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Abstract

We study two user demands that are important dur-
ing the exploitation of explanations in practice: 1)
understanding the overall model behavior faithfully
with limited cognitive load and 2) predicting the
model behavior accurately on unseen instances. We
illustrate that the two user demands correspond to
two major sub-processes in the human cognitive
process and propose a unified framework to ful-
fill them simultaneously. Given a local explanation
method, our framework jointly 1) learns a limited
number of groupwise explanations that interpret the
model behavior on most instances with high fidelity
and 2) specifies the region where each explanation
applies. Experiments on six datasets demonstrate
the effectiveness of our method.

1 Introduction

The decision process of state-of-the-art machine learning
models such as deep neural networks is often obfuscated by
their intricate architectures. Despite the impressive prediction
accuracy, lack of interpretability inevitably hinders the adop-
tion of these models, especially when users need to under-
stand the model behavior and ensure the models are correct
and ethical [Ribeiro et al., 2016; Chu et al., 2018].

In recent years, providing explanations for black-box mod-
els has attracted increasing attention in the research com-
munity. Substantial efforts have been devoted to explaining
the model prediction of an individual instance with high fi-
delity [Ribeiro et al., 2016; Elenberg et al., 2017; Lundberg
and Lee, 2017; Dhurandhar et al., 2018; Guidotti et al., 2018;
Plumb et al., 2018]. These methods have achieved great
success in providing explanations that are both succinct and
faithful. However, for machine learning practitioners, there
is still a gap between understanding each instance well and
gaining a clear and comprehensive understanding of the over-
all model behavior on most instances. We observe that dur-
ing the subsequent exploitation of explanations in practice,
fulfilling the following user demands are essential.

D1: Obtaining a faithful understanding of the over-
all model behavior with limited cognitive load. While
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Figure 1: Human cognitive process for model interpretation.

instance-level explanations are insightful, it is infeasible to
examine explanations for all instances to gain a overall un-
derstanding of the model. Existing methods solve this issue
either by generating one global explanation over the entire
input space [Ghorbani et al., 2019; Kim er al., 2018] or se-
lecting representative local explanations [Ribeiro et al., 2016;
Ramamurthy ef al., 2020]. While global explanations often
fail to provide a succinct or faithful explanation when the tar-
get model is complex [Ribeiro et al., 2018], selecting rep-
resentative local explanations depends on heuristic assump-
tions about which explanations are the most representative.
The latter methods lack a mechanism to directly optimize the
fidelity of the selected explanations on all instances. As a re-
sult, there is no guarantee that the representative explanations
they select are highly faithful over the entire input space.

D2: Making accurate predictions about the model be-
havior on unseen instances. Researchers have found that to
achieve high human precision [Ribeiro et al., 2018] or gen-
eralized fidelity [Ramamurthy et al., 20201, it is essential that
we clearly define the region where an explanation applies.
Otherwise, users may easily make mistaken predictions about
the model behavior on unseen (test) instances by employing
an incorrect explanation. Existing methods typically assume
that explanations can be applied to instances that are simi-
lar according to a certain feature space [Plumb et al., 2018;
Ramamurthy ef al., 2020]. This biased assumption often yield
sub-optimal generalized fidelity [Ribeiro et al., 2018]. To al-
leviate this issue, [Ribeiro et al., 2018] define the region an
explanation applies by using association rules. However, this
method fails to provide insights on the relative importance of
each feature, and there is no guarantee that the association
rules can be applied to a large percent of instances.

Satisfying the two user demands is importance as they en-
able us to take a more complete view of the human cogni-
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Figure 2: Groupwise explanations generated by GIME on the AutoMPG dataset. The task is to predict miles per gallon based on attributes
of automobiles. GIME divides autos into four groups (G1-G4) with noticeable difference in model behaviors and clearly defines each group.
Users can quickly identify that the model behaves differently on autos with different origins and that the US autos can be further divided based
on the cylinder (G1 and G4). The fuel consumption of autos in G1 is the least sensitive to the input attributes. This is consistent with the fact
that the prediction score for these autos varies the least among all groups (standard deviation is the smallest), although G1 contains the largest
number of autos. The cylinder impacts the fuel consumption of autos in G1 and G2, but hardly influences that in G3 and G4. This is reasonable
considering that only for G3 and G4, the Pearson correlation between the cylinder and the prediction score is the smallest among all attributes.

tive process when interpreting models (Fig. 1). According
to cognitive psychology, the major sub-processes of human’s
information-processing model are encoding, storage, and re-
trieval [Lang, 2000]. While local explanation methods help
interpret and encode a single piece of information about one
instance faithfully (encoding), users still need to distinguish
important pieces of encoded information so that they can be
stored properly with limited cognitive resource (D1, storage).
Then, users need to accurately reactivate the piece of relevant
information for decision making (D2, retrieval).

In this paper, we propose a principled way to simultane-
ously fulfill D1 and D2. Given a post-hoc local explanation
method, we study how groupwise explanations that faithfully
reveal model behavior on multiple instances can be learned.
In particular, our contributions are three folds.

First, we propose a unified Groupwlse Model-agnostic
Explanation (GIME') framework, which jointly 1) learns a
limited number of groupwise explanations that interpret the
overall model behavior with high fidelity (D1) and 2) speci-
fies the region each explanation applies (D2). Different from
existing methods, which handle D1 or D2 separately with dif-
ferent heuristic assumptions, our framework treats the extrac-
tion of groupwise explanations as a learning task and fulfills
the two inherently interconnected user demands simultane-
ously by directly optimizing the overall fidelity. As shown
in Fig. 2, our method can automatically divide instances into
groups with noticeable difference in model behaviors, clearly
defines each group, and provides interesting insights.

Second, we show how to effectively formulate the region
an explanation applies. In particular, we discuss the desirable
properties of the region formulations and why straightforward
solutions may be problematic. Based on the discussion, we
introduce the von Mises—Fisher (vMF) distribution [Banerjee
et al., 2005], which is an example distribution that satisfies

!Source code: https://github.com/jygao97/GIME

2397

the desirable properties and leads to good empirical results.

Finally, we conduct both quantitative experiments and ex-
periments with real users to demonstrate the effectiveness of
our method. Codes are provided in the supplementary mate-
rial to facilitate reproduction of the experimental results.

2 Problem Formulation

We formulate our problem as follows.

Input. The input of our framework includes a dataset X, a

target model f to be explained, and a cognitive budget K.

o The dataset X = {x3,...,xx} consists of N instances,
each denoted by a feature vector x; € R%.

¢ The target model is treated as a black-box function f :
R? — R. For a classification model, f(x;) denotes the
predicted probability that x; belongs to certain class.

¢ The cognitive budget K is the maximum number of ex-
planations that the user can examine.

Output. We find K groupwise explanations and the re-

gions where they apply. The explanations can be formu-

lated by following a given local explanation method. We use

LIME [Ribeiro et al., 2016] as a guiding example and define

an explanation as an interpretable surrogate model g (x) =

fo, where 6, € R reveals the feature importance.

3 Background

Our groupwise explanation framework is designed by ex-
tending existing local explanation methods, which interpret
the model prediction of a single instance with high-fidelity.
Given an instance x and a black-box model f, identifying
important features that contribute to f(x) is usually achieved
by finding casual structures in the model’s response to in-
put features. A common practice is to perturb the input
and observe how f(x) changes accordingly. Following this
spirit, LIME [Ribeiro et al., 2016] constructs the neighbor-
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hood A (x) of instance x by perturbing x and derives the ex-
planation 6 by approximating f in the neighborhood:

mln Z L(f(x),0"x") +AQ(0), (1)
x'eN(x)

where £(f(x),0,x") = w(z,2')(f(X) — 0. x')? is a loss
function that measures how well the surrogate model approx-
imates the target model, w(z,2’) = exp(—D(x,2")?/0?),
D(x, z') is the distance function (cosine distance for text and
L2 distance for image or tabular data), and o is the band-
width. €(+) is a regularization term that punishes complex 6
to make it sparse and ensure it can be easily understood. A
controls the trade-off between fidelity and interpretability.

4 Groupwise Explanation Framework

In this section, we introduce our GIME framework.

Vanilla group assignment. When the number of instances
N is much larger than the cognitive budget K, it is infeasible
for users to check local explanations for all instances. In this
case, we need to learn groupwise explanations that can be
applied to multiple instances. A straightforward method is to
introduce a group assignment matrix O € {0, 1}V <X where
ok 1s 1 if x; is assigned to the k-th group and is O otherwise.
Then, Eq (1) can be extended to a groupwise version:

manZoLk Z L(f(x) —|—/\ZQOk

k=1i=1 x' €N (x;)
K
s.t.720ik =1.
k=1
(2)

When K = N, solving Eq. (2) is equivalent to generating
local explanations via Eq. (1) for each instance. When N >
K, optimizing Eq. (2) captures K larger patterns by directly
optimizing the explanation fidelity over the entire dataset.
Although Eq. (2) provides a mechanism to generate group-
wise explanations (D1), it fails to help users make accurate
predictions about the model behavior on unseen instances
(D2). Since each explanation is characterized by a potentially
large number of training instances instead of a well-defined
and easy to understand closed-form expression, it is difficult
for users to determine which explanation could be used for an
unseen instance: users either need to make heuristic assump-
tions (e.g., instances with certain common features share one
explanation) or need to optimize Eq. (2) again. The former
method leads to low human precision [Ribeiro ef al., 2018]
or decreased generalized fidelity [Ramamurthy er al., 2020]
due to the potentially problematic assumptions. The latter
method is not only computationally and cognitively expen-
sive, but also has data leakage issues and contradicts the goal
of improving generalized fidelity, since the explanation as-
signment can only be determined after we observe the model
behavior (e.g., f(x)) on the unseen instance.
Bayesian assignment. We tackle the above problem by
adopting a Bayesian framework [Bishop, 2006]. Let us con-
sider the closed-form expression for the applied region of an
explanation. Without loss of generality, we define the ex-
pression by using a probabilistic distribution p(x|,, ), where
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1),, denotes the region parameters for the k-th groupwise ex-
planation, and p(x|),,) refers to the probability that the k-th
explanation can be applied to a potentially unseen instance
x. Choosing different types of distribution allows us to adjust
how “hard” the region assignment is. If we use a distribution
like Gaussian, then whether an instance belongs to a region
is probabilistic (“soft”). When we adopt distributions like the
Gumbel-Softmax [Jang et al., 2016], we can clearly deter-
mine whether an instance belongs to a region or not (“hard”).

Let ¥ = [4, ..., ¥ k] denote all region parameters. Fol-
lowing the topic assignment probability in topic models [Blei
et al., 2003], we rewrite p(x;|v,.) as

p(xi|y,) = p(xiloir, = 1,®). 3)

Then the Bayes’ Rule can be used to compute the posterior
probability of 0;:

p(xiloik = 1, ¥)p(oix = 1)
Yo P(Xiloi = 1, ¥)p(oj = 1)7(4)
where p(o;x = 1) is the prior that an instance be assigned
to the k-th explanation. In this paper, we assume that there
is no prior knowledge for preferred regions, i.e., p(o;x =
1) = p(oyr = 1) for Vk, k’. In this scenario, Eq. (4) sim-
ply chooses explanations for an instance through normaliza-
tion. When there exists prior knowledge about the preferred
regions (e.g., when larger regions are considered better), we
can also easily incorporate these priors with Eq. (4).

Then, we can rewrite Eq. (2) to consider the expected fi-
delity in all instances:

ploix = 1]x;, ¥) =

Inan 0,7) ZZ]) 0i=1|x;, ¥) Z L(f(x),0]x")
k=11i=1 x' €N
K
+ M\ ZQ(ek) + A0(¥).
k=1

(&)
Eq. (5) joint learns the groupwise explanations (®) and the
regions in which they apply (¥). Here, minimizing the first
term in J(©,¥) is equal to maximizing the expected fi-
delity in all instances. Note that the weight for the infidelity

Y oxren, LUF(X), 0. x') is p(oix = 1|x;, ®), which satisfies

Zle p(oir = 1|x;, ¥) = 1 for Vi. This means that the infi-
delity in terms of any single instance is punished. Moreover,
we add Q(¥), which is a regularization term that measures
how easy it is for humans to understand the applied regions.

Optimization. J(®, ¥) can be optimized by using an alter-
native minimization algorithm. The key idea is to minimize
the objective function with respect to either ® or ¥, while
fixing the other parameter. We find that this alternative opti-
mization method stably convergences to better solutions than
directly applying gradient descent on both parameters. More
specifically, we first initialize the instance groups by using
K-means. We then initialize ® by learning an explanation
for each group. Next, we iteratively apply two steps. The first
step is learning applied regions, in which we fix ® and min-
imize J(©, ¥) with respect to ¥ by using gradient descent.
The second step is groupwise explanation generation, in
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which we fix ¥ and minimize the objective with respect to
©. Following [Ribeiro et al., 2016], we set Q(0y,) to the LO
norm ||0y||o and approximately optimize the objective by us-
ing the K-LASSO algorithm [Ribeiro et al., 2016].

5 Region Formulation

In this section, we introduce how to formulate the region that
an explanation applies, i.e., how to determine the mathemati-
cal form of distribution p(x;|1;,). We start by discussing the
desirable properties of the regions and why intuitive solutions
like Gaussian may be problematic. Then, we introduce an ex-
ample distribution that satisfies the desirable properties: the

vMF distribution [Banerjee et al., 2005].

Desirable properties. Similar with the surrogate model gy,

to achieve high human precision, we need to define the re-

gions to ensure both interpretability and accuracy (fidelity):

 Interpretability requires that it is easy for humans to un-
derstand the regions. Thus, the formulation of the region
cannot be too complicated (e.g., consists of multiple non-
linear neural layers). Moreover, the number of features
involved should be limited and it is more desirable if the
formulation allows for modeling of sparse features.

* Accuracy demands that the formulation of the region is
expressive enough to discriminate different regions and ac-
curately represent the covered instances of an explanation.
For example, compared with a formulation that assumes
independence between features, it is more desirable if rela-
tions between features can be modeled.

Issues of the Gaussian distribution. A straightforward

choice of p(x;|1p;,) is the Gaussian distribution, in which

U = [(p1, 1), (Bg, Xk )] and

p(xily,) = p(xilpy, B

1 1 Ty -1 (6)

@)% exp( Q(Xz Bi) By (% — ).

Eq. (6) means that k-th explanation can be applied to in-
stances with mean p,, and variance 3, in the feature space.
However, characterizing explanation region with Gaussian
distribution has two issues. First, the interpretability of the
regions is limited, because the Gaussian distribution cannot
effectively constrain the number of involved features by mod-
eling sparse features. When only part of the features are in-
volved, 3y, is not full rank, i.e., |3;| = 0, and the Gaussian
distribution degenerates and does not have a density. Second,
the accuracy of the regions may not be desirable, since it is
difficult for the Gaussian distribution to model relationships
between features. If we consider X as a diagonal matrix
with d parameters, then Eq. (6) fails to model how correlated
features compose a pattern. Learning feature correlations re-
quires that we learn the d? parameters of X}, which is quite
computationally expensive, especially for natural language
processing tasks with tens of thousands of words (features).
Modeling with the vMF distribution. To address these is-
sues, we introduce the von Mises-Fisher (vMF) distribution,
which 1) is an example distribution that satisfies the two de-
sirable properties and 2) achieves good empirical results. The
VMF distribution is a probability distribution on a unit hy-
persphere in R?. In particular, vMF is parameterized by a

direction vector ¢ € R? with ||¢|| = 1 and a factor 7 > 0
that determines the concentration of the distribution:

pexity) = Cr) explral 1) ™

_ d/2-1
C(r) = (2m) d/27jd/271(7)

I4/9_1(7) is the modified Bessel function of the first kind.
After normalization (ﬁ), all instances lie on the surface

of a unit hypersphere. ¢, denotes the mean direction vector
of the instances and 7 represents how concentrate the distri-
bution is. The sign of ¢y illustrates whether the j-th feature
should be positive or negative for instances in the region, and
a large |¢y;| means that the instances in region & should have
a large absolute value in terms of the j-th feature and that the
j-feature is important for determining whether an instance be-
longs to region k. 7 is learned together with ¢, and larger 7
denotes a more concentrated (narrow) distribution.

We can easily check that Eq. (7) is well-defined when some
elements of ¢, are zeros. This means that vVMF can model
sparse features and leads to better region interpretability
compared with the Gaussian distribution. Moreover, vVMF is
often used by topic models [Song et al., 2015] to represent
the distribution of co-occurred words (features) in a topic,
which illustrates its capability in modeling relationships be-
tween features and representing regions with good accuracy.

Based on Eqs. (3)(4)(7), we have:

is a normalization factor and

e an . exp(he(xi) N T Xi
p(O’Lk - 1|X17 ‘P) - Zk}’ exp(hk/ (Xz)) ) h’k(xl) = TP ||Xz|| .
(3)

Eq. (8) shows that p(0;x = 1|x;, ¥) can be computed without
considering the complicated normalization factor C(7).

6 Experiment
6.1 Experimental Settings

| Train | Valid/Test | Features

Polarity (TE) 7,000 1,500 43,548
Subjectivity (TE) | 7,000 1,500 17,478
20 Newsgroup (TE) | 1,079 358 17,980
AutoMPG (TA) 274 59 7
Wine Quality (TA) | 1,119 240 11
Communities (TA) | 1,395 299 100

Table 1: Statistics of datasets. (TE) and (TA) denote textual and
tabular datasets, respectively.

Datasets. We use six real-world benchmark datasets. The
first three are textual datasets and the last three are tabu-
lar ones. Specifically, Polarity [Maas er al., 2011] contains
highly polar movie reviews and the task is to classify their
sentiment. Subjectivity [Pang and Lee, 2004] includes pro-
cessed sentences that are labeled as either subjective or ob-
jective. 20 Newsgroup? is a collection of news articles. Fol-
lowing [Ribeiro er al., 2016], we focus on the task of deter-
mining whether an article is about Christianity or Atheism.

“http://qwone.com/~jason/20Newsgroups/
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Dataset Polarity Subjectivity 20 Newsgroup
RMSE Accuracy RMSE Accuracy RMSE Accuracy
LIME 0.349 £0.003  0.666 £0.002 | 0.466 +0.001  0.664 £+ 0.005 | 0.411 £0.004  0.672 £ 0.004
MAPLE | 0.318 £0.001  0.718 £ 0.002 | 0.450 £0.004  0.634 £0.003 | 0.328 £0.003  0.777 4+ 0.008
ETC 0.307 £0.003  0.739 £0.003 | 0.370 £+ 0.001 0.759 £0.006 | 0.406 +£0.002  0.770 £ 0.006
CTE 0.349 £0.003  0.630 £0.002 | 0.408 +0.002  0.655 £ 0.004 | 0.388 £0.002  0.686 = 0.012
GIME | 0.271 £ 0.002*  0.774 £ 0.003* | 0.365 + 0.001* 0.768 £ 0.006* | 0.318 £ 0.002* 0.808 £ 0.010*
Impv. | +11.7% +4.7% \ +1.4% +1.2% \ +3.0% +4.0%

Table 2: Comparison of RMSE and accuracy when explaining BERT on three textual datasets (classification task). Best results are highlighted
in bold. The symbol * means that the improvements over all baselines are significant according to t-test (p-value < 0.01).

Dataset \ AutoMPG Wine Quality Communities
LIME 0.4154+0.002  0.372 £ 0.001 0.532 4+ 0.001

MAPLE | 0.175+0.002  0.371 4+ 0.001 0.282 4+ 0.001

MAME | 0.212£0.002  0.356 + 0.001 0.493 4+ 0.001
ETC 0.368 £+ 0.001 0.346 4+ 0.001 0.515 4+ 0.001
CTE 0.157 £0.002  0.283 £ 0.001 0.288 4+ 0.001

GIME | 0.127 +0.001*  0.236 + 0.002*  0.240 + 0.001°*
Impv. | +19.1% +16.6% +14.9%

Table 3: Comparison of RMSE when explaining SVR on three tab-
ular datasets (regression task). Best results are highlighted in bold.
The symbol * means that the improvements over all baselines are
significant according to t-test (p-value < 0.01).

AutoMPG concerns predicting fuel consumption based on
attributes of cars. Wine Quality predicts wine quality based
on physicochemical tests. Communities enables predicting
community crimes based on socio-economic data. Statistics
of datasets are shown in Table 1.

6.2 Generalized Fidelity

Baselines. We compare GIME with five baselines. The
first two baselines, LIME [Ribeiro et al., 2016] and
MAPLE [Plumb et al., 2018], are widely-used local explana-
tion methods. We use the submodular method in [Ribeiro et
al., 2016] to pick representative explanations for them. The
third baseline, MAME [Ramamurthy et al., 2020], selects
multi-level representative explanations from pre-computed
instance groups. We also design two other methods as
baselines for groupwise explanations: CTE (Cluster-Then-
Explain) that first determines instance groups by clustering
with K-means and then learns an explanation for each group
by optimizing Eq. (2), and ETC (Explain-Then-Cluster) that
first learns local explanations and then clusters the local ex-
planations to form instance groups. The groupwise explana-
tions of ETC are average local explanations in each group.
Evaluation Metrics. Following [Plumb er al., 2018], we
evaluate the fidelity of explanations by:

oY wx X IM(f(), (%)),

X x'eN(x)

©))

where x is a test instance, the neighborhood size [N (x)] is
set to 10, and the neighborhood weight w(x,x’) is the same
as that in Eq. (1). To measure the difference between f and

g, two types of M(-,-) are considered: the root mean square
error (RMSE) and the classification Accuracy that evaluates
whether f(x’) and g(x’) give the same label. Lower RMSE
and higher accuracy indicate better performance.
Implementation details. We train f and learn explanations
on the training set, tune hyperparameters by using the vali-
dation set, and evaluate explanations on the test set. The hy-
perparameters of the baselines are initialized by following the
corresponding paper and tuned to achieve the optimal perfor-
mance. For fair comparison, all explanation methods use the
same interpretable surrogate model as in [Plumb et al., 2018;
Ribeiro er al., 2016], i.e., gr(x) = HEX. If not specifically
mentioned, K is set to 20 for large datasets (Polarity and Sub-
jectivity), 10 for middle-sized datasets (20 Newsgroup, Wine
Quality, Communities), and 4 for small datasets (AutoMPG).
We ensure that all explanations have the same number of non-
zero features (5 for tabular data and 50 for textual datasets).
Each experiment is repeated five times and we report the av-
erage and standard deviation of RMSE and Accuracy.
Following [Ramamurthy et al., 2020], we measure gener-
alized fidelity by simulating the process that users apply ex-
planations on unseen instances. Given an unseen instance x;
and explanations gy, ..., i, simulated users leverage the ex-
planation with the maximum probability p; to predict model
behaviors on x;. Though p;; is well defined for our method
(pir. = poix, = 1]x;, ¥)) and MAPLE (p;y, is the local train-
ing distributions), other baselines lack the mechanism for de-
termining whether an explanation can be applied to a test in-
stance. For these baselines, we try three formulations of p;,
and use the one that results in the highest validation fidelity.
The first and second formulations measure how many features
in x; are “activated” by gg: pir o< €5, s, 18 | |0k © x4||o and
[|0r © x;|| respectively, where @ denotes elementwise prod-
uct. In the third formulation, s;; is the negative L2 distance
between x; and X (local methods) or the center of instance
groups (others). We find that LIME performs the best with
the first formulation and others with the third one.
Overall Performance. We train BERT [Devlin et al., 2018]
and SVR [Awad and Khanna, 2015] on textual and tabular
datasets, respectively. These models are considered as black-
box models to be explained. Table 2 and ?? show the expla-
nation fidelity on unseen instances. The results of MAME on
textual datasets are omitted due to memory issues (mentioned
also in [Ramamurthy et al., 2020]): it cannot successfully run
on a 64-bit server with 64G of memory for textual datasets.
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Figure 3: Fidelity at different values of K on 20 Newsgroups.
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Figure 4: Fidelity vs. coverage on 20 Newsgroups.

We observe that GIME significantly outperforms other
baselines in terms of fidelity. This indicates that GIME al-
lows users to get more faithful understanding of the model
within limited cognitive budget. We also find that MAPLE
and MAME generally perform better than LIME. This is be-
cause they consider more instances when generating expla-
nations, thus their explanations may generalize to a larger re-
gion. CTE and ETC achieve the second best performance
on some datasets, illustrating the effectiveness of groupwise
explanations. However, they heuristically determine instance
assignment via clustering, thus yielding lower fidelity com-
pared with GIME, which jointly learns groupwise explana-
tions and the regions that they apply in a unified framework.
Parameter Sensitivity Analysis. Fig. 3 shows how RMSE
and accuracy change with the user budget K on 20 News-
groups. We find that GIME stably performs better than base-
lines at different values of K, which demonstrates the robust-
ness of our method. Moreover, the fidelity of GIME increases
with increasing K at first, and then slowly decreases after
K > 15. This shows that too many or too few explana-
tions may hurt generalized fidelity, validating the necessity
of learning a limited number of groupwise explanations.

We also evaluate how fidelity changes with different lev-
els of coverage. An instance x; is marked as covered if
Jk,pir > 7. We vary T to obtain the results when the per-
centage of unseen instances that are covered is 20%, 40%, ..,
and 100%. As shown in Fig. 4, GIME consistently achieves
better fidelity than other methods at different levels of cov-
erage. Moreover, the fidelity of some baselines like MAPLE
does not always increase with increasing p;;. (decreasing cov-
erage), which indicates that the way they determine whether
an explanation can be applied is not always reliable. This may
due to the fact that these methods heuristically determine p;
instead of learning it jointly with the explanations. In com-
parison, the fidelity of GIME stably increases with larger p;,
indicating that our region formulation is effective in selecting
the instances that can be best interpreted by the explanation.
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Polarity | AutoMPG
| M-Acc P-Acc | M-Acc  P-Acc
MAPLE 0.72 0.76 0.80 0.80
ETC/MAME 0.76 0.68 0.80 0.76
CTE 0.68 0.64 0.84 0.76
GIME | 092 084 | 096 0.92
Impv. | +21.1% +10.5% | +143% +15.0%

Table 4: Results of the user study. We report the results of ETC on
Polarity and the results of MAME on AutoMPG.

6.3 User Study

This experiment evaluates whether the explanations are use-
ful in helping real users predict the model behavior on un-
seen instances. Specifically, we hire five native English
speakers through a vendor company. For each explanation
method, users are asked to first investigate the provided ex-
planations and the information about when the explanations
may be applied (¢, for GIME, instance center for CTE and
MAME, and the examplar instance for MAPLE). Then, the
users are given five instances from the test set and asked to
1) match each instance with an explanation and 2) predict
the model output for the instance. For the regression task on
AutoMPG, users are only required to choose the appropriate
range: [<0.5,-0.5t0 0, 0to 0.5, and >0.5]. The explanations
are provided to the users in random order and the users do not
know which explanation method they are labeling. Explana-
tions generated by GIME are shown in Fig. 2.

Table 4 compares GIME with the three most competitive
baselines. M-Acc denotes the portion of instances that are
matched to the correct explanations and P-Acc represents the
portion of instances that are predicted correctly. We can see
that GIME achieves higher M-Acc than other methods on the
two datasets. It demonstrates that modeling the region with
an intuitive closed-form expression helps users better under-
stand the applied regions of explanations, which is a prereq-
uisite for successful prediction of model behaviors on unseen
instances. GIME also achieves the highest P-Acc. This val-
idates the effectiveness of our framework in faithfully inter-
preting the black-box model and enabling users to make ac-
curate predictions with a limited number of explanations.

7 Conclusion

We study two user demands that are important for under-
standing black-box models: 1) obtaining a faithful overall
understanding of the model with limited cognitive load and
2) making accurate predictions about the model on unseen
instances. To fulfill the two demands, we propose a unified
Groupwise Model-agnostic Explanation framework, which
learns a limited number of groupwise explanations with high
fidelity as well as the region where each explanation apply.
Experiments demonstrate the effectiveness of our method.
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