Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Backdoor DNF's

Sebastian Ordyniak', André Schidler?, Stefan Szeider?

'University of Leeds, Leeds, UK
2TU Wien, Vienna, Austria
s.ordyniak @leeds.ac.uk, {aschidler,sz} @ac.tuwien.ac.at

Abstract

We introduce backdoor DNFs, as a tool to measure
the theoretical hardness of CNF formulas. Like
backdoor sets and backdoor trees, backdoor DNFs
are defined relative to a tractable class of CNF
formulas. Each conjunctive term of a backdoor
DNF defines a partial assignment that moves the
input CNF formula into the base class. Backdoor
DNFs are more expressive and potentially smaller
than their predecessors backdoor sets and backdoor
trees. We establish the fixed-parameter tractabil-
ity of the backdoor DNF detection problem. Our
results hold for the fundamental base classes Horn
and 2CNF, and their combination. We complement
our theoretical findings by an empirical study. Our
experiments show that backdoor DNFs provide a
significant improvement over their predecessors.

1 Introduction

Over the last two decades, the progress on practical SAT solv-
ing has been “nothing short of spectacular” [Vardi, 2014].
State-of-the-art SAT solvers routinely solve instances with
millions of clauses and variables. This is in stark contrast
to the theoretical intractability of SAT. The problem is not
just NP-complete [Cook, 1971]; the Exponential-Time Hy-
pothesis [Impagliazzo et al., 2001], a standard complexity-
theoretic assumption, asserts that there is no algorithm that
solves every n-variable 3SAT instance with 2°("") steps. This
apparent discrepancy between theory and practice is often
explained by the presence of a “hidden structure” in real-
world SAT instances, which is implicitly exploited by the
SAT solver. Several approaches have been proposed in
the literature to make the vague notion of a hidden struc-
ture precise, including modularity [Ansétegui et al., 2014;
Newsham et al., 2014; Ganian and Szeider, 2015] and de-
composability [Mateescu, 2011; Jamali and Mitchell, 2017,
Ganian and Szeider, 2017]. The notion of a backdoor set,
introduced by Williams er al. [2003], provides another way
of capturing the existence of a hidden structure in a SAT in-
stance. The idea is to fix a polynomial-time solvable base
class C of CNF formulas (either defined by a polynomial-time
subsolver or by a syntactic property such as Horn). We then
measure the existence of hidden structure within a SAT in-

1403

stance in terms of the number of variables one needs to instan-
tiate to put the instance into the base class C. The instantiated
variables form a backdoor set. One distinguishes between a
weak backdoor (there exists an instantiation of the backdoor
variables that produces a satisfiable instance that belongs to
C) and a strong backdoor (all instantiations for the backdoor
variables result in an instance that belongs to C). This paper
shall focus on strong backdoors since weak backdoors exist
only for satisfiable formulas.

Suppose we know a size-k backdoor set of a SAT in-
stance F'. In that case we can decide its satisfiability by de-
ciding the satisfiability of at most 2* instances that belong
to the tractable base class C, i.e., in time 2%|F|°("). Thus,
SAT is fixed-parameter tractable (FPT) in the backdoor size
if a witnessing backdoor is known. Therefore, it is interesting
whether it is also fixed-parameter tractable to find a backdoor
set of size k (the backdoor set detection problem). The sys-
tematic study of the parameterized complexity of backdoor
set detection was initiated by Nishimura et al. [2004]. They
showed that backdoor set detection is FPT for the fundamen-
tal base classes Horn and 2CNF. Gaspers and Szeider [2012]
survey further results.

As stated above, a backdoor set of size k reduces the given
SAT instance to at most 2¥ tractable formulas in C. How-
ever, 2" is just a worst-case upper bound, which can be re-
duced in many cases. Thus, the size of a backdoor set is only
a very coarse measure for a backdoor set’s quality. Samer
and Szeider [2008] proposed a more refined measure. They
introduced backdoor trees, which are decision trees on the
backdoor variables, where each leaf corresponds to an in-
stance in C. The number of leaves of a backdoor tree over
a backdoor set of size k is a more refined quality measure for
a backdoor set. It ranges between the linear best-case lower
bound of k£ + 1 and the exponential worst-case upper bound
of 2k, Interestingly, as we shall show, a backdoor tree with
the smallest number of leaves is not necessarily based on a
backdoor set of the smallest cardinality. Samer and Szei-
der [2008] showed that the detection of backdoor trees with
respect to the fundamental bases classes Horn and 2CNF is
fixed-parameter tractable when parameterized by the number
of leaves of the backdoor tree. They implicitly assumed that
the variables used by a backdoor tree form a subset-minimal
backdoor set.

This paper proposes a new quality measure for backdoor

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

sets, which can again be significantly smaller than the num-
ber of leaves of a backdoor tree. The new measure is based on
a backdoor DNF for a CNF formula F', a tautological propo-
sitional DNF formula D over the variables of a backdoor set.
Each term of D, considered as a partial assignment, moves F’
into the base class C. We observe that a backdoor tree can be
considered a special case of a backdoor DNF when we iden-
tify each leaf with the term assignments made on the unique
path from the root. We show that the difference between a
smallest backdoor tree and a smallest backdoor tree as found
by the known algorithm [Samer and Szeider, 2008], as well
as between a smallest backdoor tree and a smallest backdoor
DNF, can be arbitrarily large (Theorems 2 and 1). As our
main theoretical contribution (Theorem 3), we show:

The detection of backdoor DNF's and backdoor trees with
respect to the fundamental base classes Horn, AntiHorn,
and 2CNF is fixed-parameter tractable, parameterized by the
number of terms (for backdoor DNFs) or the number of leaves
(for backdoor trees).

In this result, we are not limited to backdoor DNFs over
a subset-minimal backdoor set. We show that such a limita-
tion prevents us from finding backdoor DNFs/trees with the
smallest number of terms/leaves. This strengthens the above
mentioned result by Samer and Szeider [2008], who showed
this for cardinality-minimal backdoor sets. Consequently, our
FPT algorithm needs to be considerably more sophisticated
to cover the general case. Although we still start the search
with subset-minimal backdoor sets, we have to systematically
explore extensions that lead to a smallest backdoor DNF or
backdoor tree, respectively.

Our FPT algorithm also works for heterogeneous base
classes [Gaspers et al., 2017a). Different terms of a backdoor
DNF may lead to instances that belong to different tractable
base classes Horn and 2CNEF, or AntiHorn and 2CNF. How-
ever, we show that similar to the detection of backdoor
sets, one cannot combine Horn and AntiHorn, for a fixed-
parameter tractable detection of backdoor trees or backdoor
DNFs (Theorem 4).

We complement the theoretical results with an empirical
evaluation. We compare the size of backdoor trees and back-
door DNFs over a wide range of SAT instances. We utilize
SAT encoding for the detection of these structures, as well as
an efficient SAT-based algorithm for the extraction of min-
imal unsatisfiable cores. Our experiments show that in all
considered instances, the backdoor DNFs are significantly
smaller than backdoor trees. In many cases, the difference
is of several orders of magnitude, which exceeds the expecta-
tion based on our theoretical results.

2 Preliminaries

We refer to the standard books for a basic overview of param-
eterized complexity theory [Cygan et al., 2015], and assume
that readers are familiar with the parameterized complexity
classes FPT, XP, and W[i].

CNF and DNF formulas. We consider propositional for-
mulas in conjunctive normal form (CNF) and disjunctive nor-
mal form (DNF) represented by sets of clauses, or sets of
terms, respectively; e.g., F' = {{z, ~y}, {—z, 2} } represents

1404

both, the CNF formula C' = (zV—y) A (—z V z) and the DNF
formula D = (2 A —y) V (—z A z). For a CNF/DNF formula
F, v(F') denotes the set of variables occurring negated or un-
negated in F'. By negating a DNF formula we obtain a CNF
formula, for instance D = (—z V y) A (z V —z). A (partial
truth) assignment is a mapping 7 : X — {0, 1} (0 represent-
ing false, 1 representing true) defined on a set X of variables.
We write v(7) = X. If v(7) = {x} then we denote T sim-
ply by ‘z = 1’ or ‘z = 0’. An assignment 7 extends in the
obvious way to literals over v(7) via 7(—2) =1 — 7(z). We
identify each term of a DNF formula as a partial assignment,
e.g., the term (z A —y) corresponds to 7 : {z,y} — {0,1}
with 7(2) = 1 and 7(y) = 0. F[7] denotes the restriction of a
CNF formula F to 7 (i.e., F'[7] is obtained from F' by remov-
ing all clauses that contain a literal that is true under 7, and
by removing from the remaining clauses all literals that are
false under 7). A CNF formula F' is satisfiable if F[r] = ()
for some assignment 7, otherwise it is unsatisfiable. A DNF
formula is a rautology if its negation is unsatisfiable. We also
consider variable deletion in the following form: If X is a set
of variables and F' a CNF formula, then ' — X denotes the
CNF formula obtained from F' by removing from all clauses
literals of the form x or —z for x € X.

Base Classes. A base class is a class of CNF formulas for
which both membership and satisfiability can be decided in
polynomial time. Throughout this paper we also assume that
self-reducibility holds for the considered base classes C: For
every F € Cand x € v(F) also Flx = 0], Flx = 1] € C.

In this paper, we consider all base classes that can be ob-
tained as the union of the following fundamental classes of
CNF formulas:

* 2CNF, i.e., the family of all CNF formulas having at most
two literals per clause,

* HORN (HORN_1), i.e., the family of all CNF formulas hav-
ing at most one positive (negative)literal per clause,

Let 7 = {2CNF, HORN, HORN_; }. The three considered

classes are the most important of the six classes considered

by Schaefer [1978]: The remaining three classes either don’t

directly apply to CNF formulas (affine formulas), or are not

self-reducible (0-valid and 1-valid formulas).

We consider any heterogeneous base class C such that
C = Upep F for /' C F, as has been first consid-
ered by Gaspers et al. [2017al. Finally, we consider the
class of renamable Horn formulas (RHORN), which are for-
mulas that can be made Horn by replacing, for a subset
X of variables, all occurrences of a literal whose underly-
ing variable belongs to X by its complement [Lewis, 1978;
Gaspers and Szeider, 2012]. A base class C can also be ex-
tended by adding empty clause detection [Dilkina et al., 2007,
Szeider, 2008]. This gives rise to the base class CU} =
{F : F €C or F contains the empty clause }.

Backdoor Sets. Let C be a base class, ' a CNF formula,
and B C v(F'). Then B is a (strong) C-backdoor set (BS) of
F if F[r] € C for every truth assignment 7 : B — {0,1};
our BSs are usually referred to as strong BSs in the literature.
For each base class C we consider the following problem:
C-BACKDOOR SET (C-BS). Instance: A CNF formula F'
and a non-negative integer k. Parameter: The integer k.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Question: Has F' a C-backdoor set of cardinality at most k?

Let B be a C-BS of a CNF formula F'. B is smallest if F’
has no C-BS that is smaller than B; B is minimal if F has no
C-BS that is a proper subset of B. We say that a set W of vari-
ables of F'is a C-backdoor branching set foraset B’ C v(F),
if every C-BS for F' that contains B’ also contains at least one
variable from W. The following proposition lies at the heart
of the FPT-algorithms for C-BS (which is also known to be
NP-hard for every C € |Jp F' [Crama et al., 19971]), given
by Gaspers ef al. [2017a] and constitutes a crucial prerequi-
site for our algorithms for BTs and BDNFs.

Proposition 1 ([Gaspers et al., 2017al). Let F be a CNF for-
mula, B C v(F), andC € {2CNF, HORN, HORN_;, 2CNFU
HORN, 2CNF U HORN_1 }. Then, there is an algorithm that

in time O(2!P!|F|) computes a C-backdoor branching set W
for B such that |W| < 5.

Note, however, that RHORN-BS is W[2]-hard [Gaspers

and Szeider, 2012] and 2CNFU-BS, HornU!-BS, and
HORN_; Y}-BS are W[1]-hard [Szeider, 2008].

Backdoor Trees. A binary decision tree (DT) is a rooted
binary tree 7. Every inner node of 7' is assigned a vari-
able, denoted by v(t), and has exactly one left and one right
child, which correspond to setting the variable to O or 1, re-
spectively. Moreover, every variable occurs at most once on
any root-to-leaf path of 7. We denote by v(T") the set of all
variables assigned to any node of 7'. Finally, we associate
with each node ¢ of T', the truth assignment 7, that is defined
on all the variables v(P) occurring on the unique path P
from the root of T to ¢ such that 7 (v) = 0 (7;(v) = 1) if
v € v(P)\ {v(t)} and P contains the left child (right child)
of the node ¢’ on P with v(t") = v.

Let C be a base class, F' a CNF formula, and T' a DT
with v(T) C o(F). Then T is a C-backdoor tree (BT) of
Fif F[r,] € C for every leaf v of T. A C-BT T of F with the
smallest number of leaves (in the following, let |T'| denote the
number of leaves), is a smallest C-BT of F'. We consider the
following parameterized problem:

C-BACKDOOR TREE (C-BT) Parameter: &
Input: A CNF formula F' and a non-negative integer k.
Question: Does F' have a C-BT with at most k leaves?

We will need the following auxiliary proposition showing
that computing a smallest C-BT can be done efficiently if the
set of allowed variables is small.

Proposition 2. Let B be a C-BS for a CNF formula F for
some base class C. Then, a smallest C-BT for F using only
variables in B can be computed in time | B|?!BI+1|F|O(),

3 Backdoor DNFs
For a truth assignment 7 : X — {0, 1} we denote by D, the
term that is satisfied by 7, i.e.,

D,={z:zeX,7(x)=1}U{-a:2€ X,7(x) =0}.

Let F' be a CNF formula and G a set of partial truth
assignments defined on subsets of v(F). We call G a
C-backdoor DNF (BDNF) for F if (i) for each 7 € G,
F[r] € C, and (ii)) Gpne = { D, : 7 € G} is a tautology.

1405

We say that G is a smallest C-BDNF for F if |G| is minimal
over all C-BDNFs for F. Moreover, we say that G is
term-minimal if F[1'] ¢ C for every proper sub-assignment
7' of an assignment 7 € G. We denote by v(G) the set
of all variables used by G, ie., v(G) = U,cqv(7).
We consider the following parameterized problem:

C-BACKDOOR DNF (C-BDNF) Parameter: &
Input: A CNF formula F’ and a non-negative integer k.
Question: Does F have a C-BDNF of size at most k?

If C is a tractable class and one is given a C-BDNF G for a
CNF formula F', then one can decide whether F' is satisfiable
(and if so compute a satisfying assignment for F’) in time
|G|(JF])°™M) by testing satisfiability of the reduced formula
F[7] (in time | F'|°() for every assignment 7 € G.

Because the set {7, : | € L} is a C-BDNF for F for ev-
ery C-BT for F' where L is the set of leaves of ', one can
consider BTs as restricted version of BDNFs (similar to how
backdoor sets are a restricted version of BTs). However, BD-
NFs can be arbitrarily smaller than BTs (which in turn can
be arbitrary smaller than BS as shown in [Samer and Szei-
der, 2008]), which makes them better suited as shortcuts to
tractability for Boolean Satisfiability, as shown by the fol-
lowing theorem; we conjecture that it is possible to show that
there is an exponential difference in the size of BDNFs and
BTs are, however, at the moment unable to show this.

Theorem 1. For every s > 1, there is a CNF formula
F?, whose size is polynomial in s, such that a smallest
HORN-BDNF for I'® contains at least s — 2 fewer variables
than a smallest HORN-BT for F°.

We will need the following observations for our algo-
rithms, showing that the variables of a BDNF (or BT) always
form a BS together with a simple bound on the number of
variables used by a BDNF (or BT).

Observation 1. Let G be a C-BDNF of a CNF formula F.
Then, v(G) is a C-BS. Similarly, if T is a C-BT for F, then
v(T) is a C-BS.

Observation 2. For each C-BDNF or C-BT G of a CNF for-
mula F we have |var(G)| < |G| — 1.

Analogously to Proposition 2 for BTs, the next result as-
serts that computing a smallest C-BDNF can be done effi-
ciently if the set of allowed variables is small.

Proposition 3. Let B be a C-BS for a CNF formula F. Then,
a smallest C-BDNF for F' containing only variables in B can

be computed in time (9(23‘BHI + 3IBI|F|OM),

4 Finding BDNFs and BTs
In this section, we will provide a complete classification
of the parameterized complexity of C-BT and C-BDNF for
every base class C such that C = (Jp.»F. In particu-
lar, we will show that both problems are fixed-parameter
tractable if and only if C # HORN U HORN_; (assuming
that FPT # W][2]). We start by giving our FPT-algorithms
and then show that both problems are W[2]-hard for the case
that C = HORN U HORN_;.

Let F; be the set of all these base classes, i.e., F; =
{2CNF, HORN, HORN_1, 2CNFUHORN, 2CNFUHORN_1 }.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Note first that using Propositions 2 and 3, both problems are
easily seen to be in XP for any base class C. This is because
there are at most |v(F)|¥ sets of variables that can be used by
a BDNF (or BT) of size at most k& and for each of those sets,
we can compute a smallest BDNF (or BT) that uses only those
variables in FPT-time. This also illustrates that the main chal-
lenge that we have to overcome is to design a FPT-procedure
to enumerate all sets of variables that can potentially be used
by a smallest BDNF (or BT). Given Observation 1, one might
think that any smallest BDNF (or BT) uses only the variables
of a smallest BS, which if it were true would already pro-
vide us with such an FPT-procedure since Proposition 1 can
be easily employed to enumerate all minimal BSs of size at
most k£ in FPT-time. Unfortunately, this is not the case as
asserted by the following theorem.

Theorem 2. For every C € F, and every s > 1, there is a
CNF formula F f whose size is exponential in s, such that a
smallest C-BDNF (C-BT) for F€ contains at least 2° — 2(s +
1) more variables than a smallest C-BDNF (C-BT), whose
variables form a minimal C-BS for F€.

Proof Sketch. We show the theorem for C = HORN and
C-BDNFs, the remaining cases can be found in the supple-
mentary material. FHO®N has variables {p, a1, ...,as} U
{gj : 1 < j < r}, where r = 2° — s and the following
clauses:

* aclause {a;,p} forevery 1 <i < sand

* the clauses {a1,...,as,q;,p} forevery 1 < j <r.

We first show that FHORN has only two types of minimal
HORN-BSs, namely, the set B = {ay,...,as} and the sets
B;=B\{a;} U{p,q1,...,q-} forevery i with1 <i < s.
This is because:

* no proper subset of B is a HORN-BS for FHORN because of

the clauses {a;, p},

» any HORN-BS can miss at most one variable of B (because
of the clause {ay,...,as, g1, p}), and
» any HORN-backdoor that misses one variable in B has to

contain p (because of the clauses {a;, p}) and also every g;

(because of the clauses {a1, ..., as,q;, 7p}).

Therefore, every minimal HORN-BS that is not B has size at
least s—1+4-2°—s+1 = 2°, which together with Observation 1
implies that any HORN-BDNF that uses only variables in B;
for some ¢ has size at least 2°.

We now show that the same applies also to every
HORN-BDNF that uses only the variables in B, i.e., that it
has size at least 2°. This is because FH1°*[a] ¢ HORN for
every partial assignment o : B’ — {0,1}, where B’ C B
(because of the clause {a;, p}, where a; € B\ B’). There-
fore, every term of a HORN-BDNF has to assign all variables
in B, which implies that its size is at least 2°.

It only remains to show that FH°* has a HORN-BDNF
of size at most s + 2. To see this consider the following
HORN-BDNF for FHORN of size s + 2, which contains the
following assignments: (1) the assignment (p = 0), (2) the
assignment (p = 1,a; = 0,...,as; = 0), and (3) for every
1 with 1 < ¢ < s the assignment (p = 1,a; = 1). There-
fore, a smallest C-BDNF for FHORN is at least 2° — (s +2) >
2% —2(s+1) larger than such a smallest BDNF that only uses

variables in a minimal C-BS for FHORN, O

The theorem also shows that our BTs can be arbitrarily
smaller than the BTs detected by Samer and Szeider’s algo-
rithm [Samer and Szeider, 2008], which are only allowed to
use subset-minimal C-backdoor sets.

It is therefore not sufficient to enumerate all BSs of a CNF
formula F' to identify a set of variables that is used by a small-
est BDNF (or BT). Nevertheless, Observation 1 still allow us
to assume that we are given a BS for F' and as we will show
next this will be sufficient to identify all sets of variables that
can lead to a smallest BDNF (or BT). In particular, we will
show next that if a smallest BDNF (or BT) uses additional
variables outside of a BS, then the set of those additional
variables has a special property (which we will later exploit
to extend minimal BSs), which we call useful. Let F' be a
CNF-formula and B a C-BS. We say that a set U of variables
is C-useful for B if for every assignment 8 : U — {0,1},
there is a partial assignment o : B’ — {0,1} for some
B’ C B such that Fla] ¢ C but Flae U] € C; note that
if U is C-useful for B then U \ B is also C-useful and there-
fore U can be assumed to be disjoint from B. The following
lemma shows that the set of variables used by a BDNF (or
BT) for F' that go beyond a BS, needs to be useful.

Lemma 1. Let G be a smallest term-minimal C-BDNF for
F and let B be a C-BS contained in v(QG), then the set U =
v(G) \ B is C-useful. If T is a smallest C-BT for F' and B
is a C-BS contained in v(T), then the set U = v(T) \ B is
C-useful.

Proof Sketch. We will show the lemma for BDNFs, the result
for BT can be found in the supplementary material. If U = (),
then there is nothing to show. Hence, assume that U # () and
suppose for a contradiction that the statement of the lemma
does not hold. Then, there is an assignment 5 : U — {0,1}
such that Flao U] ¢ C for every assignment o : B’ —
{0,1} with B’ C B and Fa] ¢ C. Let G[f] be the set of
all assignments in G that are consistent with /3, which is non-
empty because Gpnr is a tautology. If there is no assignment
in G[f] that assigns at least one variable in U, then G|[S]pnr
is again a tautology and therefore G[f] is a C-BDNF for F,
which because U # () is smaller than G contradicting our
assumption that G was minimal. Therefore, G[/] contains an
assignment 7 that is defined on at least one variable of U. Let
7/ be the restriction of 7 to variables in B. Then, F[r'] € C
and therefore G\ {7 }U{7’} is a C-BDNF for F, contradicting
our assumption that G is term-minimal. O

We will show next how we can efficiently find C-useful sets
for a given C-BS B of a CNF formula F'. We say that a set
A of variables of F' is a C-branching set for Bif ANU # ()
for every C-useful set U for B. As we will see later, all we
need to find C-useful sets is to be able to compute “small”
C-branching sets efficiently (i.e., FPT parameterized by | B).
The following lemma shows this for all base classes in F ..

Lemma 2. Let C € Fy and let B be a C-BS for a CNF
formula F. Then, a C-branching set A such that |A] < 5 -
3!Blcan be computed in time O(315!|F|).

Proof Sketch. We show the statement of the lemma for the
(simple) case that C = HORN. The proof for the remaining

1406

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Algorithm 1 Main method for finding a smallest BDNF.

Input: CNF formula F', subset B C v(F'), and integer k
Output: a smallest C-BDNF for F' using at least the variables in B
having size at most k if it exists, otherwise nil
1: function MINBDNF(F, k, B)

2: Gmin < “compute a smallest C-BDNF for I using only
variables in B using Proposition 3”
3 if |B| > k — 1 then
4 if Gmin = nil or |Gmin| < k then
5: return Gin
6 return nil
7 if B is not a C-BS for F' then
8 A + “compute a C-backdoor branching set for B
using Proposition 17
9: else
10: A < “compute a C-branching set for B using Lemma 2
11: for v € Ado
12: G +MINBDNF(F, k, BU {v})
13: if G # nil and |G| < |Gmin| then
14: Gmin < G
15: if |Gmin| < k then return Gmin
16: return nil

cases can be found in the supplementary material. Let « :
B’ — {0,1} with B’ C B be a partial assignment of B
such that F'la] ¢ HORN. We denote by P(«) the set of all
variables that occur positively in a clause in F'[«] \ HORN but
are not in B. We claim that every C-useful set U for B has to
contain all variables in P(«) for some assignment « as above.
This then shows the statement of the lemma because we can
obtain a branching set A of size at most 3/Z! by choosing an
arbitrary variable from P(«) for every o : B’ — {0, 1} with
B’ C B and Fla] ¢ HORN.

Suppose for a contradiction that this is not the case and
let U be a C-useful set for B such that P(a) U for ev-
ery assignment o : B’ — {0,1} with F[a] ¢ HORN. Let
B : U — {1} the assignment setting all variables in U
to 1. Because U is C-useful for B, there is a partial assign-
ment « : B" — {0,1} for B such that F[a] ¢ HORN but
Fla U] € HORN. Because P(a) € U, there is a vari-
able p € P(a) \ U and a clause C € F[a] \ HORN such
that all positive literals in C' are from B U {p}; this is be-
cause B is also a deletion HORN-BS for F' and therefore
every clause in F' — B contains at most one positive literal.
Hence, /3 only assigns negative literals of C' to 1 and it fol-
lows that C[a U 5] ¢ HORN, contradicting our assumption
that Fla U 5] € HORN. O

We are now now ready to show our main tractability result.

Theorem 3. Let C € Fy. Then, the problems C-BDNF and
C-BT are fixed-parameter tractable.

Proof. We present the algorithm for C-BDNF, which is illus-
trated in Algorithm 1. The algorithm for C-BT is similar and
can be found in the supplementary material. Given a CNF
formula F, a subset B C v(F'), and an integer k, the main
function minBDNF behind the algorithm computes a small-
est C-BDNF for F' that uses at least the variables in B and has
size at most k; if no such C-BDNF exists, the algorithm re-
turns nil. To solve C-BDNF, the function minBDNF needs

1407

to be called with B being the emptyset. Towards showing
the correctness of the algorithm consider the case that I’ has
a C-BDNF of size at most k£ and let G be a smallest such
C-BDNE. Because of Observation 2, |v(G)| < k — 1. More-
over, because of Observation 1, v(G) contains a minimal
C-BS say S of size at most k — 1. We first show that the algo-
rithm is called for B = S. This is because as long as the set B
is not a strong C-BS, the algorithm branches on the variables
inside a C backdoor branching set A, which by definition must
also contains a variable from S \ B. If v(G) = S, then the
call of minBDNF for B = S already finds a C-BDNF of size
|G| in Line 2, which will eventually be returned. Otherwise,
we obtain from Lemma 1 that v(G) \ S is C-useful for S, and
it remains to show that the algorithm is eventually called for
B = v(G). To see this consider the calls following the call
where B = S. Since B is already a C-BS, the algorithm now
branches on all variables of a C-branching set A for B, which
by definition must also contain a variable of v(G)\ B. Finally,
it is easy to see that any solution returned by the algorithm is
a C-BDNF of size at most k.

It remains to analyse the runtime of the algorithm. Since
every execution of minBDNF leads to at most |A| recur-
sive calls, each recursive call adds at least one variable to
B and the algorithm stops whenever |B| > k — 1, we ob-
tain that the algorithm makes at most | A|*~! recursive calls.
Moreover, the time required for one call of minBDNF is
easily seen to be dominated by the time required by Line 2
to compute a smallest C-BDNF for F' using only variables

in B using Proposition 3, which is at most (’)(23”3Hl +
3IBI|F|9(). Therefore, the total runtime of the algorithm
is at most O(|A[F=1(23"""" 4 3IBI|F|9(), which because
| A] is bounded by a function of k (for all classes C € F; due
to Lemma 2) shows that C-BDNF is in FPT. O

The following theorem, whose proof is based on a reduc-
tion by Gaspers et al. [2017al, shows that the problems are
W/[2]-hard for the only class C = HORN U HORN_;.

Theorem 4. Let C = HORN U HORN_ 1. Then, the problems
C-BT and C-BDNF are W[2]-hard.

5 Experiments
We complement our theoretical results by experiments. We
compute BDNFs and BTs on a large number of CNF formu-
las, stemming from various applications like logistics, plan-
ning, and combinatorics. The instances form ten groups:
(iv) logistics car configuration (daimler) [Sinz et al., 2003],
(v) parity function learning (parity)!, (vi) inductive inference
(inductive)', (vii) planning (blocksworld)', (viii) pigeon hole
(pigeon)', and (ix—x) vertex cover and treewidth for named
graphs (vc and tw). To avoid the restriction to base classes
that support fixed-parameter tractability, we base our exper-
iments on SAT encodings. This allows us to use the base
classes HORNU} and RHORN {}, for which already the BS
problem is known to be W[1]-hard.

We compute the SAT encodings using Python 3.8.0 and

'https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Horn'} RHorN{}

Group Size Total |BDNF|/|BT] Size Total |BDNF|/|BT] o?
ais 87/1051 2/2 85-107% 1.3-107* 61/581 171 1.7-1072 0.0-10°
blocksworld 82/607 2/2 2.6-107Y 35-1072 82/607 2/2 24-107Y 2.7-1072
daimler 1407/1887 3/3 3.2-107Y 4.3-107% 1667/3977 18/18 41-107t 22-107!
flat 150/545 99/99 1.5-1073% 5.6-107° 150/545 97/99 6.4-107* 9.4-1078
inductive 288/5077 16/16 54-107' 1.0-107! 655/9649 41/41 1.1 5.6-1071
parity 201/803 10710 9.5-10"1 3.6-10"" 70277 SIS 1.1 5.0-102
pigeon 74/322 5/5 3.0-107% 2.7-107° 49/169 2/2 1.2-1072 1.4-107*
pret 105280 8/8 36-107° 1.3-107° 160 4/4 32-107° 4.5-10712
tw 222/965 9/12 5.6-10"1 2.7-107! 125/433 5/6 6.1-107Y 4.4-1072
ve 175/355 38/38 5.3-107Y 1.5-1071 175/355 38/38 5,5-107! 1.5-1071

Table 1: Comparison between backdoor DNFs and backdoor trees for several classes and groups of instances. |BDNF|/|BT] is the average
ratio between the number of terms of the computed BDNF and the number of leaves of the computed BT, o2 is the variance. Size shows the
average number of variables/clauses; 7otal shows the number of instances for which a BDNF could be computed.

PySAT 1.6.02. As the SAT solver, we use Cadical as provided
by PySAT, which works slightly better with our encodings
than the other solvers provided by PySAT. We run the ex-
periments on servers with two Intel Xeon E5540 CPUs, each
running at 2.53 GHz per core, use Ubuntu 18.04. Each run is
limited to six hours and 12 GB RAM.

The algorithm for BDNFs is based on incremental SAT
solving. It finds one potential term of a BDNF in each solver
call. Once a term is found, it is added to the encoding and
so excluded in future calls. We use a cardinality constraint
on the size of the term to obtain only subset-minimal terms.
When all the found terms together form a tautological DNF,
the algorithm terminates. Termination is checked using a sec-
ond incremental SAT solver instance, which checks, in incre-
ments of 1000 added terms, whether the DNF’s negation is
an unsatisfiable CNF. Finally, we minimize the DNF by com-
puting a minimal unsatisfiable core [Belov er al., 2014] for its
negation. The found DNF is then inclusion-minimal but not
necessarily of smallest cardinality. We compute BT's using a
recursive algorithm. The algorithm computes one branch of
the tree at a time using a SAT solver call. The algorithm then
calls itself for each sub-branch.

Results. In total, we select 2197 instances from the sources
mentioned above that were small enough for the encodings.
For each instance, we compute a deletion BS and discard
instances based on the BS’s size: we choose 192 instances
where a HORN-backdoor is smaller than 100 and 222 in-
stances where a RHORN-backdoor is smaller than 50. Given
our theoretical results, we expect BDNFs to be smaller than
BTs. Indeed, in Table 1 we see this comparison in terms of
the ratio of the BDNF size to BT size. The lower the ratio,
the smaller the BDNF in comparison to the respective BT.
We found the lowest ratios for the graph coloring instances
in pret and flat. For RHORN the DNFs for the groups in-
ductive and parity are comparatively large. Parity is a group
where it is easy to obtain empty clauses. Therefore, the DNFs
(4 partial assignments) and trees (2 partial assignments) are

*https://pysathq.github.io

1408

very small compared to the BS size (21-26). Inductive are
instances that are almost in RHORN and have a deletion BS
of size 1. The respective DNFs and trees are also very small.
For the vertex cover and treewidth encodings, the DNFs are
about half as large as the trees for all classes. Interestingly,
the set of variables used by about 90 % of the BDNFs are not
equal (but only contain) a minimal BS. This is also strongly
supported by our theoretical analysis showing that BTs and
BDNFs can be arbitrarily smaller if they are not restricted to
use only variables from a minimal BS (Theorem 2).

6 Conclusion

We have introduced backdoor DNFs as a versatile tool for
representing the hidden structure in a SAT instance. Our main
theoretical results show that for fundamental base classes for
which the detection of strong backdoor sets is FPT, also the
detection of backdoor DNFs is FPT. This finding is signifi-
cant, as backdoor DNFs can be far more succinct than back-
door sets or backdoor trees. Our experiments show that SAT
instances drawn from a wide range of application domains
indeed contain backdoor DNFs that are by several orders of
magnitude smaller than their backdoor tree counterparts.

In the past, parameterized complexity of backdoor set de-
tection, and the use of backdoor sets for tractable problem
solving, has been explored in a wide range of problems be-
yond SAT: CSP [Gaspers er al., 2017b; Ganian et al., 2017,
Gaspers et al., 2017al], ASP [Fichte and Szeider, 2015a;
Fichte and Szeider, 2015b], Temporal Logic [Meier et al.,
2019], QBF [Samer and Szeider, 2009] Abstract Argumen-
tation [Dvorék et al., 2012], and Planning [Kronegger et al.,
2019]. We think that many of these results can be lifted to
backdoor DNFs. This provides several challenging research
questions for future work.

Acknowledgements

Schidler and Szeider acknowledge the support by the FWF
(P32441, W1255) and WWTF (ICT19-065). Ordyniak ac-
knowledges the support by the EPSRC (EP/V00252X/1).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

References

[Ansétegui et al., 2014] Carlos Ansétegui, Maria Luisa
Bonet, Jests Girdldez-Cru, and Jordi Levy. The fractal
dimension of SAT formulas. In Proc. IJCAR ’14, LNCS
8562, pages 107-121. Springer, 2014.

[Belov er al., 2014] Anton Belov, Marijn Heule, and Jodo
Marques-Silva. MUS extraction using clausal proofs. In
Proc. SAT ’14, LNCS 8561, pages 48-57. Springer, 2014.

[Cook, 1971] Stephen A. Cook. The complexity of theorem-
proving procedures. In Proc. STOC 71, pages 151-158,
Shaker Heights, Ohio, 1971.

[Crama et al., 1997] Y. Crama, O. Ekin, and P. L. Hammer.
Variable and term removal from Boolean formulae. Discr.
Appl. Math., 75(3):217-230, 1997.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Dilkina et al., 2007] Bistra N. Dilkina, Carla P. Gomes, and
Ashish Sabharwal. Tradeoffs in the complexity of back-
door detection. In Proc. CP 07, LNCS 4741, pages 256—
270. Springer, 2007.

[Dvordk et al., 2012] Wolfgang Dvordk, Sebastian Ordy-
niak, and Stefan Szeider. Augmenting tractable fragments
of abstract argumentation. Artif. Intell., 186:157-173,
2012.

[Fichte and Szeider, 2015a] Johannes Klaus Fichte and Ste-
fan Szeider. Backdoors to normality for disjunctive logic
programs. ACM Trans. Comput. Log., 17(1), 2015.

[Fichte and Szeider, 2015b] Johannes Klaus Fichte and Ste-
fan Szeider. Backdoors to tractable answer set program-
ming. Artif. Intell., 220:64-103, March 2015.

[Ganian and Szeider, 2015] Robert Ganian and Stefan Szei-
der. Community structure inspired algorithms for SAT and
#SAT. In Proc. SAT 15, LNCS 9340, pages 223-237.
Springer, 2015.

[Ganian and Szeider, 2017] Robert Ganian and Stefan Szei-
der. New width parameters for model counting. In SAT
17, LNCS 10491, pages 38-52. Springer, 2017.

[Ganian et al., 2017] Robert Ganian, M. S. Ramanujan, and
Stefan Szeider. Discovering archipelagos of tractability for
constraint satisfaction and counting. ACM Trans. on Alg.,
13(2):29:1-29:32, 2017.

[Gaspers and Szeider, 2012] Serge Gaspers and Stefan Szei-
der. Backdoors to satisfaction. In The Multivariate Algo-
rithmic Revolution and Beyond, LNCS 7370, pages 287—
317. Springer, 2012.

[Gaspers et al., 2017a] Serge Gaspers, Neeldhara Misra, Se-
bastian Ordyniak, Stefan Szeider, and Stanislav Zivny.
Backdoors into heterogeneous classes of SAT and CSP.
J. of Comput. and Syst. Sci., 85:38-56, 2017.

[Gaspers er al., 2017b] Serge Gaspers, Sebastian Ordyniak,
and Stefan Szeider. Backdoor sets for CSP. In The Con-
straint Satisfaction Problem: Complexity and Approxima-

1409

bility, volume 7 of Dagstuhl Follow-Ups, pages 137-157.
Schloss Dagstuhl, 2017.

[Tmpagliazzo et al., 2001] Russell Impagliazzo, Ramamo-
han Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. of Comput. and Syst.
Sci., 63(4):512-530, 2001.

[Jamali and Mitchell, 2017] Sima Jamali and David
Mitchell. Improving SAT solver performance with
structure-based preferential bumping. In Proc. GCAI ’17,
volume 50 of EPiC Series in Computing, pages 175-187.
EasyChair, 2017.

[Kronegger et al., 2019] Martin Kronegger, Sebastian Ordy-
niak, and Andreas Pfandler. Backdoors to planning. Artif.
Intell., 269:49-75, 2019.

[Lewis, 1978] Harry R. Lewis. Renaming a set of clauses as
a Horn set. J. of the ACM, 25(1):134-135, January 1978.

[Mateescu, 2011] Robert Mateescu. Treewidth in industrial
SAT benchmarks. Technical Report MSR-TR-2011-22,
Microsoft, February 2011.

[Meier et al., 2019] Arne Meier, Sebastian Ordyniak, M. S.
Ramanujan, and Irena Schindler. Backdoors for linear
temporal logic. Algorithmica, 81(2):476—496, 2019.

[Newsham et al., 2014] Zack Newsham, Vijay Ganesh, Se-
bastian Fischmeister, Gilles Audemard, and Laurent Si-
mon. Impact of community structure on SAT solver per-
formance. In Proc. SAT ’14, LNCS 8561, pages 252-268.
Springer, 2014.

[Nishimura et al., 2004] Naomi Nishimura, = Prabhakar
Ragde, and Stefan Szeider. Detecting backdoor sets with
respect to Horn and binary clauses. In Proc. SAT ’04,
pages 96—103, 2004.

[Samer and Szeider, 2008] Marko Samer and Stefan Szeider.
Backdoor trees. In Proc. AAAI °08, pages 363-368. AAAI
Press, 2008.

[Samer and Szeider, 2009] Marko Samer and Stefan Szeider.
Backdoor sets of quantified Boolean formulas. J. Autom.
Reason., 42(1):77-97, 2009.

[Schaefer, 1978] Thomas J. Schaefer. The complexity of sat-
isfiability problems. In Proc. STOC 78, pages 216-226.
ACM, 1978.

[Sinz et al., 2003] Carsten Sinz, Andreas Kaiser, and Wolf-
gang Kiichlin. Formal methods for the validation of auto-
motive product configuration data. Artif. Intell. Eng. Des.
Anal. Manuf., 17(1):75-97, 2003.

[Szeider, 2008] Stefan Szeider. Matched formulas and back-
door sets. J. on Satisf. Boolean Model. Computat., 6:1-12,
2008.

[Vardi, 2014] Moshe Y. Vardi. Boolean satisfiability: theory
and engineering. Comm. ACM, 57(3):5, March 2014.

[Williams ef al., 2003] Ryan Williams, Carla Gomes, and
Bart Selman. Backdoors to typical case complexity. In
Proc. 1IJCAI ’03, pages 1173-1178. Morgan Kaufmann,
2003.

	Introduction
	Preliminaries
	Backdoor DNFs
	Finding BDNFs and BTs
	Experiments
	Conclusion

