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Abstract

While the abuse of deepfake technology has
brought about a serious impact on human society,
the detection of deepfake videos is still very chal-
lenging due to their highly photorealistic synthesis
on each frame. To address that, this paper aims
to leverage the possible inconsistent cues among
video frames and proposes a Temporal Dropout 3-
Dimensional Convolutional Neural Network (TD-
3DCNN) to detect deepfake videos. In the ap-
proach, the fixed-length frame volumes sampled
from a video are fed into a 3-Dimensional Convo-
lutional Neural Network (3DCNN) to extract fea-
tures across different scales and identify whether
they are real or fake. Especially, a temporal dropout
operation is introduced to randomly sample frames
in each batch. It serves as a simple yet effective
data augmentation and can enhance the represen-
tation and generalization ability, avoiding model
overfitting and improving detecting accuracy. In
this way, the video-level classifier is trained to iden-
tify deepfake videos accurately and effectively. Ex-
tensive experiments on popular benchmarks clearly
demonstrate the effectiveness and generalization
capacity of our approach.

1 Introduction

Fake images and videos including facial information gener-
ated by digital manipulation, especially via deepfake meth-
ods, have become a great public concern recently [Suwa-
janakorn et al., 20171, which has threatened politics and pub-
lic social media area, such as personal revenge, evidence tam-
pering, credibility harming, even political sabotage via falsi-
fying media records, and public mood, existing legislation,
and so on. Effective detection of those deepfake contents is
an urging challenge around the world.

Existing methods usually train an image-level or video-
level binary classifier using Deep Neural Networks(DNNs).
Image-level methods aim to predict possibilities of each
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Figure 1: Motivation of this work. While deep generative methods
nowadays can synthesize photo-realistic frames, temporal inconsis-
tencies (for example, an unnatural blinking) within frames could
serve as informative cues in deepfake video detection.

frame being fake [Wang et al., 2017; Hsu et al., 2018]. How-
ever, in this way, all the spatiotemporal information is dis-
carded, which should have served as informative cues. In
contrast, video-based methods, which take videos as input,
are less explored. Architectures including Recurrent Neu-
ral Network (RNN), Long Short-Term Memory (LSTM) and
3DCNNs are commonly adopted [Guera and Delp, 2018].
Nevertheless, taking videos as input results in much higher
complexity and difficulty in training.

To make full use of spatiotemporal information, this pa-
per introduces an effective framework, Temporal Dropout
3-Dimensional Convolution Neural Network (TD-3DCNN).
3DCNNSs recently have shown impressive performance on
video representation and comprehending, which plays a key
role in deepfake video detection. We introduce a 3D incep-
tion module, which learns to extract features from different
scales. Temporal dropout, as the name implies, is performing
dropout on the temporal level. In every epoch, a video within
a mini-batch undergoes the following two operations: 1) we
randomly sample a continuous sequence of a fixed length,
named raw sequence; 2) then we randomly dropout part of the
frames in the raw sequence, and the survived frames form the
final sequence. In this way, the model is trained to leverage
the spatiotemporal characteristics from incomplete samples
and learn informative and robust representations.

The temporal dropout module contains double random
sampling. Applying dropout to the segment amounts to fur-
ther sampling a “shortened” video from it, which consists of
all the frames that survive both fixed-length segmentation and
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dropout. A video with N frames, given the expected raw se-
quence length C' < N and input length n, can be therefore
seen as a collection of (N — C) x (g) possible shortened
videos. For each presentation of each training case, a new
shortened video is sampled and used for training. In this way,
the model learns to leverage the global spatiotemporal infor-
mation without falling into traps of sampling biases.

Our main contributions are as follows. First, we propose an
effective video-level deepfake detection framework, named
TD-3DCNN. The 3DCNN employs 3D inception modules to
leverage the spatiotemporal information of different scales
and capture temporal inconsistencies between frames. Sec-
ond, we propose a simple yet effective sampling mechanism,
Temporal Dropout, which serves as an efficient data augmen-
tation to improve the model’s generalization and representa-
tion ability. Finally, we conduct extensive experiments on
three benchmarks to show the effectiveness of our approach.

2 Related Work

2.1 Deepfake Video Generation and Detection

Deepfake, first proposed in 2017, refers to the technique of
synthesizing fake media such as images and video using deep
learning method [Tolosana e al., 2020]. Generative adversar-
ial networks (GANSs) [Goodfellow et al., 2014] have enabled
a set of video manipulations including identity [Li et al.,
2020al, facial attributes and expressions [Thies et al., 2016;
Chu et al., 2020], even body actions [Tulyakov et al., 2018].

Currently, the detection methods for manipulated videos
can be divided into image-based and video-based methods.
The image-based ones focus on spatial artifacts, for example,
the blending seams [Durall et al., 2020]. In [Li et al., 2020b]
the authors predict whether an image is fake and its blending
boundary at the same time. While such approaches can learn
to detect spatial artifacts from a large amount of training data,
they do not have good performance across different datasets.

To overcome such defects, some researchers hypothesized
that the generated contents lack physiological signals which
causes inconsistencies across frames, and proposed to take
the temporal information in the video into consideration. The
authors in [Ciftci et al., 2020] use the pulse signal as the
evidence for detection. In [Agarwal et al., 2020], the authors
refined the approach by detecting inconsistencies between the
visemes and spoken phonemes. These methods may perform
better than the image-based ones, but they are only applicable
to particular kinds of attacks.

2.2 3DCNN for Deepfake Detection

Recently, 3DCNNs have shown impressive superiority on
multiple tasks including motion recognition [Tran er al.,
2015], activity recognition [Donahue et al., 2017], and human
Re-ID [McLaughlin et al., 2016]. This is because the 3DC-
NNs can better utilize the spatiotemporal information via 3D
convolution and 3D pooling operations.

Inspired by the vanilla 3DCNN, a number of variants were
proposed. I3D [Carreira and Zisserman, 2017] uses a bunch
of RGB frames as input. It replaces 2D convolutional layers
of the original Inception model with 3D convolutions for spa-
tiotemporal modeling and inflates pre-trained weights of on

ImageNet for initialization. Results showed that such infla-
tion has the ability to improve 3D models. 3D ResNet [Hara
et al., 2018] and 3D ResNeXt are also inspired by I3D, ex-
tending initial 2D ResNet and 2D ResNeXt to spatiotemporal
dimension for action recognition. Deviating from the origi-
nal ResNet-bottleneck block, the ResNeXt-block introduces
group convolutions, which divide the feature maps into small
groups. In summary, 3DCNN has an impressive performance
on video understanding and representation, which may also
play a key role in deepfake video detection task.

3 The Proposed Approach

3.1 Problem Formulation

Given a video V = {f;}:=1' consisting of N frames, the ob-
jective of deepfake detection is to learn a binary classification
model ¢ to tell fake from real. Image-level methods take sin-
gle frame as input, performing frame-wise prediction:

6(V = true) = ﬁt¢i(ftaw¢qi)7 te [17N]7 (1)

where 0(V = true) is the predicted possibility of the video
V being true, N is the AND operation, ¢; denotes the image-
level detector and wy, are its parameters. When these ap-
proaches treat each frame in the video as independent images,
the spatiotemporal relationships between adjacent and nonad-
jacent frames are wasted.

Differently, video-level methods take a sequence consist-
ing of multiple frames as input. To decrease the computation
pressure of the model, usually a video sampling technique is
adopted and the sampled volume is then sent into the detector:

S(V = true) = ¢y (Fy,ws,)

= ou({ftrs---
t1,...,tc € [1,N]

where Fy = {ft,, ftys---s fto } 1S @ video volume consisting
of C frames, ¢, denotes the video-level detector and wy,, are
its parameters. Evidently, to learn a robust video-level de-
tector ¢,, two main problems need to be addressed: 1) how
to sample representative frame sequence Fy, and 2) how to
leverage the context and spatiotemporal information within
and enhance the representation ability of the detector.

In this paper, we propose to solve the two problems by in-
troducing a simple yet effective sampling technique called
Temporal Dropout (TD). In every epoch, a video within a
mini-batch undergoes the following two operations: 1) we
randomly sample a continuous sequence of a fixed length,
named raw sequence; 2) then we randomly drop out part of
the frames, and the survived frames form the final sequence.
In this way, the model is trained to leverage the spatiotempo-
ral information and perform accurate deepfake detection. The
overall predicting process using TD can be formulated as:

SV =true) = ¢y (Fy,wy,)

:¢v({ft17"'vftn}7w¢u)v (3)
t1 <t <,..., <1, € [Z,Z+C), 1€ [O,N*O]

aftc}vwdiu)a ()

where Fy; C {fi, fi+1,.--» fixc—1} is obtained by randomly
selecting n frames out of the raw sequence consisting of C'
continuous frames with a starting index 4.
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Figure 2: The framework of our proposed TD-3DCNN. The video frame volumes are sampled and augmented by the temporal dropout
operation and fed into a 3DCNN, which enhances the feature representation ability and model generalizability, leading to an accurate and

effective video-level deepfake detector.

3.2 TD-3DCNN

The framework of our proposed TD-3DCNN is shown in
Fig. 2, consisting of a pre-processing stage and a feature ex-
traction and classification stage. The pre-processing stage
takes original videos as input and turns them into uniform for-
mat to facilitate the following process. The feature extraction
and classification stage adopts a 3DCNN to learn robust rep-
resentations via leveraging the context as well as spatiotem-
poral information. Given an input video, we first extract all
frames. The complete frame volume is passed to the Tempo-
ral Dropout module and undergoes double random sampling
operations. Then we extract the face area of each frame us-
ing a pre-trained face detection network. The faces are then
resized, concatenated, and passed to the designed 3DCNN to
tell whether the input video is fake or not.

The architecture of the 3DCNN is presented in the upper-
right in Fig. 2. The first convolutional layer adopts the
7 x 7 x 7 kernel, used to extract the low-level information.
Then there are a pooling layer and a convolutional layer with
1x1x1 kernel, to reduce the feature size and total parameters.
The third convolutional layer using 3 x 3 x 3 kernel is to ex-
tract the high-level information, followed by a pooling layer.
Then there are three inception modules, each followed by a
pooling layer, used to extract temporal features of different
scales, enhancing the model’s representation ability. Finally,
the condensed feature is passed through a dense layer and a
softmax layer to get the prediction result.

The receptive field is one of the primary factors that decide
the representation ability. While 2-dimensional models treat
the two spatial dimensions (horizontal and vertical) equally,
it leaves ample freedom for 3-dimensional video processing
models to inflate the operators along the temporal dimension.
To extract and learn those features properly and enhance the
video-level representation ability, we design a 3-dimensional
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Inception Module, detailed architecture of which is shown in
lower-right in Fig. 2. The purpose of different kernel numbers
and sizes in those four branches is to extract temporal features
of different scales, capturing the videos’ details and improv-
ing our classifier’s performance. Worth noting, our proposed
Inception Module use 3 x 3 x 3and 5 x 5 x 5 kernel size in
the second and third branch to extract different scale feature
more effectively, which is different from the one in [Carreira
and Zisserman, 2017].

3.3 Temporal Dropout

The algorithm of our TD module is described in Alg. 1. In
each training epoch, after extracting all the frames from the
training video, we first choose a random beginning index and
sample a continuous frame sequence, named raw sequence.
The length of the raw sequence length is C' = n X «, where n
is the desired length of model input and « is the amplification
coefficient. Then we randomly drop C' — n frames out of
the raw sequence, and obtain the final sequence at length n,
which is then passed into 3DCNN for prediction.

By introducing our TD module, our 3DCNN can obtain
different sequence frames as input in different epochs for
the same video. It can not only extract the consistent local
temporal information but also preserve the whole original se-
quence’s global information. The dropout operation achieves
a “Data Augmentation” effect. Both of those traits enhance
the video-level representation ability of our model.

Two commonly used video sampling approaches, i.e., Sys-
tematic Sampling (SS) [Madow and Madow, 1944] and Con-
tinuous Sampling (CS) [Seppi, 20081, also work on the video
level and are closely related to our Temporal Dropout (TD).
SS samples at a fixed interval. It can well preserve the
global temporal information but the obtained sequence itself
is discrete, where the local temporal information is sacrificed.
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Algorithm 1 Temporal Dropout

Require:
F: original frames of input video;
N: length of F7;
n: length of our TD-3DCNN input;
a: amplification coefficient;
Ensure:
F: sampled video volume consisting of certain frames.

index = random(1,N —n x «)

Frow = Flindex : index + n X af

F; = RandomChoose(Fyqw;n X a,n)
return F;

bl

Differently, CS samples a continuous sequence of a certain
length, in the defined domain such as image or frequency do-
main. The obtained sequence in this way preserves local tem-
poral consistency while losing global consistency. The differ-
ence with CS is that: after randomly sampling a continuous
sequence, TD further enforces representation towards rela-
tionships between nonadjacent frames by dropping out part
of the frames, leading to better global consistency.

In the training process, the continuous sampling preserves
the local temporal information of original sequences and the
randomly chosen beginning index in every iteration enforces
preservation of the global information. The randomly tempo-
ral dropout operation acts as a data augmentation process: the
classifier can always obtain different sequences. Thus we can
efficiently enhance the representation ability of our model.

4 Experiments

4.1 Experimental Setting

We conduct experiments on three deepfake video datasets:
the Celeb-DF(v2) [Li et al., 2020c], DFDC [Dolhansky et al.,
2019] and FaceForensics++ [Rossler et al., 2019]. Details
of the three datasets and experimental settings are listed as
follows. We implement all the models with PyTorch [Paszke
et al., 2019] on NVIDIA TITAN Xp.

The Celeb-DF(v2) dataset [Li e al., 2020c] contains 590
original videos collected from YouTube with subjects of dif-
ferent ages, ethnic groups and genders, and 5,639 correspond-
ing synthesized videos, which have similar visual quality on
par with those circulated online. We follow the provided di-
viding principle to obtain the training and testing sets.

The Deepfake Detection Challenge (DFDC) dataset [Dol-
hansky et al., 2019] consists of 19,197 real videos from 430
paid actors, and 100,000 fake videos, with accompanying
labels describing whether they are deepfake videos. Fake
videos are generated by facial manipulation techniques in-
cluding DeepFakes, Face2Face and etc. DFDC considers dif-
ferent acquisition scenarios (i.e., indoors and outdoors), light
conditions (i.e., day and night), distances from the person to
the camera, and pose variations, among others. We divide our
training, validation and testing sets by a ratio of 6:2:2. And
finally, we obtain 7,528 videos as training set, 2,482 videos
as validation set and 2,541 videos as testing set.
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FaceForensics++ [Rossler et al., 2019] is a dataset con-
sisting of 1,000 original video sequences from Youtube, as
well as corresponding manipulated videos using four differ-
ent manipulation methods: Deepfakes', FaceSwap?, Neural-
Textures [Thies et al., 2019] and Face2Face [Thies et al.,
2016]. To obtain the training, validation and testing sets, we
randomly split the videos in the FaceForensics++ dataset in
6:2:2. Finally we obtain 4,074 videos as training set, 1,269
videos as validation set and 1,363 videos as testing set.

To prepare the data, we first use FFmpeg® to extract all
the frames, then sample the frame sequence and extract the
face area by a pre-trained MobileNet*. The faces are then
resized into 224 x 224 images, which are the input. During
training, we set the batch size as 16 and the total epoch is
50. The model is trained via Adam [Kingma and Ba, 2015]
optimization with the global learning rate set as 10> and
weight decay set as 1075, We adopt the cross-entropy as the
loss function. The activation function of all layers is Relu
function. All 3D convolution layers’ stride are 1 x 1 x 1 and
all pooling layers’ stride are 2 x 2 x 2 using the Same padding.
For the Temporal Dropout module, we set n = 20, « = 1.25,
which means that we sample continuous 20 x 1.25 = 25
frames and then randomly choose 20 frames from them.

4.2 Results

To validate the effectiveness of our TD-3DCNN framework,
we perform comparisons with six state-of-the-art detectors on
Celeb-DF(v2) and DFDC dataset: Two-stream NN [Zhou et
al., 2017], MesoNet [Afchar et al., 2018], Head Pose [Yang
et al., 2019), Visual Artifacts [Matern et al., 2019], Multi-task
[Nguyen et al., 2019], Warping Artifacts [Li and Lyu, 2019].

We use AUC score as our evaluation metric and Tab. 1
presents the results. Our method achieves the best perfor-
mance on Celeb-DF(v2) and DFDC dataset, even 24.23% and
3.47% higher than the recent work [Li and Lyu, 2019], prov-
ing the proposed TD-3DCNN to be truly effective in deepfake
video detection task. Worth noting, other methods’ bench-
mark in DFDC used DFDC Preview instead of full DFDC
dataset, which is more complicated and challenging. Obvi-
ously our TD-3DCNN has different performance on these dif-
ferent three datasets, which reflects the different complexity
and difficulty of these two datasets.

Additionally, in order to test the stability and adaptability,
we evaluate the TD-3DCNN on FaceForensics++ benchmark.
Different from [Li and Lyu, 2019] where state-of-the-arts are
evaluated only on a subset of FaceForensics++, we take the
complete testing set containing all different classes for eval-
uation. Finally our TD-3DCNN presents a competitive per-
formance of 72.2% AUC score. It suggests our model learns
highly adaptive representations that allows stable detection
over videos manipulated by varieties of methods.

To demonstrate the model’s generalization ability, we also
conduct experiments by training and testing across different
datasets. Six metrics are adopted for evaluation: the accu-

"https://github.com/deepfakes/faceswap
“https://github.com/Marek Kowalski/FaceSwap/
3https://ffmpeg.org/
*https://github.com/yeephycho/tensorflow-face-detection



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Methods Celeb-DF(v2)[Li et al., 2020c] DFDC[Dolhansky et al., 2019]
Two-stream NN [Zhou et al., 2017] 53.80 61.40
MesoNet [Afchar et al., 2018] 54.80 75.30
Head Pose [Yang et al., 2019] 54.60 55.90
Visual Artifacts [Matern et al., 2019] 55.10 66.20
Multi-task [Nguyen et al., 2019] 54.30 53.60
Warping Artifacts [Li and Lyu, 2019] 64.60 75.50
TD-3DCNN 88.83 78.97
Average Improvement 32.63 14.32

Table 1: AUC(%) comparisons of TD-3DCNN and other six state-of-the-art deepfake detection methods on Celeb-DF(v2) and DFDC datasets.
Results in izalics indicate that they were pulished in [Li er al., 2020c], but not in the original work. In each column, the highest score is

remarked in bold. The bottom row presents the the average improvement.

Train Set Test Set ACC(%)r AUC(%)T Logloss| Recall(%)t Precision(%)t F1(%)T
Celeb-DF(v2) 81.08 88.83 0.415 99.41 68.98 82.42
Celeb-DF(v2) DFDC 74.85 60.75 0.532 85.44 86.08 85.76
FaceForensics++ 73.88 64.72 0.552 85.51 81.99 83.71
Celeb-DF(v2) 66.60 64.20 0.636 99.41 66.40 79.62
DFDC DFDC 82.64 78.97 0.367 98.77 85.89 91.88
FaceForensics++ 75.93 56.26 0.566 94.39 79.03 86.03
Celeb-DF(v2) 66.02 57.32 0.678 100.0 65.89 79.44
FaceForensics++ DFDC 82.21 55.02 0.491 98.29 83.36 90.20
FaceForensics++ 79.09 72.22 0.469 99.63 79.14 88.21

Table 2: Experiments to demonstrate the generalization ability of TD-3DCNN. We train and cross evaluate the TD-3DCNN on three different
datasets: Celeb-DF(v2), DFDC, FaceForensics++. We use following six metrics for evaluation: the accuracy (ACC), the area under the
curve (AUC), Logloss, Recall, Precision and F1 score. In each column, the highest score is remarked in bold.

racy (ACC), the area under the curve (AUC), Recall, Preci-
sion, F1 score, and Logloss L;,4, formulated as follows:

1 N
Liog = =7 D iy + (1 —y) (1= 5)], 4
i=1

where N is the size of training set. For the ¢ th sample, y; is
the ground truth label and yj; is the prediction of the model.
As shown in Tab. 2, our TD-3DCNN models trained on dif-
ferent datasets have different performance when used to test
other datasets. In most circumstances, metrics such as AUC
and Logloss obtain the best when training and testing sets are
the same. However some other metrics such as ACC, Recall,
Precision and F1 are even better when using other different
datasets as testing sets. For example, our model trained on
FaceForensics++ gets higher ACC on DFDC (82.21%) and
higher Recall on Celeb-DF (v2) (100%). Similar rules apply
when model trained on a dataset is tested on different dataset,
such as the model trained on Celeb-DF (v2) get a better F1
score (85.76%) on DFDC testing set and model trained on
FaceForensics++ obtained better ACC (82.21%) on DFDC
testing set. The reason for such results may be the different
complexities of these three datasets, specifically, the videos
in Celeb-DF (v2) are more complex and difficult to classify
so the model trained on Celeb-DF (v2) obtains a better score
than on the simpler datasets DFDC as well as FaceForen-
sics++. And as we expected, Celeb-DF (v2) is the newest
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Figure 3: Visualization of representations on Celeb-DF(v2), Face-
Forensics++ and DFDC (from left to right). Red: Real, Blue: Fake.

dataset with higher-quality compared to FaceForensics++ and
DFDC. In some cases the performance on the test set is better
than that on the training set, such as those trained on Face-
Forensics++ and tested on Celeb-DF (v2) or DFDC. We sus-
pect it is because the video quality in different datasets varies
a lot. These results reflect that our TD-3DCNN has a good
generalization ability when facing deepfake video detection
tasks. It can well leverage the inconsistent cues among video
frames and obtains a strong representation of input video.

4.3 Discussions

Discussion on Representation Learning We visualize
the representations learned with our TD-3DCNN using t-
SNE [Laurens and Hinton, 2008] on the test sets of three
benchmarks. As shown in Fig. 3, the representations can ef-
fectively cluster real and fake videos.
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Test
m SS €S TD Avg

SS  70.85 70.08 70.85 70.59
ACC(%)! CS 7046 7452 7259 7252
TD 76.06 81.08 80.70 79.28
SS 7312 7413 75.05 74.10
AUC(%)t CS 8224 8723 85.89 85.12
TD 85.02 88.83 88.36 87.40
SS 0.755 0.741 0.788 0.764
Liog 4 CS 0.770 0.582 0.613 0.655
™D 0.561 0.415 0.430 0.469

Table 3: The results of 3DCNN adopting different sampling methods
for training and testing on Celeb-DF(v2) dataset. T means that for
this metric, a bigger value is preferred and vise versa. For each
metric-test pair(sub-column), the highest score is remarked in bold.

Discussion on Sampling Methods To delve into the ef-
fectiveness of the temporal dropout operation, we adopt two
widely used sampling methods, SS and CS, along with TD
for training and testing, separately, and use ACC, AUC and
Logloss for evaluation. The results on Celeb-DF(v2) are
shown in Tab. 3. From the table, several conclusions can be
drawn. First, during testing, CS usually performs the best. It
suggests that in the process of deepfake video detection, the
spatiotemporal information between adjacent frames plays an
essential part. Sequences sampled by SS and TD both suffer
from temporal discontinuity, while CS could preserve the lo-
cal continuity of the sampled sequences, leading to an evident
performance gain. Second, models trained using TD always
achieve the highest ACC and AUC, and the lowest £;,4, no
matter what sampling method is adopted at testing time. It
suggests that TD could effectively benefit the representation
learning. Third, at testing time, TD could achieve comparable
performance with CS, especially for models trained with TD.
It indicates that TD not only helps the model learn the global
representation, but also preserves most of the spatiotempo-
ral information within the local segment. In general, TD is
a simple yet effective technique that helps leverage the spa-
tiotemporal information in both global and local perspective.

Discussion on Consistency To further demonstrate the
representation ability, during testing time, we sample multi-
ple times for the test video and calculated the average of met-
rics. We introduce M., to describe the consistency of mul-
tiple predictions, formulated as Eq. 5. Higher M,,, means
higher stability, and therefore, suggest that the model learns a
better representation over the complete video.

S m
1
Meon = Sxm ZZ[yiPij + (1 —y)(m—PFy)], )

i=1 j=1

where S is the size of training set, m is the repeated times
of sampling, y; is the ground truth label, and P; is the fre-
quency of prediction being fake for the j th sample of the
7 th video. As the results in Tab. 4 shown, our TD-3DCNN’s
performance slightly fluctuates with m increasing and stabi-
lizes eventually. It performs the best on all metrics for all
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SS CS TD

m=1 7008 7452 81.08
m=3 7394 7297 80.88
ACC(%)t m=5 7587 7394 82.43
m=7 7355 7297 81.08
m=9 7432 7355 81.85
m=1 0747 0582 0.415
m=3 0.613 0.581 0.402
Ligl m=5 0556 0578 0.392
m=7 0584 0.573 0.394
m=9 0551 0.566 0.396
m=1 0733 0734 0.793
m=3 0703 0.744 0.805
M., t m=5 0717 0740 0.814
m=7 0.708 0.738 0.803
m=9 0.722 0.744 0.804

Table 4: Average results on Celeb-DF(v2) of models with different
sampling methods over m times of CS for the same test video. Here,
ACC denotes accuracy, Lio4 and Mo, are defined as Eq. 4, 5, sep-
arately. In each row, the highest score is remarked in bold.

m values. In comparison, the other two methods, SS espe-
cially, the ACC and £,,4 metric endure more violent fluctua-
tions as m goes up. These results imply that our TD-3DCNN
can get more stable and robust predictions when given differ-
ent parts of fake videos. And this reliability comes from the
model’s strong video-level representation, which contain rich
spatiotemporal information in the original video.

5 Conclusion

In this paper, we proposed a Temporal Dropout 3-dimensional
Convolutional Neural Network (TD-3DCNN) to detect deep-
fake videos. We first design a 3DCNN architecture with an
introduced 3D Inception Module, which extracts features of
the video on different scales. Then we introduce a Tempo-
ral Dropout (TD) module to leverage the inconsistent cues
among video frames, improving our model’s representation
and generalization ability. Finally, we extensively evaluated
the proposed model on public deepfake datasets, and our TD-
3DCNN exhibits an impressive performance on detecting and
generalization ability, surpassing the state of the arts. In the
future, we will integrate other representation learning meth-
ods in our deepfake detection framework and extend the tem-
poral dropout idea to more video understanding applications.
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