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Abstract
Retrosynthesis, of which the goal is to find a set
of reactants for synthesizing a target product, is an
emerging research area of deep learning. While the
existing approaches have shown promising results,
they currently lack the ability to consider avail-
ability (e.g., stability or purchasability) of the re-
actants or generalize to unseen reaction templates
(i.e., chemical reaction rules). In this paper, we
propose a new approach that mitigates the issues by
reformulating retrosynthesis into a selection prob-
lem of reactants from a candidate set of commer-
cially available molecules. To this end, we design
an efficient reactant selection framework, named
RETCL (retrosynthesis via contrastive learning),
for enumerating all of the candidate molecules
based on selection scores computed by graph neu-
ral networks. For learning the score functions, we
also propose a novel contrastive training scheme
with hard negative mining. Extensive experiments
demonstrate the benefits of the proposed selection-
based approach. For example, when all 671k re-
actants in the USPTO database are given as candi-
dates, our RETCL achieves top-1 exact match ac-
curacy of 71.3% for the USPTO-50k benchmark,
while a recent transformer-based approach achieves
59.6%. We also demonstrate that RETCL general-
izes well to unseen templates in various settings in
contrast to template-based approaches.1

1 Introduction
Retrosynthesis [Corey, 1991], finding a synthetic route start-
ing from commercially available reactants to synthesize a tar-
get product (see Figure 1a), is at the center of focus for dis-
covering new materials in both academia and industry. It
plays an essential role in practical applications by finding a
new synthetic path, which can be more cost-effective or avoid
patent infringement. However, retrosynthesis is a challenging
task that requires searching over a vast number of molecules
∗This work was partially done while the first author visited Sam-

sung Advanced Institute of Technology.
1The supplementary material is available at arXiv:2105.00795.

and chemical reactions, which is intractable to enumerate.
Nevertheless, due to its utter importance, researchers have
developed computer-aided frameworks to automate retrosyn-
thesis for more than three decades [Corey et al., 1985].

The computer-aided approaches for retrosynthesis mainly
fall into two categories depending on their reliance on the
reaction templates, i.e., sub-graph patterns describing how
the chemical reaction occurs among reactants (see Figure
1b). The template-based approaches [Coley et al., 2017;
Segler and Waller, 2017; Dai et al., 2019] first enumerate
known reaction templates and then apply a well-matched tem-
plate into the target product to obtain reactants. Although
they can provide chemically interpretable predictions, they
limit the search space to known templates and cannot discover
novel synthetic routes. In contrast, template-free approaches
[Liu et al., 2017; Karpov et al., 2019; Zheng et al., 2019;
Shi et al., 2020] generate the reactants from scratch to avoid
relying on the reaction templates. However, they require to
search the entire molecular space, and their predictions could
be either unstable or commercially unavailable.

We emphasize that retrosynthesis methods are often re-
quired to consider the availability of reactants and general-
ize to unseen templates in real-world scenarios. For exam-
ple, when a predicted reactant is not available (e.g., not pur-
chasable) for a chemist or a laboratory, the synthetic path
starting from the predicted reactant cannot be instantly used
in practice. Moreover, chemists often require retrosynthetic
analysis based on unknown reaction rules. This is especially
significant due to our incomplete knowledge of chemical re-
actions; e.g., 29 million reactions were regularly recorded be-
tween 2009 and 2019 in Reaxys2 [Mutton and Ridley, 2019].
Contribution. In this paper, we propose a new selection-
based approach, which allows considering the commercial
availability of reactants. To this end, we reformulate the task
of retrosynthesis as a problem where reactants are selected
from a candidate set of available molecules. This approach
has two benefits over the existing ones: (a) it guarantees the
commercial availability of the selected reactants, which al-
lows chemists proceeding to practical procedures such as lab-
scale experiments; (b) it can generalize to unseen reaction
templates and find novel synthetic routes.

For the selection-based retrosynthesis, we propose an effi-

2A chemical database, https://www.reaxys.com
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Figure 1: Examples of (a) a chemical reaction and (b) the corre-
sponding reaction template in the USPTO-50k dataset. The objec-
tive of retrosynthesis is to find the reactants for the given product.

cient selection framework, named RETCL (retrosynthesis via
contrastive learning). To this end, we design two effective se-
lection scores in synthetic and retrosynthetic manners. To be
specific, we use the cosine similarity between molecular em-
beddings of the product and the reactants computed by graph
neural networks. For training the score functions, we also
propose a novel contrastive learning scheme [Sohn, 2016;
He et al., 2019; Chen et al., 2020] with hard negative min-
ing [Harwood et al., 2017] to overcome a scalability issue
while handling a large-scale candidate set.

To demonstrate the effectiveness of our RETCL, we con-
duct various experiments based on the USPTO database
[Lowe, 2012] containing 1.8M chemical reactions in the US
patent literature. Thanks to our prior knowledge on the
candidate reactants, our method achieves 71.3% test accu-
racy and significantly outperforms the baselines without such
prior knowledge. Furthermore, our algorithm demonstrates
its superiority even when enhancing the baselines with can-
didate reactants, e.g., our algorithm improves upon the ex-
isting template-free approach [Chen et al., 2019] by 11.7%.
We also evaluate the generalization ability of RETCL by test-
ing USPTO-50k-trained models on the USPTO-full dataset;
we obtain 39.9% test accuracy while the state-of-the-art
template-based approach [Dai et al., 2019] achieves 26.7%.

We believe our scheme has the potential to improve further
in the future, by utilizing (a) additional chemical knowledge
such as atom-mapping or leaving groups [Shi et al., 2020;
Somnath et al., 2020]; (b) various constrastive learning tech-
niques in other domains, e.g., computer vision [He et al.,
2019; Chen et al., 2020; Hénaff et al., 2019; Tian et al.,
2019], audio processing [Oord et al., 2018], and reinforce-
ment learning [Srinivas et al., 2020].

2 Selection-based Retrosynthesis via
Contrastive Learning

2.1 Overview of RETCL
In this section, we propose a selection framework for ret-
rosynthesis via contrastive learning, coined RETCL. Our
framework is based on solving the retrosynthesis task as a
selection problem over a candidate set of commercially avail-
able reactants given the target product. Especially, we design

a selection procedure based on molecular embeddings com-
puted by graph neural networks and train the networks via
contrastive learning.

To this end, we define a chemical reaction R → P
as a synthetic process of converting a reactant-set R =
{R1, . . . , Rn}, i.e., a set of reactant molecules, to a product
molecule P (see Figure 1a). We aim to solve the problem of
retrosynthesis by finding the reactant-setR from a candidate
set C which can be synthesized to the target product P . Espe-
cially, we consider the case when the candidate set C consists
of commercially available molecules. Throughout this paper,
we say that the synthetic direction (from R to P ) is forward
and the retrosynthetic direction (from P toR) is backward.

Note that our framework stands out from the existing works
in terms of the candidate set C. To be specific, (a) template-
free approaches [Lin et al., 2019; Karpov et al., 2019;
Shi et al., 2020] choose C as the whole space of (possibly
unavailable) molecules; and (b) template-based approaches
[Coley et al., 2017; Segler and Waller, 2017; Dai et al., 2019]
choose C as possible reactants extracted from the known re-
action templates. In comparison, our framework neither re-
quires (a) search over the entire space of molecules, or (b)
domain knowledge to extract the reaction templates.

We now briefly outline the RETCL framework. Our
framework first searches the most likely reactant-sets
R1, . . . ,RT ⊂ C in a sequential manner based on a
backward selection score ψ(R|P,Rgiven), and then ranks
the reactant-sets using ψ(R|P,Rgiven) and another forward
score φ(P |R). For learning the score functions, we propose
a novel contrastive learning scheme with hard negative min-
ing for improving the selection qualities. We next provide
detailed descriptions of the search procedure and the training
scheme in Section 2.2 and 2.3, respectively.

2.2 Search Procedure with Graph Neural
Networks

We first introduce the search procedure of RETCL in detail.
To find a reactant-set R = {R1, . . . , Rn}, we select each el-
ement Ri sequentially from the candidate set C based on the
backward (retrosynthetic) selection score ψ(R|P,Rgiven). It
represents a selection score of a reactant R given a target
product P and a set of previously selected reactantsRgiven ⊂
C. Note that ψ is also capable of selecting a special reactant
Rhalt to stop updating the reactant-set. Using beam search,
we choose top T likely reactant-setsR1, . . . ,RT .

Furthermore, we rank the chosen reactant-setsR1, . . . ,RT
based on the backward selection score ψ(R|P,Rgiven) and
the forward (synthetic) score φ(P |R). The latter represents
the synthesizability of R for P . Note that ψ(R|P,Rgiven)
and φ(P |R) correspond to backward and forward directions
of a chemical reaction R → P , respectively (see Section
2.1 and Figure 1a). Using both score functions, we define
an overall score on a chemical reactionR → P as follows:

score(P,R) =

1

n+ 2

(
max
π∈Π

n+1∑
i=1

ψ(Rπ(i)|P,Rπ<i) + φ(P |R)

)
,

(1)

whereRπ<i = {Rπ(1), . . . , Rπ(i−1)},Rn+1 = Rhalt and Π is
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Figure 2: Illustration of the search procedure in RETCL. It first (1-3) selects reactants sequentially based on ψ(R|P,Rgiven), and then (4)
check the synthesizability of the selected reactant-set based on φ(P |R). The overall score is the average over all scores from (1) to (4).

the space of permutations defined on the integers 1, . . . , n+1
satisfying π(n+1) = n+1. Based on score(P,R), we de-
cide the rankings of R1, . . . ,RT for synthesizing the target
product P . We note that the maxπ∈Π operator and the 1

n+2
term make the overall score (1) be independent of order and
number of reactants, respectively. Figure 2 illustrates this
search procedure of our framework.
Score design. We next elaborate our design choices for the
score functions ψ and φ. We first observe that the molec-
ular graph of the product P can be decomposed into sub-
graphs from each reactant of the reactant-set R, as illus-
trated in Figure 1a. Moreover, when selecting reactants se-
quentially, the structural information of the previously se-
lected reactantsRgiven should be ignored to avoid duplicated
selections. From these observations, we design the scores
ψθ(R|P,Rgiven) and φ(P |R) as follows:

ψ(R|P,Rgiven) = d

(
fθ(P )−

∑
S∈Rgiven

gθ(S), hθ(R)

)
,

φ(P |R) = d
(∑

R∈R
gθ(R), hθ(P )

)
,

where d is the cosine similarity and fθ, gθ, hθ are embedding
functions from a molecule to a fixed-sized vector with pa-
rameters θ. Note that one could think that fθ and gθ are query
functions for a product and a reactant, respectively, while hθ
is a key function for a molecule. Such a query-key separation
allows the search procedure to be processed as an efficient
matrix-vector multiplication. This computational efficiency
is important in our selection-based setting because the num-
ber of candidates is often very large, e.g., |C| ≈ 6 × 105 for
the USPTO dataset.

To parameterize the embedding functions fθ, gθ and hθ,
we use the recently proposed graph neural network (GNN)
architecture, structure2vec [Dai et al., 2016; Dai et al., 2019].
Incorporating reaction types. A human expert could have
some prior information about a reaction type, e.g., carbon-
carbon bond formation, for the target product P . To utilize

this prior knowledge, we add trainable embedding bias vec-
tors u(t) and v(t) for each reaction type t into the query em-
beddings of ψ and φ, respectively. For example, φ(P |R) be-
comes CosSim(

∑
R∈R gθ(R) + v(t), hθ(P )). The bias vec-

tors are initialized by zero at beginning of training.

2.3 Training Scheme with Contrastive Learning
Finally, we describe our learning scheme for training the
score functions defined in Section 2.1 and 2.2. We are
inspired by how the score functions ψ(R|P,Rgiven) and
φ(P |R) resemble the classification scores of selecting (a) the
reactantR given the product P and the previously selected re-
actantsRgiven and (b) the product P given all of the selected
reactantsR, respectively. Based on this intuition, we consider
two classification tasks with the following probabilities:

p(R|P,Rgiven, C) =
exp(ψ(R|P,Rgiven)/τ)∑

R′∈C\{P} exp(ψ(R′|P,Rgiven)/τ)
,

q(P |R, C) =
exp(φ(P |R)/τ)∑

P ′∈C\R exp(φ(P ′|R)/τ)
,

where τ is a hyperparameter for temperature scaling and C is
the given candidate set of molecules. Note that we do not con-
sider P andR ∈ R as available reactants and products for the
classification tasks of p and q, respectively. This reflects our
prior knowledge that the product P is always different from
the reactants R in a chemical reaction. As a result, we arrive
at the following losses defined on a reaction of the product P
and the reactant-setR = {R1, . . . , Rn}:

Lbackward(P,R|θ, C) = −max
π∈Π

n+1∑
i=1

log p(Rπ(i)|P,Rπ<i, C),

Lforward(P,R|θ, C) = − log q(P |R, C),
where Rπ<i, Rn+1 and Π are the same as defined in (1). We
note that minimizing the above losses increases the scores
ψ(R|P,Rgiven) and φ(P |R) of the correct pairs of prod-
uct and reactants, i.e., numerators, while decreasing that
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Category Method Top-1 Top-3 Top-5 Top-10 Top-20 Top-50

Reaction type is unknown

Template-free

Transformer [Karpov et al., 2019] 37.9 57.3 62.7 - - -
SCROP [Zheng et al., 2019] 43.7 60.0 65.2 68.7 - -

Transformer [Chen et al., 2019] 44.8 62.6 67.7 71.1 - -
G2Gs [Shi et al., 2020] 48.9 67.6 72.5 75.5 - -

Template-based
retrosim [Coley et al., 2017] 37.3 54.7 63.3 74.1 82.0 85.3

neuralsym [Segler and Waller, 2017] 44.4 65.3 72.4 78.9 82.2 83.1
GLN [Dai et al., 2019] 52.5 69.0 75.6 83.7 89.0 92.4

Selection-based Bayesian-Retro [Guo et al., 2020] 47.5 67.2 77.0 80.3 - -
RETCL (Ours) 71.3 86.4 92.0 94.1 95.0 96.4

Reaction type is given as prior

Template-free

seq2seq [Liu et al., 2017] 37.4 52.4 57.0 61.7 65.9 70.7
Transformer† [Chen et al., 2019] 54.1 70.0 74.2 77.8 80.4 83.3

SCROP [Zheng et al., 2019] 59.0 74.8 78.1 81.1 - -
G2Gs [Shi et al., 2020] 61.0 81.3 86.0 88.7 - -

Template-based
retrosim [Coley et al., 2017] 52.9 73.8 81.2 88.1 91.8 92.9

neuralsym [Segler and Waller, 2017] 55.3 76.0 81.4 85.1 86.5 86.9
GLN [Dai et al., 2019] 64.2 79.1 85.2 90.0 92.3 93.2

Selection-based Bayesian-Retro [Guo et al., 2020] 55.2 74.1 81.4 83.5 - -
RETCL (Ours) 78.9 90.4 93.9 95.2 95.8 96.7

Table 1: The top-k exact match accuracy (%) of computer-aided approaches in USPTO-50k. The template-based approaches use the knowl-
edge of reaction templates while others do not. †The results are reproduced from the official code.

of wrong pairs, i.e., denominators. Such an objective is
known as contrastive loss which has recently gained much
attention in various domains [Sohn, 2016; He et al., 2019;
Chen et al., 2020; Oord et al., 2018; Srinivas et al., 2020].

Unfortunately, the optimization of Lbackward and Lforward
is intractable since the denominators of p(R|P,Rgiven, C)
and q(P |R, C) require summation over the large set of can-
didate molecules C. To resolve this, for each mini-batch of
reactions B sampled from the training dataset, we approxi-
mate C with CB =

⋃
R→P∈BR ∪ {P} which is the set of all

molecules in B. Then we arrive at the following training ob-
jective as L(B|θ) = 1

|B|
∑

(R,P )∈B(Lbackward(P,R|θ, CB) +

Lforward(P,R|θ, CB)).
Hard negative mining. In our setting, molecules in the
candidate set CB are easily distinguishable. Hence, learn-
ing to discriminate between them is often not informative.
To alleviate this issue, we replace the CB with its aug-
mented version C̃B by adding hard negative samples, i.e.,
C̃B = CB∪

⋃
M∈CB{Top-K nearest neighbors of M from C},

whereK is a hyperparameter controlling hardness of the con-
trastive task. The nearest neighbors are defined with respect
to the cosine similarity on {hθ(M)}M∈C . Since comput-
ing all embeddings {hθ(M)}M∈C for every iteration is time-
consuming, we update information of the nearest neighbors
periodically. We found that this technique significantly im-
proves the performance of RETCL (see Section 3.3).

3 Experiments
3.1 Experimental Setup
Dataset. We mainly evaluate our framework in USPTO-50k,
which is a standard benchmark for the task of retrosynthe-
sis. It contains 50k reactions of 10 reaction types derived
from the US patent literature, and we divide it into train-

ing/validation/test splits following [Coley et al., 2017]. To
apply our framework, we choose the candidate set of com-
mercially available molecules C as the all reactants in the en-
tire USPTO database as [Guo et al., 2020] did. This results
in the candidate set with a size of 671,518. For the evalua-
tion metric, we use the top-k exact match accuracy, which is
widely used in the retrosynthesis literature. We also exper-
iment with other USPTO benchmarks for more challenging
tasks, e.g., generalization to unseen templates. We provide a
more detailed description of the USPTO benchmarks in the
supplementary material.
Hyperparameters. We use a single shared 5-layer struc-
ture2vec [Dai et al., 2016; Dai et al., 2019] architecture and
three separate 2-layer residual blocks with an embedding size
of 256. To obtain graph-level embedding vectors, we use sum
pooling over mean pooling since it captures the size informa-
tion of molecules. For contrastive learning, we use a temper-
ature of τ = 0.1 and K = 4 nearest neighbors for hard nega-
tive mining. More details are provided in the supplementary
material.

3.2 Single-step Retrosynthesis in USPTO-50k
Table 1 evaluates our RETCL and other baselines using the
top-k exact match accuracy with k ∈ {1, 3, 5, 10, 20, 50}.
We first note that our framework significantly outperforms a
concurrent selection-based approach,3 Bayesian-Retro [Guo
et al., 2020], by 23.8% and 23.7% in terms of top-1 accuracy
when reaction type is unknown and given, respectively. Fur-
thermore, ours also outperforms template-based approaches
utilizing the different knowledge, i.e., reaction templates in-
stead of candidates, with a large margin, e.g., 18.8% over

3Note that Bayesian-Retro [Guo et al., 2020] is not scalable to a
large candidate set, e.g., 6 hours for testing one product.
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Category Method Top-1 Top-5 Top-10 Top-50 Top-100 Top-200

Reaction type is unknown

Template-free Transformer [Chen et al., 2019] 59.6 74.3 77.0 79.4 79.5 79.6
RETCL (Ours) 71.3 92.0 94.1 96.4 96.7 97.1

Template-based GLN [Dai et al., 2019] 77.3 90.0 92.5 93.3 93.3 93.3

Reaction type is given as prior

Template-free Transformer [Chen et al., 2019] 68.4 82.4 84.3 85.9 86.0 86.1
RETCL (Ours) 78.9 93.9 95.2 96.7 97.1 97.5

Template-based GLN [Dai et al., 2019] 82.0 91.7 92.9 93.3 93.3 93.3

Table 2: The top-k exact match accuracy (%) of our RETCL, Transformer and GLN with discarding predictions not in the candidate set C.
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Figure 3: Failure cases of RETCL.

GLN [Dai et al., 2019] in terms of top-1 accuracy when reac-
tion type is unknown.
Incorporating the knowledge of candidates into baselines.
However, it is hard to fairly compare between methods oper-
ating under different assumptions. For example, template-
based approaches require the knowledge of reaction tem-
plates, while our selection-based approach requires that of
available reactants. To alleviate such a concern, we incor-
porate our prior knowledge of candidates C into the base-
lines; we filter out reactants outside the candidates C from
the predictions made by the baselines. As reported in Ta-
ble 2, our framework still outperforms the template-free ap-
proaches with a large margin, e.g., Transformer [Chen et al.,
2019] achieves 68.4% in the top-1 accuracy, while we achieve
78.9% when reaction type is given. Although GLN uses more
knowledge than ours in this setting, its top-k accuracy is sat-
urated to 93.3% which is the coverage of known templates,
i.e., the upper bound of template-based approaches. How-
ever, our framework continues to increase the top-k accuracy
as k increases, e.g., 97.5% in terms of top-200 accuracy.

3.3 Analysis and Ablation Study
Failure cases. Figure 3 shows examples of wrong predic-
tions generated by our framework. We found that our pre-
dictions are still similar to the ground-truth (i.e., presented in

Reagent 1
(sodium acetate)

Reagent 2 (thiophene)

Intermediate product

Intermediate product

Reactant 1 Reactant 2

Product

Figure 4: A synthetic path based on our RETCL found by Reaxys.

Example A Top 4 nearest neighbors of A 

Example B Top 4 nearest neighbors of B 

Figure 5: The top-4 nearest neighbors of two samples in C.

USPTO-50k) reactants. For example, the third predictions of
the examples A and B are partially correct; the larger reac-
tant is correct while the smaller one is slightly different. In
the example C, the ring at the center of the product is bro-
ken in the ground-truth reactants while our RETCL predicts
non-broken reactants. Surprisingly, in a chemical database,
Reaxys, we found a synthetic path starting from the second
prediction4, as illustrated in Figure 4. The path is present in a
chemical literature [Gonda and Novak, 2015]. These results
show that our RETCL could provide meaningful information
for retrosynthetic analysis in practice.
Nearest neighbors on molecular embeddings. For hard
negative mining described in Section 2.3, it is required
to find similar molecules using the cosine similarity on
{hθ(M)}M∈C . As illustrated in Figure 5, hθ(M) is capable
of capturing the molecular structures.
Effect of components. Table 4 shows the effect of compo-
nents of our framework. First, we found that the hard nega-
tive mining as described in Section 2.3 increases the perfor-
mance significantly. This is because there are many similar

4We note that our model is trained without considering reagents
(e.g., sodium acetate or thiophene) as previous one-step models did.
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Reaction type

Method Average 1 2 3 4 5 6 7 8 9 10

GLN [Dai et al., 2019] 39.7 84.3 92.2 70.7 59.3 89.7 0.0 0.0 0.0 0.5 0.0
RETCL (Ours) 55.6 93.9 97.6 86.4 67.0 95.6 59.1 11.9 18.3 26.1 0.0

Table 3: The top-10 exact match accuracy (%) of our RETCL and GLN trained on USPTO-50k without reaction types from 6 to 10. The
average column indicates the average of class-wise accuracy for each reaction type.

φ(P |R) K sum Top-1 Top-10

X 59.5 79.8
X 1 69.6 92.2
X 2 70.9 92.7
X 4 71.1 92.9

4 69.8 90.3
X 4 X 71.3 94.1

Table 4: Effect of components of RETCL.

Method Top-1 Top-10 Top-50

Transformer [Chen et al., 2019] 29.9 46.6 51.0
GLN [Dai et al., 2019] 26.7 42.2 46.7

RETCL (Ours) 39.9 57.1 60.9

Table 5: Generalization to USPTO-full.

molecules in the candidate set C, thus a model could predict
slightly different reactants without hard negative mining. We
also demonstrate the effect of checking the synthesizablity of
the predicted reactants with φ(P |R). As seen the fourth and
fifth rows in Table 4, using φ(P |R) provides a 2.6% gain in
terms of top-10 accuracy. Moreover, we empirically found
that sum pooling for aggregating node embedding vectors is
more effective than mean pooling. This is because the former
can capture the size of molecules as the norm of vectors.

3.4 More Challenging Retrosynthesis Tasks
Generalization to unseen templates. The advantage of our
framework over the template-based approaches is the gener-
alization ability to unseen reaction templates. To demonstrate
it, we remove reactions of classes (i.e., reaction types) from
6 to 10 in training/validation splits of the USPTO-50k bench-
mark. Then the number of remaining reactions is 27k. In
this case, the templates extracted from the modified dataset
cannot be applied to the reactions of different classes. Hence
the template-based approaches suffer from the generalization
issue; for example, GLN [Dai et al., 2019] cannot provide
correct predictions for reactions of unseen types as reported
in Table 3, while our RETCL can provide correct answers.

We also conduct a more realistic experiment: testing on
a larger dataset, the test split of USPTO-full dataset pre-
processed by [Dai et al., 2019], using a model trained on a
smaller dataset, USPTO-50k. We note that the number of re-
actions for training, 40k, is smaller than that of testing reac-
tions, 100k. As reported in Table 5, our framework provides a
consistent benefit over the template-based approaches. These
results show that our strength of generalization ability.
Generalization to unseen candidates. The knowledge of the
candidate set C could be updated after learning the RETCL
framework. In this case, the set used in the test phase is larger

|Ctrain| Top-1 Top-5 Top-10 Top-20 Top-50

91,297 69.0 88.1 91.0 92.8 94.4
671,518 71.3 92.0 94.1 95.0 96.4

Table 6: Generalization to unseen candidates.

than that in the training phase, i.e., Ctrain ( Ctest. One can
learn the framework once again, however someone wants to
use it instantly without additional training. To validate that
our framework can generalize to unseen candidates, we use
a smaller candidate set during the training phase. To be spe-
cific, we use all molecules present in training and validation
splits of USPTO-50k. In this case, the number of candidate
reactants in the training phase is 91297. When testing, we use
the original candidate set, in other words, |Ctest| = 671518.
As reported in Table 6, this model achieves comparable per-
formance to another model trained with a larger number of
candidate reactants. This experiment demonstrates that our
framework trained with a small corpora (e.g., USPTO-50k)
can work with unseen candidates.
Multi-step retrosynthesis. In practice, retrosynthesis often
requires multiple recursive steps since intermediate reactants
could be unavailable. We remark that our RETCL can be
applied into not only the singe-step retrosynthesis, but also
the multi-step problem. We provide multi-step retrosynthesis
experiments with our framework in the supplementary mate-
rial. For example, we found that our RETCL can improve the
quality (e.g., length) of discovered synthetic routes.

4 Conclusion
In this paper, we propose RETCL for solving retrosynthe-
sis. To this end, we reformulate retrosynthesis as a selec-
tion problem of commercially available reactants, and pro-
pose a contrastive learning scheme with hard negative min-
ing to train our RETCL. Extensive experiments show that our
framework achieves outstanding performance for the USPTO
benchmarks. Furthermore, we demonstrate the generalizabil-
ity of RETCL to unseen reaction templates. We believe that
extending our framework to multi-step retrosynthesis or com-
bining with various contrastive learning techniques in other
domains could be interesting future research directions.
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