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Abstract
CVaR-sensitive online portfolio selection (CS-
OLPS) becomes increasingly important for in-
vestors because of its effectiveness to minimize
conditional value at risk (CVaR) and control ex-
treme losses. However, the non-stationary nature
of financial markets makes it very difficult to ad-
dress the CS-OLPS problem effectively. To ad-
dress the CS-OLPS problem in non-stationary mar-
kets, we propose an effective news-driven method,
named CAND, which adaptively exploits news to
determine the adjustment tendency and adjustment
scale for tracking the dynamic optimal portfolio
with minimal CVaR in each trading round. In addi-
tion, we devise a filtering mechanism to reduce the
errors caused by the noisy news for further improv-
ing CAND’s effectiveness. We rigorously prove a
sub-linear regret of CAND. Extensive experiments
on three real-world datasets demonstrate CAND’s
superiority over the state-of-the-art portfolio meth-
ods in terms of returns and risks.

1 Introduction
CVaR, an effective risk measure, stands for Conditional Value
at Risk. In recent years, CVaR-sensitive online portfolio se-
lection (CS-OLPS) has become increasingly important for
risk-averse investors, which sequentially tracks the optimal
portfolio, i.e., portfolio that has minimal CVaR, to control
extreme losses and ensure stable returns. However, in the real
world, financial markets are non-stationary, i.e., the distribu-
tion of assets’ returns constantly change. Such non-stationary
nature of financial markets causes the constant changes of a
portfolio’s CVaR, which makes it very difficult to address the
CS-OLPS problem effectively. In this paper, we study the
CS-OLPS problem in non-stationary markets, which aims to
track the optimal portfolio dynamically.

In financial markets, the non-stationary changes of a port-
folio’s CVaR may be the effect of related news. In Figure 1,
we visualize such changes via a real-world example. Specif-
ically, this example focuses on two stocks, i.e., Boeing and
Zoom, and their portfolios from Feb 3, 2020 to Feb 19, 2020
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Figure 1: A motivating example. (a) Two stocks’ daily normalized
prices. (b) Two portfolios’ daily returns. (c) CVaR estimated by the
returns of the two portfolios before and after Feb 11, 2020.

when the COVID-19 epidemic has influenced the market.
Suppose that portfolio #1 and portfolio #2 maintain two port-
folio weights of (5%, 95%) and (95%, 5%) on Boeing and
Zoom respectively on each day. In Figure 1, after the news
“WHO declared the deadly viral disease to be ‘COVID-19’”
was released after Feb 11, 2020, the aircraft manufacturer
Boeing’s prices has responded negatively because of more re-
strictions on traveling, whereas the online meeting platform
Zoom’s prices have responded positively (see Figure 1(a)) for
the work-from-home policy. These different responses led to
the different fluctuation changes of the two portfolios’ returns
(see Figure 1 (b)), which indicated the significant changes of
the two portfolios’ CVaR (see Figure 1 (c)). The CS-OLPS
problem in non-stationary financial markets aims to select the
optimal portfolio with minimal CVaR in each trading round.

The above real-world example motivates us to exploit news
to capture the changes of portfolios’ CVaR for addressing the
CS-OLPS problem in non-stationary financial markets. How-
ever, such idea faces three significant challenging problems.
In each trading round, investors can only observe limited re-
wards of the selected portfolio, which are insufficient to es-
timate its CVaR precisely and further decide the adjustment
tendency towards the low-CVaR portfolio. Therefore, (CH1)
it is difficult to determine the adjustment tendency when the
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CVaR is unobservable. In addition to determining the adjust-
ment tendency, investors still need to determine an appropri-
ate adjustment scale based on the non-stationary degree of
the market [Zhang et al., 2018]. Generally, the more violent
the market changes within the entire investment horizon, the
larger the adjustment scale are required in order to “keep up
with” the potential changes. However, it is difficult to know
in advance the non-stationary degree in hindsight, as a re-
sult, (CH2) it is difficult to determine the adjustment scale
when the non-stationary degree of the market is unobserv-
able. Moreover, even though news can provide hint about the
non-stationary market changes to some extent, trusting all the
obtained news may introduce bias in a news-driven portfolio
selection strategy because some pieces of news may be noisy.
In other words, (CH3) it is difficult to determine which pieces
of news to exploit when some of them are noisy.

In order to address the above three challenging problems,
we propose a novel CVaR-sensitive Adaptive News Driven
method, named CAND, which constructs effective portfolios
for the CS-OLPS problem in non-stationary markets. We de-
vise three key modules in CAND, i.e., the adjustment ten-
dency module, the adjustment scale module, and the filtering
module. In each trading round, the adjustment tendency mod-
ule estimates a CVaR-related function and decides the news-
driven adjustment tendency based on this function (for ad-
dressing CH1). Then, the adjustment scale module tracks the
model’s performance under several adjustment scales to keep
up with CVaR changes (for addressing CH2). Under each
adjustment scale, the filtering module filters the news-driven
adjustment tendency based on a novel mechanism with confi-
dence level to reduce the errors caused by the noisy news,
which significantly improves the performance of the con-
structed portfolio (for addressing CH3). At the end of the cur-
rent round, CAND constructs a portfolio based on the above
three modules and updates itself based on the portfolio’s re-
turn, aiming to construct better portfolio in the next round.

To sum up, our main contributions are as follows: (1)
We devise an effective news-driven method, named CAND,
which adaptively leverages news to address the CS-OLPS
problem in non-stationary financial markets; (2) We have rig-
orously proven a sub-linear upper regret bound of CAND,
i.e., the sub-optimal portfolios from CAND reduces rapidly
over time; (3) We have conducted extensive experiments on
three real-world datasets to demonstrate CAND’s superiority
over the state-of-the-art portfolio selection methods in terms
of returns and risks.

2 Related Work
Studies have shown that minimizing portfolios’ CVaR con-
tributes to safe and robust returns with relatively low losses
[Uziel and El-Yaniv, 2018; Nakagawa et al., 2020]. The
CVaR-sensitive portfolio selection methods can be classified
into three types. The first type replaces variance in the mean-
variance optimization model [Markowitz, 1952] with CVaR,
which is common for the offline portfolio selection problem
[Iyengar and Ma, 2013]. The second type maximizes the re-
turn under a certain CVaR constraints, which appears in both
offline [Sharma et al., 2017] and online [Uziel and El-Yaniv,

2018] portfolio selection studies. The third type formulates
the problem of minimizing CVaR as an online convex opti-
mization problem [Cardoso and Xu, 2019], which can be ap-
plied to the CS-OLPS problem. However, all of them assume
a stationary CVaR of the same portfolio during the trading
horizon, which is too ideal in real non-stationary markets.

In the non-stationary financial markets, news-driven on-
line portfolio selection model has become increasingly pop-
ular, which unveils the market dynamics and provides hints
to adjust portfolios’ weights. Hu et al. [2018] proposed a
deep neural network, which leverages news to capture assets’
prices changes. Ye et al. [2020] proposed a reinforcement
learning method to exploit the news in non-stationary mar-
kets. Du et al. [2020] proposed a news embedding method
to quantify the changing covariance of assets. In addition
to the news-driven studies, some studies on dynamic online
convex optimization are effective in the non-stationary envi-
ronment [Yang et al., 2016; Zhang et al., 2018]. Their mod-
els choose appropriate adjustment scales to keep up with the
market changes although they do not specifically focus on the
portfolio selection problem. Nevertheless, the above studies
do not consider minimizing CVaR, so they cannot be directly
applied to the CS-OLPS problem in non-stationary markets.

3 Methodology
In this section, we present the problem settings and pre-
liminaries of our proposed method CAND, an overview of
CAND, and the details of three key modules in CAND.

3.1 Problem Settings and Preliminaries
We consider a CS-OLPS problem with M assets during T
rounds. Let pt = (pt,1, ..., pt,M ), where pt,i is the closing
price of asset i in round t. Let rt = (rt,1, ..., rt,M ) be the
price growth rates, where rt,i =

pt,i−pt−1,i

pt−1,i
∈ [C1, C2] with

two constants C1 ≤ C2. We define CVaR as follows.

Definition 3.1 (CVaR). Given a parameter α ∈ [0, 1], the
CVaR of a portfolio w in the trading round t is defined as

CVaRt(w) = min
z
F (w, z) = min

z
z + 1

α E
−w>rt

[−w>rt − z]+, (1)

where the portfolio w ∈ W = {w|w ≥ 0,w>1 = 1} ⊂ RM
and z ∈ Z = [−C2,−C1] is an auxiliary parameter.

However, it is hard to observe or precisely estimate a port-
folio wt’s CVaR in round t because we only have limited ob-
servations of the portfolio’s loss, i.e., −w>t rt, in Eq. (1). To
address this issue, we introduce an observable CVaR-related
loss function [Rockafellar et al., 2000] in Definition 3.2.

Definition 3.2 (CVaR-related loss funtion). Using the same
notations as those of Definition 3.1, the CVaR-related loss
funtion in the trading round t is defined as:

`t(w, z) =
1

α
[−w>rt − z]+ + z. (2)

With the above definitions, we formulate the CS-OLPS
problem as an online convex optimization (OCO) problem.
The base model for this OCO problem is defined as follows.
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Figure 2: Graphical representation of the CAND in round t.

Definition 3.3 (Base model). Let ηh be the adjustment scale
of a base model h. The decision process is based on online
gradient descent, which is described as follows. At the begin-
ning of trading round t, based on ηh, r1, ..., rt−1, and the pre-
vious CVaR-related loss functions `1(w, z), ..., `t−1(w, z),
the base model constructs a portfolio wt and updates the aux-
iliary parameter zt, aiming to minimize

∑t−1
τ=1 `τ (w, z). At

the end of round t, rt and `t(w, z) are observed for the desion
process in the next round.

Besides, we follow some widely used assumptions in on-
line portfolio selection [Li and Hoi, 2014], i.e., no mar-
gin/short, unlimited market liquidity, and zero market impact.

3.2 Overview of CAND
To address the CS-OLPS problem in non-stationary markets,
CAND adaptively maintains a set H containing multiple in-
stances of the base model, each of which selectively utilizes
the news-driven adjustment tendency as a descent direction to
constructs its portfolio based on its unique adjustment scale.
CAND consists of three key modules, i.e., the adjustment ten-
dency module, the adjustment scale module, and the filtering
module. The graphical representation of CAND is shown in
Figure 2 and the pseudocode is presented in Algorithm 2.

Before the trading begins, CAND initializes its parameters
and |H| base model instances. At each round t, CAND pro-
cesses in five step: (1) leverages news to determine the news-
driven adjustment tendency, (2) leverages the previous perfor-
mance of each base model instance to determine the weights
on all instances in the adjustment scale module, (3) filters
the news-driven adjustment tendency for each base model
instance based on the the confidence level under its adjust-
ment scale in the filtering module; (4) constructs and outputs
the portfolio wt; (5) observes assets’ price growth rates for
model’s update.

In the following three subsections, we elaborate CAND’s
three key modules respectively in a trading round t.

3.3 Adjustment Tendency Module
In CAND, the adjustment tendency function −gt(w) is de-
noted by −∇w`t(w, z), which is unobservable until the end
of round t. Therefore, we need to estimate this function in
round t. Because news can guide the adjustment tendency
of a portfolio, CAND exploits news to estimate this function,
which is beneficial to improve the estimation accuracy.

Specifically, CAND gets the news features in round t via
a neural language processing model similar to the settings
in [Ye et al., 2020]. We will elaborate the news feature
generation process in Section 5.1. Then, CAND estimates
the assets’ price growth rates rt via an online multivariate
ridge regression model [Abbasi-Yadkori et al., 2011]. Based
on rt, CAND estimates the CVaR-related loss function as
`t(w, z) = 1

α [−w>rt − z]+ + z. Then, CAND estimates
the gradients of `t(w, z), i.e., gt(w) = ∇w`t(w, z) and
gt(z) = ∇z`t(w, z), in which−gt(w) is the adjustment ten-
dency function, which is applied in each base model instance.

3.4 Adjustment Scale Module
In real markets, we cannot know the non-stationary degree
of the market in advance, which makes it very difficult to se-
lect an appropriate adjustment scale to keep up with poten-
tial market changes. Therefore, CAND maintains a pool of
multiple candidate adjustment scales, and then invoke multi-
ple instances of the base model simultaneously, where each
instance h is associated with a candidate adjustment scales
ηh and constructs wh

t and zht . CAND adaptively integrates
the portfolios from all instances based on a weight vector
bt ∈ R|H|.

Maintaining multiple base model instances needs to query
`t−1(wh

t , z
h
t ) for every h ∈ H, which is inefficient in the de-

cision process. To reduce the number of queries to one, we
introduce the surrogate loss. Let gt−1(w) = ∇w`t−1(w, z)
and gt−1(z) = ∇z`t−1(w, z) denote the true gradient func-
tions of the previous loss function. According to the first-
order condition of Eq. (2)’s convexity [Cesa-Bianchi and Lu-
gosi, 2006], we have ∀x,y ∈ W × Z , `t(x) ≥ `t(y) +
〈∇`t(y),x− y〉 . Then, the surrogate loss for each instance
h ∈ H in round t− 1 is constructed as

ˆ̀h
t−1 = g>t−1(wt−1)(wh

t−1 −wt−1) + gt−1(zt−1)(zht−1 − zt−1), (3)

where wt−1 and zt−1 are the average portfolio and auxiliary
parameter from all instances weighted by bt. With these sur-
rogate losses, CAND updates the probability vector bt based
on the exponential weighting model [Cesa-Bianchi and Lu-
gosi, 2006] (Line 8, Algorithm 2).

3.5 Filtering Module
In this module, CAND utilizes the news-driven adjustment
tendency as a descent direction to amend the update of each
base model instance. However, fully trusting the news-driven
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Algorithm 1: Update and Filter (UF)
Input: Index of the instance h, previous portfolio
wh
t−1, previous auxiliary parameter zht−1, adjustment

scale ηh, estimation error εt, predicted price growth
rates rt, gradient functions gt(w), gt(z), gt−1(w)
and gt−1(z). M, δ, α are defined the same as
Algorithm 2.
Output: Portfolio wh

t and auxiliary parameter zht
1 Estimate wh

t = ΠW [wh
t−1 − ηhgt−1(wh

t−1)] and
zht = ΠZ [zht−1 − ηhgt−1(zht−1)].

2 Amend wh
t = ΠW [wh

t − ηhg(wh
t )] and

zht = ΠZ [zht − ηhg(zht )].
3 Estimate gt(w

h
t ) and gt(z

h
t ), and estimate εht by Eq.

(5).

4 if |(wh
t , z

h
t )− (wh

t , z
h
t )|2 ≤ εht ηh

2 +

√
(εht )

2η2h
2 + ηhδ

and
√
|gt(wh

t )|2 + |gt(zht )|2 ≥ εht then return
wh
t , z

h
t .

5 else return wh
t , z

h
t .

adjustment tendency may be too optimistic because some
news may be noisy. Therefore, we devise a mechanism to
filter the news-driven adjustment tendency for each instance.

Specifically, each instance h first updates its portfolio to
be wh

t = ΠW [wh
t−1 − ηhgt−1(wh

t−1)] and the auxiliary pa-
rameter to be zht = ΠZ [zht−1 − ηhgt−1(zht−1)]. Note that
ΠW and ΠZ refer to the Euclidean projection into W and
into Z respectively. After that, CAND selectively deter-
mine whether to accept the news-driven amendment by wh

t =
ΠW [wh

t − ηhg(wh
t )] and zht = ΠZ [zht − ηhg(zht )] based on

a novel mechanism. This mechanism consists of three steps:
(1) quantifies the estimated price growth rates’ error εt caused
by the noisy news; (2) estimates the error εht of each instance
h such that εht ≥ |gt(wh

t )−gt(w
h
t ) + gt(z

h
t )−gt(z

h
t )|; and

(3) filters the adjustment tendency for each instance.
First, we estimate εt such that for all asset i, |rt,i − rt,i| ≤

εt. Because rt is estimated by an online multivariate ridge
regression, with probability 1− β,

εt = |nt|A−1
t

(

√
2 log(

√
det (At)/

√
dβ) +

√
d), (4)

where At = Σtτ=1nτn
>
τ and d is the dimension of nt.

Second, εht of each instance h can be estimated as

εht =



0 if s1 ≤ zht and s2 ≤ zht√
Mε2t
α2 if s1 and s3 > zht√
|r|2+1
α2 if s3 < zht < s1√
|r|2+Mε2t+2

√
Mε2t |r|+1

α2 otherwise,

(5)

where s1 = −wh>
t r, s2 = −wh>

t (r − εt1), and s3 =
−wh>

t (r + εt1).
Third, the adjustment tendency for each based model in-

stance can be filtered by considering the integrated deci-
sions xht = (wh

t , z
h
t ) based on Lemma 3.1. The detailed

Algorithm 2: CAND
Input: T trading rounds, M assets, news feature
dimension d, filtering threshold δ, confidence level of
new-driven prediction β, CVaR’s probability level α.
Output: Portfolio wt in each trading round.

1 Initialize: G =
√

max(|C1|, |C2|)2 + (1− α)2/α,
D =

√
1 + (C2 − C1)2, γ =

√
2/(TG2D2),

N = d 12 log2(1 + (4T )/7)e+ 1,H = {1, 2, ..., N}
∇w`0(w, z) = 0M , ∇z`0(w, z) = 0,
∀h ∈ H : adjustment scale ηh = 2h−1

√
7D/(G

√
2T ),

∀h ∈ H, bh0 = (|H|+1)/|H|
h(h+1) , zh0 =0, wh

0 = { 1
M , ..., 1

M },
A1 = λId,B1 = 0d×M , and C1 = A−11 B.

2 for t = 1, 2, ..., T do
# Adjustment tendency module (Section 3.3)

3 Observe news and its feature nt.
4 rt = n>t Ct and `t(w, z) = 1

α [−w>rt − z]+ + z.
5 gt(w) = ∇w`t(w, z) and gt(z) = ∇z`t(w, z).

# Adjustment scale module (Section 3.4)
6 gt−1(w) = ∇w`t−1(w, z),

gt−1(z) = ∇z`t−1(w, z).

7 ∀h ∈ H : estimate ˆ̀h
t−1 according to Eq. (3).

8 ∀h ∈ H : bht =
bht−1e

−γ ˆ̀h
t−1

(
∑
i∈H b

i
t−1e

−γ ˆ̀i
t−1 )

.

# Filtering module (Section 3.5)
9 Estimate εt according to Eq. (4)

10 ∀h ∈ H : xht = (wh
t , z

h
t ) =

UF(wh
t−1, z

h
t−1, ηh, εt, rt, gt(w), gt(z),

gt−1(w), gt−1(z),M, δ, α).
11 wt =

∑
h∈H b

h
tw

h
t and zt =

∑
h∈H b

h
t z
h
t ,

12 Output portfolio wt, observe rt and `t(wt, zt).
13 Update news predicting parameters by

At+1 = At + ntn
>
t ,Bt+1 = Bt + ntrt, and

Ct+1 = A−1t+1Bt+1.

proof of Lemma 3.1 can be found in a longer version of
this paper. The filtering mechanism based on Lemma 3.1
is to accept the adjustment tendency and the amendment
xht = (wh

t , z
h
t ) for each base model instance h only if√

|gt(wh
t )|2 + |gt(zht )|2 ≥ εht and |(wh

t , z
h
t )−xht | ≤ f(εht ).

The online updating and filtering process of each instance is
presented in Algorithm 1.

Lemma 3.1. In round t, if
√
|gt(wh

t )|2 + |gt(zht )|2 ≥ εht

and |(wh
t , z

h
t )−xht | ≤ εht ηh/2+

√
(εht )2η2h/2 + ηhδ = f(εht )

for an instance h, where δ > 0 is the filtering threshold, then
the amended update reduces the original loss by δ with prob-
ability 1− β.

Finally, CAND constructs portfolio wt =
∑
h∈Hb

h
tw

h
t ,

and updates zt =
∑
h∈H b

h
t z
h
t in round t.
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4 Theoretical Analysis
The performance of CAND in addressing the CS-OLPS prob-
lem in non-stationary markets is quantified by pseudo-CVaR
dynamic regret. The definition and the result are as follows.

Theorem 4.1. Let w∗t = argminw∈W CVaRt(w) be the op-
timal portfolio and wt be a model’s portfolio in trading round
t. Then, the pseudo-CVaR dynamic regret after T rounds is
defined as RT =

∑T
t=1 CVaRt(wt)−

∑T
t=1 CVaRt(w

∗
t ).

Let PT =
∑T
t=2 |w∗t − w∗t−1| denote the changing scale

of the optimal portfolio over T rounds. Let |H| = N =
d 12 log2(1 + (4T )/7)e + 1. Then, with probability 1 − β,
CAND’s pseudo-CVaR dynamic regret is upper bounded by

RT ≤
GD
√

2T

2
[1 + 2 ln(k + 1)]

+
3G

4

√
2T (7D2 + 4D(PT +QT ))− vδ,

(6)

where G =

√
max(−C1,C2)2+(1−α)2

α , k = b 12 log2(1 +
4(PT+QT )

7D )c+1,D =
√

1 + (C2 − C1)2,QT =
∑T
t=2 |z∗t −

z∗t−1| with z∗t be the optimal auxiliary parameter that min-
imize Eq.(2) in round t, δ is the filtering threshold, and v
is the total number of rounds where all instances accept the
news-driven adjustment tendency.

The detailed proof is presented in a longer version of this
paper.

From Theorem 4.1, we can make three conclusions.
First, CAND’s pseudo-CVaR dynamic regret scales sub-

linearly in T with order O(
√
T ), which demonstrates that

the number of sub-optimal portfolio from CAND decreases to
zero when T goes to infinity. In other words, CAND can ef-
fectively update its portfolio construction over time for good
performance in non-stationary financial markets.

Second, CAND’s pseudo-CVaR dynamic regret scales sub-
linearly in PT with order O(

√
PT ), which demonstrates that

CAND can effectively track the optimal portfolio in non-
stationary financial markets as long as the degree of market
changes is sub-linear in T . Note that this result is achieved
even though CAND does not know the PT in advance, which
indicates its adaptiveness to the market changes.

Third, the news-driven adjustment tendencies can further
reduce CAND’s CVaR dynamic regret according to the last
term in Eq. (6). According to the proofs in a longer version
of this paper, the mechanism of the filtering module is more
likely to accelerate the convergence of the dynamic regret at
the beginning when the news-driven adjustment tendencies
are more useful to base model instances.

5 Experiments
In this section, we present the comprehensive experiments
conducted on three real-world datasets to answer the follow-
ing questions: Q1: How does CAND perform on accumulat-
ing wealth (see Result 1)? Q2: How does CAND perform
on reducing risk (see Result 2)? Q3: How does the three key
modules contribute to CAND’s performance (see Result 3)?

Dataset Time Period # Rounds # News # Assets

SP500 10/20/2006 -
11/20/2013 1,784 49,725 500

DJIA 08/08/2008 -
11/01/2016 1,889 106,521 30

COVID 11/01/2019 -
12/31/2020 294 94,078 30

Table 1: Datasets descriptions

5.1 Experimental Settings
Datasets Descriptions. We provide a summary of the three
real-world datasets of our experiments in Table 1. In par-
ticular, SP500 [Ding et al., 2014] and DJIA1 are widely
used datasets for news-driven financial modeling. COVID2

is a newly collected dataset, which contains news and his-
torical prices of Dow Jones 30 constituent stocks. Among
the three datasets, the SP500 and COVID datasets cover the
2007 - 2008 financial crisis and the COVID-19 recession re-
spectively, which are the well-known periods of violent non-
stationary markets, and the DJIA dataset covers some mini-
recessions only and thus is not much non-stationary. In each
dataset, we use the data in the earliest 30% days to train the
news feature generation model for CAND and conduct the
model training required by the comparison methods.
News Feature Generation. Similar to the settings in [Ye et
al., 2020], the news feature nt of trading round t is gener-
ated by (1) utilizing the unsupervised pre-trained Word2Vec
model [Mikolov et al., 2013] to embed the news articles dur-
ing the previous t-12 days, (2) feeding the embedding into a
hybrid attention network (HAN) [Hu et al., 2018], which is
a trained classifier to predict the price movement of dataset’s
index, and (3) extracting the last layer, i.e., a 100-dimensional
vector, in HAN’s discriminative network as news feature nt
in round t. In the above process, a dataset’s index refers to
the equally weighted average of the price growth rates of the
dataset’s constituent assets, and price movement refers to rise,
down, or preserve of the index as defined in HAN. Notably,
the main difference between our news feature generation and
that of [Ye et al., 2020] is that we substitute the classifier in
[Ye et al., 2020] by HAN because HAN is specifically de-
signed for leveraging financial news, which can model se-
quential news dependency and diverse news influence in fi-
nancial markets.
Evaluation Metrics. We use five standard metrics [Li et
al., 2012] to measure portfolios’ performance. Cumulative
wealth (CW) measures the portfolios’ returns. Volatility (VO)
and Maximum drawdown (MD) measure the portfolios’ risks
while Sharpe ratio (SR) and Calmar ratio (CR) measure the
risk-adjusted returns. Overall, higher CW, SR and CR indi-
cate better performance while lower MD and VO values indi-
cate better performance.
Comparison Methods. We compare CAND with methods
in two categories.

1www.kaggle.com/aaron7sun/stocknews.
2News are collected from aylien.com and covid19-archive.com.
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Figure 3: Results on cumulative wealth.

Dataset Metrics
News-free methods News-driven methods Our proposed methods Impro-

vement 1MCVaR SOCO CANN HAN SARL SE CAND Ablation methods
w/o-
Tend

w/o-
Scale

w/o-
Filter

SP500

VO 0.051 0.058 0.047* 0.051 0.057 0.048 0.045 0.051 0.074 0.062 3.94%
MD 0.283 0.300 0.282* 0.283 0.283 0.452 0.218 0.248 0.294 0.337 22.69%
SR 1.364* 1.312 1.085 1.230 1.262 0.855 1.548 1.345 0.843 0.875 13.49%
CR 1.124 1.165 0.832 1.019 1.168* 1.005 1.573 1.280 0.969 0.739 34.64%

DJIA

VO 0.018 0.012* 0.032 0.017 0.060 0.012 0.012 0.012 0.013 0.012 1.73%
MD 0.159 0.057* 0.266 0.122 0.486 0.058 0.055 0.056 0.059 0.058 4.25%
SR 2.232 3.648 0.466 1.299 0.312 3.745* 4.073 3.695 3.539 3.971 8.76%
CR 1.146 3.459* 0.255 0.834 0.177 3.440 4.129 3.704 3.659 3.752 19.35%

COVID

VO 0.027 0.028 0.026* 0.031 0.075 0.086 0.025 0.029 0.028 0.028 3.82%
MD 0.026 0.026 0.024* 0.053 0.158 0.193 0.020 0.026 0.026 0.024 17.77%
SR 6.076 6.083 7.062* 2.831 3.056 2.122 10.060 6.834 6.430 9.623 42.43%
CR 28.937 29.378 37.150* 7.612 6.605 4.338 64.781 34.868 31.607 53.099 74.37%

* Results of the best-performing comparison methods. 1 Improvement of CAND over the best-performing comparison methods.

Table 2: Results on risk, i.e., volatility (VO), maximum drawdown (MD), sharpe ratio (SR), and calmar ratio (CR).

(1) News-free portfolio selection methods: MCVaR [Iyen-
gar and Ma, 2013] is a conventional offline CVaR-sensitive
portfolio method. SOCO [Cardoso and Xu, 2019] is a state-
of-the-art CVaR-sensitive portfolio method based on convex
optimization. CANN [Uziel and El-Yaniv, 2018] is a state-
of-the-art CS-OLPS method.

(2) News-driven portfolio selection methods: HAN [Hu et al.,
2018] is a conventional method. SE [Du and Tanaka-Ishii,
2020] is a state-of-the-art method that incorporates news into
the mean-variance minimization model. SARL [Ye et al.,
2020] is a state-of-the-art method based on deep reinforce-
ment learning.

Parameter Settings. Following the settings in [Uziel and
El-Yaniv, 2018; Abbasi-Yadkori et al., 2011], we set α to be
0.05, β to be 0.0001. The news-filtering threshold δ is set to
be 0.06, which we found to give reasonable performance. The
rest of CAND’s parameters are set to be their theoretically
optimal values (see Line 1, Algorithm 2). The parameters
of the comparison methods are set to be the optimal values
reported in their publications. To model real-world financial
markets, we follow the proportional transaction cost model
and set the transaction cost rate to be 0.25% [Ye et al., 2020].

5.2 Performance Comparison and Analysis

Result 1: Performance on Cumulative Wealth (for Q1).
To answer question Q1, we present the CW values achieved
by CAND and the six comparison methods in Figure 3.
CAND achieves the highest CW values on SP500, DJIA, and
COVID with improvements of 0.18%, 12.07%, and 10.64%
respectively over the best-performing comparison methods.
CAND outperforms all news-free comparison methods be-
cause the news-free comparison methods fail to adapt to non-
stationary financial markets wheres CAND leverages news to
adapt to non-stationary financial markets. Besides, CAND
outperforms all news-driven methods because of its effective
filtering mechanism to identify useful news.

Result 2: Performance on Risk (for Q2). To answer ques-
tion Q2, we present the risk and risk-adjusted return metrics
achieved by CAND and the six comparison methods in Table
2. In Table 2, CAND achieves the lowest VO and MD val-
ues on all three real-world datasets with an average improve-
ment of 9.03% (ranging from 1.72% to 22.67%) over the best-
performing comparison methods, which demonstrates that
CAND performs well on reducing risks. In addition, CAND
achieves the highest SR and CR values on all three real-world
datasets with an average improvement of 32.18% (ranging
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from 8.76% to 74.38%) over the best-performing compari-
son models, which demonstrates that CAND performs well
on balancing returns and risks.

Result 3: Ablation Experiments (for Q3). To answer
question Q3, we conduct ablation experiments with three
simplified versions of CAND: (1) w/o-Tend: CAND with-
out the adjustment tendency module, (2) w/o-Scale: CAND
without the adjustment scale module, i.e., fixing the adjust-

ment scale to be
√
1+C2−C1

G

√
7

2T+2 , which corresponds to
assuming the most fluctuated market according to the proof
in Theorem 4.1, and (3) w/o-Filter: CAND without the fil-
tering module, i.e., without using Lemma 3.1 to filter out
noisy news-driven adjustment tendency for each base model
instance. Results are shown in Figure 3 and Table 2. Compar-
ing CAND with w/o-Tend, we find that CAND outperforms
w/o-Tend on all five metrics with average improvements of
15.12%, 7.91%, and 28.67% on SP500, DJIA, and COVID re-
spectively. Without the adjustment tendency estimating mod-
ule, w/o-Tend fails to react to the market dynamics timely.
Comparing CAND with w/o-Scale, we find that CAND out-
performs w/o-Scale on all five metrics with average improve-
ments of 53.61%, 11.22%, and 44.03% on SP500, DJIA, and
COVID respectively. Without leveraging the adjustment scale
selecting module, w/o-Scale can only fix a large adjustment-
scale to prevent the most drastic market changes, which sacri-
fices its performance when the market changes slowly. Com-
paring CAND with w/o-Filter, we find that CAND outper-
forms w/o-Filter on all five metrics with average improve-
ments of 70.31%, 5.47%, and 14.03% on SP500, DJIA, and
COVID respectively, which demonstrate the effectiveness of
CAND’s filtering module. Overall, the results in this sec-
tion demonstrate that CAND’s three modules are indispens-
able and contribute to CAND’s promising performance.

6 Conclusions and Future Work
In this paper, we propose a novel news-driven model CAND,
which adaptively leverages news to address the CS-OLPS in
non-stationary financial markets. Rigorous theoretical anal-
ysis and empirical studies demonstrate the effectiveness of
CAND. In the future, an interesting extension is to incorpo-
rate more sophisticated mechanism to further exploit some
indirect relations between news and the CS-OLPS in non-
stationary markets. Another extending direction is to ex-
plore more advanced news feature generation models such
as sentiment-based [Xing et al., 2018; Malandri et al., 2018]
and Bert-like models [Devlin et al., 2019] to better exploit the
information in financial news for improving the performance.
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