be extracted as a polyg-
onal mesh via Marching Cubes [Lorensen and Cline, 1987].

3.2 Spline Positional Encoding

The key idea of our SPE is to use a set of parametric Spline
functions as encoding functions. Different from FPE which
uses predefined sinusoidal functions, our SPE is trainable and
optimized together with MLPs. In our implementation, we
choose the B-Spline function due to its simplicity.

B-Spline function. We first briefly introduce the B-Spline
basis and B-Spline functions. The B-Spline basis B'(x) is a
locally supported function, where B* : R ~— R and i is its
polynomial degree. The BY(x) is defined as follows:

1 if |z] < 0.5;
B'(z) = ’
(z) { 0 otherwise.

2)
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Figure 2: Illustration of Spline positional encoding on 2D. Point x is
projected onto three Splines along three directions. The local heights
of p/, p'7, p’”’ with respect to their own y-axis: ', 3", y""’ form the
Spline positional encoding of x.

Bi(x) is set to the n*" convolution of B°(z). The linear B-
Spline basis B! (x) is supported in [—1, 1], and the quadratic
B-Spline B?(x) is supported in [—1.5, 1.5]. And for simplicity,
we use B(x) and omit the superscript.

Given an input 1D domain, we first uniformly subdivide
it to K segments and get (K + 1) knot points {c;}%, and
denote the interval between two knots as . We scale and
translate the B-Spline basis B(z) to each knot point, and get
Bs,,(x) = B(*5%). At the i node point, we define an
optimizable parameter W;. The parametric Spline function is
defined as

K
() = WiBse, (o). 3)
1=0

If we further define W; as a C-channel vector, we can obtain
C spline functions.

Spline positional encoding. Without loss of generality, we
assume the input domain for training MLP is [—1,1]¢. We
randomly select a set of unit directions D1,...,D,,, and
these directions can determine a set of line segments with the
same direction passing through the origin, whose two ends
are on the unit sphere. On each line segment L, we can
define a spline function 1)y, within the interval [—1, 1]. Given
a point x € [—1,1]%, its spline positional encoding is defined
as follows. We first compute the 1-D coordinate of x with
represent to each direction Dy, denoted by z, by projecting
it onto L:

T = <X,Dk>. (4)
The SPE of x is defined as:
®(x) = [Y1(21), ..., Y (war)]- 5)

To be able to differentiate different points in R, the projection
directions should be independent, and the projection direction
number should be larger than d.

The above spline positional encoding lifts the point from a
d-dimension vector up to a C' x M tensor. In our experiments,
we simply sum up the M projections and get a C' dimension
positional encoding. The total number of parameters used by
SPEis C'x (K+1)x M+(d—1)x M. Here (d—1) x M is for
the projection directions. All the parameters are differentiable
in Eq. (5), thus can be trained to find their optimal values.
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Relationship with prior positional encodings. For an
MLP that directly takes coordinates as input, we can define
its positional encoding as ¢(x) = x. The Fourier positional
encoding proposed by [Tancik ef al., 2020; Mildenhall et al.,
2020; Zhong et al., 2020] is composed of a set of sinusoidal
functions with different frequencies, which can be defined as

®(x) = [sin(2nw! x), cos(2nw! ), - - -
sin(2rwl;x), cos(2rwl, x)).

Since the spline function with sufficient knots can well approx-
imate the Identity, Sine, and Cosine functions, our SPE can
be regarded as a generalization of prior positional encodings.
Actually, we can properly initialize W; in Eq. (3) according to
FPE and fix W; during the optimization process and achieve
the same effect as FPE.

3.3 Training Scheme

Multi-scale optimization of SPE. The B-Spline bases can
be subdivided in a multi-scale manner, which is widely used
in the multi-resolution optimization in Finite Element Analy-
sis [Logan, 2017]. Suppose a Spline function is composed by
K linear Spline bases, as defined in Eq. (3), we can refine it
by subdividing the input domain to 2K segments and initialize

the new weights W; via the following formula:

K
W; = WiBsc,(¢)) (6)

1=0

where ¢; represents the j-th refined knot. Other higher-order
Spline bases can also be subdivided similarly, and we omit the
detailed formulas for simplicity. When training the network
with the loss function, we first warm up the training process
with a coarse resolution SPE. With a coarse SPE, the MLP
quickly fits the low-frequency part of SDFs and provides a
good initialization. Then we progressively refine SPE to in-
crease the fitting ability of MLPs. In this way, our network
can converge to better local minima: both the SDF away from
the input points and the geometric details on the surface are
better recovered.

Network training. By default, we use an MLP with 4 fully-
connected (FC) layers with the Softplus activation function,
each of which contains 256 hidden unit, and choose linear
B-Spline bases for SPE. In each iteration during the training
stage, we randomly sample 10k to 20k points from the input
point cloud and the same number of random points from the
3D bounding box containing the shape. All input points are
encoded via our SPE. We set the parameters of SPE to K =
256,C' = 64, M = 3, resulting a 64 dimension encoding
for each point. As a reference, with FPE, the dimension of
per-point encoding is 256. The encoded point features are
forwarded by the MLP. Then the loss in Eq. (1) is calculated.
The parameters A and 7 in Eq. (1) are set to 0.1 and 1. The
MLP and SPE are optimized via the Adam [Kingma and Ba,
2014] solver with a learning rate of 0.0001, without using the
weight decay and normalization techniques.

For the multiscale optimization, we first initialize SPE with
K = 2, then progressively increase K to 8, 32, 128, and
256, with the initialization method provided in Eq. (6). When
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Model Armadillo Bimba Bunny Dragon Fandisk Gargogle Dfaust
Chamfer MAE | Chamfer MAE | Chamfer MAE | Chamfer MAE | Chamfer MAE | Chamfer MAE | Chamfer MAE
IGR 13.6 1.9 5.1 1.1 2.5 0.7 62.1 1.8 2.3 1.0 17.2 6.1 17.6 14
SIREN 22 221 5.6 189 1.5 16.3 14 2.3 2433 203 28 17.0 9.3 329
FPE 207.5 283 3867.2  27.1 2637 254 5282 303 6956.8 27.7 73425 249 116.7  38.5
SPE 1.3 3.1 1.6 0.6 1.5 0.8 1.8 2.1 1.3 0.4 24 1.3 9.1 2.0

Table 1: Numerical results on SDF reconstruction from unorganized point clouds. The Chamfer distance and MAE are multiplied by 10000
and 100. Our SPE has much lower Chamfer distance than FPE and IGR, and better MAE than SIREN and FPE.

optimizing MLPs with K = 2, we occasionally observe the
extracted surface containing spurious patches away from the
input point cloud. Inspired by the geometric initialization
proposed by [Atzmon and Lipman, 2020a] which initializes
the network to approximate a sphere, we train a randomly
initialized MLP to fit the SDF of a sphere. After training, the
network weights are stored and used as the initialization of
MLPs with K = 2 in SPE.

For learning shape spaces, we train an Auto-Decoder
proposed by [Park er al., 2019]. Instead of relying on a
global shape code to identity each shape [Park ef al., 2019;
Gropp et al., 20201, our SPE itself is optimizable for each
shape, which can be directly used to distinguish different
shapes. Therefore, we train a shared MLP and specific SPE
for each shape in the training set. The MLP is also composed
of 4 FCs with 256 hidden units. After training, the network
weights are fixed, and only the SPE is optimized to fit new
shapes in the testing set.

4 Experiments and Evaluation

We have conducted the comparisons with several state-of-the-
art methods to verify the effectiveness of our method. Specifi-
cally, we regard the MLP that directly takes the coordinates as
input as the baseline, i.e., IGR [Gropp et al., 2020]. For the
positional encoding, we compare our SPE with FPE proposed
by [Tancik et al., 2020], which is an enhanced and improved
version of the positional encoding in [Mildenhall erf al., 2020;
Zhong et al., 2020], and SIREN [Sitzmann et al., 2020]. By
default, these networks are all composed of 4 FC layers with
256 hidden units.

Our implementation is based on PyTorch, and all exper-
iments were done with a desktop PC with an Intel Core i7
CPU (3.6 GHz) and GeForce 2080 Ti GPU (11 GB mem-
ory). Our code and trained models are available at https:
//wang-ps.github.io/spe.

4.1 Single Shape Learning

In this section, we test our method on the task of reconstructing
SDFs from raw point clouds. We evaluate both the quality of
the reconstructed surface and SDFs.

Dataset. We collect 7 3D shapes as the benchmark, which
include detailed geometric textures (Bunny, Armadillo, and
Gargoyle), smooth surfaces (Bimba and Dragon), and sharp
features (Fandisk). The Dfaust point cloud is produced by a
real scanner provided by [Bogo et al., 2017]. For other models,
we sample points with normals from the surface via uniformly
placing virtual depth cameras around each shape.
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Figure 3: Visual comparisons on SDF reconstruction from raw point
clouds. The reconstructed shapes and SDF slices are illustrated.

Evaluation metric. We use the Chamfer distance to mea-
sure the quality of the extracted surface. Specifically, we
randomly sample a set of N points X = {x;}2; from the ex-
tracted surface and ground-truth surface X' = {#:},, where
N = 25k. And we use the following formula to calculate the
Chamfer distance:

. 1 1
D(X,X) = N;rnjin”l‘i — &l + sz:mlinﬂfﬁi — x|

@)
We use the mean absolute error (MAE) between the predicted
and ground-truth SDFs to measure the quality of the predicted
SDFs. To calculate the MAE, we uniformly draw 2563 sam-
ples on both the predicted and ground-truth SDFs.

Results. The numerical results are summarized in Table 1,
and the visual results are shown in Fig. 3. As we can see,
compared with IGR, the Chamfer distance of our method is
greatly reduced, and the high-frequency geometric details are
reconstructed much better, which verifies that with our SPE
MLPs can easily reproduce the high-frequency details. For
SIREN and FPE, their extracted surfaces may contain spurious
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Figure 4: Different level sets of trained SDFs by SPE.

(K, C, M) (128, 64, 3) (256, 64, 3) (128,128, 3) (128, 64, 6) (128, 64, 3)*
Chamfer 1.72 1.63 1.67 1.69 1.71

Table 2: Chamfer distances on the Bimba model with different pa-
rameter settings. (128, 64, 3)* uses quadratic B-Spline bases.

components, as shown in Fig. 3. Note that it is non-trivial to fix
this issue for their results: although the isolated small meshes
can be easily removed, the incorrect components attached to
the real surface are hard to remove and repair. Moreover, the
implicit fields of FPE and SIREN have large deviations from the
ground-truth SDFs, as revealed by significantly larger MAE.
In Fig. 4, we show an application using SDFs trained with our
SPE to extract the different level sets for shape shrinking and
dilation.

4.2 Ablation Study

Expressiveness of SPE. We did an ablation study on how
the choices of hyper-parameters (the segmentation number K,
the channel of weights C, the projection number M, and the
order of B-Spline basis), affect the performance of SPE. The
experiments were done on the reconstruction of the Bimba
model and we increased one hyper-parameter while keeping
others unchanged. The baseline is K = 128, C' =64, M = 3
with linear B-Spline bases. The results summarized in Table 2
show that larger hyper-parameters can result in better apprima-
tion quality, while the segmentation number brings the most
effective improvements.

Can a vanilla MLP compete with SPE? To check whether
a vanilla MLP can fit the high-frequency details, we train
vanilla MLP -IGR by increasing its network depth and training
time on the task of reconstructing the Bimba model. The
results are shown in Fig. 5. As we can see, even by increasing
the network depth by 4 times or increasing the training time
by 10 times, the results of vanilla MLPs are still worse than
SPE. Without any kind of positional encoding, the vanilla
MLP converges too slow to recover the fine details.

IGR-deep

IGR-long SPE

Figure 5: Test on vanilla MLP with different settings. From left to
right: the ground-truth, the result of IGR as the baseline, IGR-deep:
IGR with 4 times increased network depth, IGR-long: IGR with 10
times longer training time, and our SPE result. The numbers in the
figure are the Chamfer distance.
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Method | IGR SIREN FPE SPE

Chamfer | 14.1 15.3 18.1 11.5
MAE 3.6 347 304 34

Table 3: Comparisons of shape space learning on the D-Faust dataset.
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Figure 6: Visual comparisons on shape space learning. 3 human body
shapes from the testing set reconstructed by different methods and
the corresponding SDF slices are shown.

Specialization of our SPE. With proper initialization, our
SPE can reproduce the MLP with FPE, since B-Spline func-
tions can fit sinusoidal functions well with sufficiently small 4.
In practice, we find that as long as the § of B-Spline functions
is similar to the period of a sinusoidal function, we can achieve
similar effects.

4.3 Shape Space Learning

SPE is also suitable to learn shape spaces from raw scans using
auto-decoders [Park et al., 2019]. We compared our method
with IGR, SIREN, and FPE, for which each shape has a specific
shape code with dimension 256 and all the shapes share the
same decoder. Our SPE optimizes the specific spline positional
encoding for each shape and does not use a shape code. The
parameters are set to K = 64,C = 32, M = 3. We use
the Chamfer distance and MAE defined in Section 3.1 as the
evaluation metrics to compare the quality of the reconstructed
surface and SDFs on the unseen testing shapes.
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Method | MLP

Natural Images | 18.3 31.1
Text Images 184  35.6

SIREN FPE SPE SPE*

30.8 30.1 33.6
337 374 404

Table 4: PSNRs of the image reconstruction task. SPE* is SPE with
M = 32.

“‘“‘

(@MLP  (b) SIREN  (c) FPE (d) SPE*

Figure 7: Results of image reconstruction. The bottom row shows
zoom-in views.

Dataset. We conducted the experiment on the D-Faust
dataset [Bogo et al., 2017] by following the setup of [Gropp
et al., 2020]. D-Faust contains real scans of human bodies
in different poses, in which 6258 shapes are used for training
and 181 shapes are used for testing. For each raw scans, we
sample 250k points with normals as the input.

Results. After training, all the methods are tested on the
test shapes by fixing the network weights and optimizing the
shape code or our spline weights. Table 3 lists the Chamfer
distance and the MAE of SDFs of the results generated by
four methods. It is clear that our method outperforms the other
three methods, and the second-best method is IGR. Although
SIREN and FPE have a better fitting ability in single shape
reconstruction, they are even worse than IGR in the shape
space learning within the auto-decoder framework. The visual
comparisons in Fig. 6 further confirm the better performance
of our method.

4.4 Generalizability of SPE

In this section, we show the generalizability of our method via
the tasks of fitting images and SDFs.

Image fitting. In this experiment, we trained an MLP to
map 2D coordinates to the corresponding pixel values. We
use the image dataset provided by [Tancik et al., 2020], which
contains 16 natural images and 16 text images. The MLP
is trained with an Lo loss. We use PSNR as the evaluation
metric. The results are summarized in Table 4. With similar
size of parameters, our SPE achieves comparable results to
SIREN and FPE, and is much better than a vanilla MLP. With
more projection directions (M = 32), the performance of
our SPE can be significantly improved. Fig. 7 illustrates the

reconstruction results and zoom-in views by different methods.

We notice that the resulting images of FPE have visible noise
patterns, as shown by the zoom-in figure, and the result of
Siren is more blur than ours.

SDF fitting. Instead of learning SDFs from raw points, we
sample the ground-truth SDFs in the resolution of 2563. The

Model Arm. Bimba Fandisk  Garg.

MLpP  9.69 4.69 3.76 11.59 2.06 9.94
SIREN  1.19 1.41 1.48 1.23 1.44 1.66
FPE 1.24 1.44 1.49 1.29 1.47 1.71
SPE 1.18 1.39 1.46 1.19 1.36 1.69

Bunny Dragon

Table 5: Comparisons on the SDF regression task. The numbers are
Chamfer distances.

s b i L
GT (a) MLP (b) SIREN (c) FPE (d) SPE

Figure 8: Comparisons on shape regression. The results are shown in
the first row, and the zoom-in figures are shown in the second row.

MLP takes 3D coordinates as input and output 1D distance
values and directly fits the ground-truth SDFs with an L4
loss [Park et al., 2019]. We set the projection direction of our
SPE as 16 to get smoother results. We use the same dataset in
Section 4.1 and summarize the fitting results in Table 5. The
zero isosurface results of the Fandisk example by different
methods are illustrated in Fig. 8. It can be seen that the results
of SPE and SIREN are more faithful to the ground truth than
other methods, while the result of IGR is over-smoothed and
the result of FPE has visible noise patterns.

5 Conclusion

We present a novel and effective Spline positional encoding
scheme for learning 3D implicit signed distance fields from
raw point clouds. The spline positional encoding enhances the
representation power of MLPs and outperforms the existing
positional encoding schemes like Fourier positional encoding
and SIREN in recovering SDFs.

In the future, we would like to explore SPE in the following
directions.

Non-uniform spline knots. Compared with uniform knots
we used in spline functions, non-uniform knots provide more
freedom to model complex and non-smooth spline functions
and would also help reduce the parameter sizes of SPE while
keeping the same approximation power.

Composition of positional encoding. As positional encod-
ing has proved to be an effective way to distinguish nearby
points in a higher dimension space, it would be interesting to
composite multiple scale SPEs to strengthen the capability of
SPE while using fewer parameters for each SPE.
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