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Abstract
Unsupervised domain adaptation (UDA) has been
received increasing attention since it does not
require labels in target domain. Most existing
UDA methods learn domain-invariant features by
minimizing discrepancy distance computed by a
certain metric between domains. However, these
discrepancy-based methods cannot be robustly ap-
plied to unsupervised time series domain adapta-
tion (UTSDA). That is because discrepancy metrics
in these methods contain only low-order and local
statistics, which have limited expression for time
series distributions and therefore result in failure
of domain matching. Actually, the real-world time
series are always non-local distributions, i.e., with
non-stationary and non-monotonic statistics. In this
paper, we propose an Adversarial Spectral Kernel
Matching (AdvSKM) method, where a hybrid spec-
tral kernel network is specifically designed as in-
ner kernel to reform the Maximum Mean Discrep-
ancy (MMD) metric for UTSDA. The hybrid spec-
tral kernel network can precisely characterize non-
stationary and non-monotonic statistics in time se-
ries distributions. Embedding hybrid spectral ker-
nel network to MMD guarantees precise discrep-
ancy metric and benefits domain matching. Be-
sides, the differentiable architecture of the spectral
kernel network enables adversarial kernel learning,
which brings more discriminatory expression for
discrepancy matching. The results of extensive ex-
periments on several real-world UTSDA tasks ver-
ify the effectiveness of our proposed method.

1 Introduction
Unsupervised domain adaptation (UDA) is a machine learn-
ing strategy that transfers knowledge from one domain to
another [Pan and Yang, 2009]. The unsupervised adaptation
progress utilizes labeled data from the source domain but un-
labeled data from the target domain to train the model. Many
successful cases have been achieved by methods in traditional
research fields as computer vision [Long et al., 2015] and
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Figure 1: Illumination of the importance of suitable statistics. (a):
Two different example distributions from time series. (b): Unsuit-
able statistics fails to capture all information in distribution, lead-
ing to non-injective embedding and an incorrect metric value. (c):
Appropriate statistics can represent sufficient information in distri-
bution, resulting in injective embedding and an appropriate metric
value.

text categorization [Dai et al., 2009]. These methods usually
learn a domain-invariant space by minimizing discrepancy
distance computed by a certain metric between source and
target domains. Maximum Mean Discrepancy (MMD) metric
[Gretton et al., 2007] is the which utilizes a kernel function
to extract statistics from samples to the Reproducing Kernel
Hilbert Space (RKHS) and measures the domain discrepancy
on RKHS. For example, DDC [Tzeng et al., 2014] applies
MMD with a linear kernel which captures first-order statis-
tics (Mean). DAN [Long et al., 2015] enhances MMD metric
with multiple Gaussian kernels. Besides, HoMM [Chao et al.,
2020] proposed an innovate high-order metric, which approx-
imates to MMD with third or fourth order polynomial ker-
nel. UDA methods with MMDs embedded by distinct kernels
have several advantages over methods with classical metrics,
namely easy convergence and low bias of finite sample esti-
mates. However, when met with the unsupervised time series
domain adaptation (UTSDA) task, a challenging and emerg-
ing area of UDA, these methods cannot be robustly applied
to.

For the real-world time series, the data usually change
through time (i.e., non-stationary) and continuously reverse
derivatives (i.e., non-monotonic). Based on Fourier spec-
tral theory, these non-stationary and non-monotonic statis-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2744



tics are non-local in the energy-frequency-time distributions
[Clements and Hendry, 2000]. However, existing methods
based on MMD metrics only capture the low-order or local
statistics of distributions on structured objects such as im-
ages, instead of appropriate statistics for time series, leading
to rough-grained domain matching. The linear-kernel MMD
in DDC capturing low-order statistics degrades to Euclidean
distance metric. The MMD with multiple Gaussian kernel in
DAN reveals local statistics, i.e., only capturing the identi-
cal similarity of structured data [Xue et al., 2019]. Even the
high-order MMD in HoMM is only suitable for traditional
images with translation invariance and stills suffers from lo-
cality. Visual proof of the shortcomings of these local statis-
tics are shown in Fig.1, where two time series distributions
with same mean are given in Fig.1(a). In Fig.1(b), the un-
suitable statistics maps two distributions into the same point
in the measure space and leads to incorrect distance metric.
But the appropriate statistics in Fig.1(c) can capture sufficient
information of distributions and make method effectively dis-
tinguish between domains.

To solve the above problems, we propose a Adversarial
Spectral Kernel Matching (AdvSKM) method for UTSDA.
Our method perform time series domain matching by min-
imizing a reinforced MMD metric embedded by a well-
designed hybrid spectral kernel network. The hybrid spec-
tral kernel network interpretably integrates spectral kernel
and arc-cosine kernel into the deep architecture via spec-
tral theorems and kernel approximation, which exposes non-
stationary and non-monotonic properties through compact
representation of complex time series and boosts computa-
tional efficiency. Adopting the hybrid spectral kernel network
as inner kernel for MMD not only facilitates time series fea-
ture mapping to RKHS, but also reveals non-local proper-
ties in time series distributions, and therefore ensures injec-
tive embedding to RKHS and guarantees fine-grained do-
main matching. Besides, the differentiable architecture of the
spectral kernel network enables adversarial kernel learning,
thus bringing more discriminatory expression for discrepancy
matching. Extensive experimental results demonstrate the su-
periority of our AdvSKM to several state-of-the-art adapta-
tion methods in UTSDA task.

2 Related Works
Several researches have been devoted to time series classifi-
cation (TSC) problems. Wang et al. [2017] designed a Fully
Convolutional Neural (FCN) Network for the TSC problem.
The FCN consists of three convolutional layers without any
subsampling, followed by a global average pooling layer, and
the last layer is a softmax classifier. Although recurrent neu-
ral networks (RNN) propagating through time are intuitively
more suitable for TSC problems, experimental results in [Bai
et al., 2018] show that the simple FCN outperforms canonical
RNNs such as LSTMs across a diverse range of tasks. How-
ever, the performance of backbone FCN trained on specific
domain decreases abruptly when applied to the other domain.
This problem can be solved with transfer learning strategy.

Unsupervised domain adaptation (UDA) is a rising field
in transfer learning since it does not require labels in tar-

get domains. Most UDA methods generally learn a domain-
invariant space by minimizing domain discrepancy between
domains. These discrepancy-based methods can be catego-
rized into two groups: (1) Metric-based: Learning domain-
invariant features between domains by reducing the discrep-
ancy distance computed by a certain metric. (2) Domain-
discrimination-based: Blending domains with a domain ad-
versarial loss, specifically by training discriminators to dis-
tinguish between source and target domains.

Most of the metric-based methods are based on Maximum
Mean Discrepancy (MMD) metric. MMD has several ad-
vantages over classical metrics, since it compares two dis-
tributions without density estimation. Specifically, Tzeng et
al. [2014] proposed DDC which matches one-order statis-
tic at last layer of the model with linear-kernel MMD. Fur-
ther, Long et al. [2015] presented DAN which performs
domain matching at multiple layers via multiple Gaussian
kernel MMD. Sun and Saenko [2016] proposed Correla-
tion alignment (CORAL) which is equivalent to MMD with
second-order polynomial kernel. Besides, Central Moment
Discrepancy (CMD) [Zellinger et al., 2017] and Higher-
order Moment Matching (HoMM) [Chao et al., 2020] fur-
ther considered higher-order metrics, which both approxi-
mate to the MMD using third or fourth order polynomial
kernel. However, these methods capture low-order or local
statistics that are only suitable for structured data instead of
non-local statistics for time series, leading to rough-grained
domain matching in unsupervised time series domain adapta-
tion (UTSDA) task.

The second category of domain-discrimination-based
approaches such as Domain-adversarial Neural Network
(DANN) [Ganin et al., 2016] attempt to minimize domain
discrepancy by distinguishing domains. However, the back-
bone architectures in these methods are designed for image
data and is not adapted to the time series data. Therefore, they
cannot be applied robustly to UTSDA.

Although less numerous, a few methods have been intro-
duced to UTSDA. These methods combine different TSC
models as backbones with an domain adversary following
DANN. Specifically, variational recurrent adversarial deep
domain adaptation (VRADA) [Purushotham et al., 2017] and
recurrent domain adversarial neural network (R-DANN) ex-
plore long short-term memory (LSTM) network and vari-
ational RNN as backbone, respectively. While Convolu-
tional Domain Adaptation model for Time Series data (Co-
DATS) [Wilson et al., 2020] utilizes FCN as backbone net-
work. However, in terms of domain matching methodology,
these UTSDA methods all follow domain-discrimination rule,
where domain and category classification losses are equally
important and a slight imbalance between them can cause
inter-class confusion and leads to accuracy degradation.

Unlike the UTSDA methods above, our approach minimize
the domain divergence directly on a special MMD metric for
time series data. The special MMD metric is embedded by a
well-designed hybrid spectral kernel network as inner kernel.
The hybrid spectral kernel network can precisely characterize
non-stationary and non-monotonic statistics instead of local
statistics in time series distributions. Embedding the hybrid
spectral kernel network to MMD guarantees precise discrep-
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ancy metric and benefits domain matching in UTSDA.
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Figure 2: The architecture of the two-stream FCN φ(·) with shared
parameters and the classifier f(·). The up-stream operates the source
samples and the down-stream operates the target samples.

3 Our Method
Our method aim to solve the unsupervised domain adapta-
tion task where a significant amount of labeled source in-
stances and several unlabeled target instances are given. We
first denote the instances and labels from the source and tar-
get domains with XS =

[
xs1, . . . ,x

s
ns

]> ∈ Rds×ns ,YS =[
ys1, . . . ,y

s
ns

]
∈ Rns×1 and XT =

[
xt1, . . . ,x

t
nt

]> ∈
Rdt×nt ,YT =

[
yt1, . . . ,y

t
nt

]
∈ Rnt×1, respectively. The

source domain provides NS labeled instances and the tar-
get domain data contains NT unlabeled instances. In this
paper, we focus on the multivariate time series classifica-
tion task. Time series include both univariate and multivari-
ate data. If univariate, the sample x = [x1, x2, . . . , xH ] con-
sists of H real values through time. If multivariate, the sam-
ple x =

[
x1,x2, . . . ,xK

]
contains K univariate time series,

each of which consists of H real values through time.
Given source and target samples, we aim to train a cross-

domain FCN backbone network φ(·) and a classifier f(·)
which together map cross-domains samples to a unified space
and identify unlabeled target samples on the new space. φ(x)
denotes the outputs of the deep FCN and f(φ(x)) denotes
the predicted labels from the classifier. Similar to the experi-
mental framework in [Long et al., 2015], a two-stream FCN
framework is adopted as in Fig.2. We aim to minimize do-
main discrepancy at the last global pooling layer. The frame-
work is trained under a basic domain adaptation loss includ-
ing source domain classification loss and domain discrepancy
loss:

L = Lc(φ, f,XS ,YS)︸ ︷︷ ︸
classifcation

+λ · Ld(φ,XS ,XT )︸ ︷︷ ︸
discrepancy

(1)

Lc(φ, f,XS ,YS) =
1

NS

NS∑
i=1

J
(
f(φ(XS)),YS

)
(2)

where Lc is the classification loss for source domain, Ld is
the domain discrepancy loss, and λ is the factor. Specifically,

the classification loss function is defined as (2) and J is the
cross-entropy function.

3.1 Maximum Mean Discrepancy Matching
The two-stream FCN with shared parameters φ(·) transform
instances from two distinct domains into the unified space.
The new representations of the two domains on the new space
often obey distinct distributions. We utilized kernel-based
MMD metric as a loss to minimize this divergence.

And to go deeper, MMD compares two distributions by
embedding each distribution in to RKHS H with a kernel
function k. When given two distributions PX ,QX and the
MMD can be expressed as:

MMD[H,P,Q] = ‖µPX
− µQY

‖H
=
∥∥∥EPX

[k(X, X̃)]− EQY
[k(Y, Ỹ )]

∥∥∥
H

(3)

The kernel function serves to extract statistics from samples
to RKHS. However, when met with time series data, the com-
monly used shallow kernels cannot effectively capture appro-
priate statistics for MMD. For instance, MMD with a linear
kernel captures only one-order statistics. MMD with Gaus-
sian kernel cannot reveal non-local statistics except for the
identical similarity of structured data [Xue et al., 2019]. Be-
sides, these shallow kernels are also restricted by the compu-
tational inefficiency as the learning problems become more
complex.

3.2 Hybrid Spectral Kernel Network
To overcome the shortcoming of these kernels, we design a
deep hybrid spectral kernel network specifically for time se-
ries data. We first interpretably integrate non-stationary and
non-monotonic spectral kernel into the deep architectures via
several spectral theorems [Xue et al., 2019]. Based on the for-
mula of deep spectral kernel network, the spectroscopic ker-
nel function is represented by the spectral kernel mapping:

Φs(x) =

√
1

2M

[
cos
(
ΩTx + ϕ

)
+ cos

(
Ω′Tx + ϕ′

)]
(4)

k (x,x′) = 〈Φ(x),Φ (x′)〉 (5)

where (4) is the spectral kernel mapping. Through this spec-
tral kernel mapping, the spectroscopic kernel function can
be represented as (5) and Ω = [ω1, · · · ,ωM ] ,Ω′ =
[ω′1, · · · ,ω′M ] denotes the frequency matrices in inverse
Fourier transform. In terms of structural form, the kernel
function (5) represented in spectral way is similar to a one-
layer neural network. Except for non-stationary and non-
monotonic property, this deep kernel with cosine activation
function is more likely to depict the periodic and long-term
characteristics of a distribution.

In order to preserve locality and general information in
a distribution, we further introduce arc-cos kernel [Cho and
Saul, 2009]:

k (x, x′) =
1

π
‖x‖ ‖x′‖ J(θ) (6)
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where J(θ) = (sin θ + (π − θ) cos θ) and θ =

cos−1
(

x·x′

‖x‖‖x′‖

)
. θ is the angle between x and x′. Through

kernel approximation, the feature map of arc-cos kernel is re-
lated to ReLUs in deep neural networks as:

Φa(x) =

√
1

D
max

(
0,WTx

)
(7)
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Figure 3: The structure of the hybrid spectral kernel mapping.

Based on the above two deep kernel mappings, we design
a hybrid spectral kernel mapping as in Fig. 3. In the hybrid
spectral kernel mapping, spectral and arc-cos kernels are par-
allel and intertwined as ΦH(x) = [Φ1

s (x) ,Φ1
a (x)]. Then,

we use the unified spectral transform technique [Xue et al.,
2019] to stack an extra layer-wise kernel mapping in a hierar-
chical composite way to construct the hybrid spectral kernel
network. The notation of the final hybrid kernel network is:

K(2) (x,x′) =
〈

Ξ(2)(x),Ξ(2) (x′)
〉

(8)

where the composite mapping is Ξ(2)(x) = Φ2
H

(
Φ1
H(x)

)
.

Combining deep spectral and arc-cos kernels provides a com-
plete picture of the distribution and therefore circumvents
drawbacks of the classical kernels. Besides, the deep archi-
tecture can also avoid the tricky kernel training with specific
predefined kernel.

With the well-designed hybrid kernel network K = K(2),
we reinforce the biased empirical estimation of MMD metric
and design the distribution matching loss function as:

Ld(φ,XS ,XT ,K) =

NS∑
i,j

K
(
φ(xsi ), φ(xsj)

)
N2
S

+

NT∑
i,j

K
(
φ(xti)φ(xtj)

)
N2
T

− 2

NS ,NT∑
i,j

K
(
φ(xsj), φ(xtj)

)
NSNT

(9)

3.3 Adversarial Kernel Training
The differentiable architecture of hybrid spectral kernel net-
work makes adversarial kernel learning possible and there-
fore results in a more precise distribution alignment. Un-
like domain-discrimination-based methods, our method di-
rectly applies adversarial learning to the metric computation,

thus bringing more discriminatory expression for discrepancy
metric. The adversarial training procedure in our AdvSKM
can be represented by reformulating (9) as:

min
φ,f

max
K
Ld(φ,XS ,XT ,K) (10)

The procedure in (10) is associated with Generative Ad-
versarial Network (GAN), where a generative model G and a
discriminative model D are constructed to generate and dis-
criminate instances, respectively. In our paper, the backbone
network φ(·) is similar to G and strive to narrow the gap be-
tween domains, while K is similar to D and enlarges the gap.
These two competitive components are trained separately. K
is trained by maximizing the distribution matching loss (9),
while φ(·) and f are trained when minimizing the overall
loss function (11) with fixed K as input. Through adversarial
training, the MMD with K can better discriminate between
two distributions, and backbone network φ and classifier f
can achieve more accurate results and better generalization
capability.

3.4 Optimization
The components above construct the final objective function:

L = Lc(φ, f,XL,YL) + λ · Ld(φ,XS ,XT ,K) (11)

Based on the designed objective, the main steps of our pro-
posed method are illustrated in Algorithm 1 where the back
propagation optimization is based on the adaptive moment
estimation (ADAM) algorithm. At first, the networks f, φ,K
are initialized by truncated Gaussian distribution. Secondly,
source and target instances are transformed into the invariant
space with the FCN φ. Then our model is trained in a max-
mini adversarial manner. At the maximization stage, the hy-
brid spectral kernel networkK is trained with iterationL = 3.
Correspondingly at the minimization phase, the projection
networks and the classifier are jointly optimized with kernel
networkK as input. With tighter distribution distance, models
can be fitted before the max iterations M = 30, 000.

Algorithm 1 AdvSKM

Input: Instances and labels XS , XT and YS ; Initialized φ,
f and K; Hyperparameters λ, L and M .

Output: Labels of target test data, YT .
while not convergence or max iteration do

Project XS and XT to the common space with φ.
for i=1:L do

Compute and gradient of (9) w.r.t K.
Update K to maximize (9) with gradient.

end for
Compute the loss (9) with updated K.
Compute gradient of (11) w.r.t φ and f .
Update φ and f to minimize (11) with gradient.

end while
Predict YT with the optimized model.
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4 Experiments
4.1 Datasets
In the experimental settings, four multivariate time series
datasets collected by sensors are selected following [Wilson
et al., 2020]. The first dataset is the Human Activity Recogni-
tion (HAR) dataset [Anguita et al., 2013] which contains ac-
celerometer, gyroscope, and estimated body acceleration data
from 30 participants. The second is the Heterogeneity Human
Activity Recognition (HHAR) dataset [Stisen et al., 2015],
including acceleration sensor data from 31 smartphones. Next
is WISDM activity recognition (WS AR) dataset [Kwapisz et
al., 2011] including 33 participants’ accelerometer data. Fi-
nally, hand gesture accelerometer data from 8 participants is
provided from the gesture recognition dataset (uWave) [Liu
et al., 2009]. In each dataset, certain sensor device is used to
capture different activity behaviors of the participants. Each
dataset includes a participant identifier, and we use this prop-
erty to delineate the domains.

4.2 Comparing Methods
We compare our method with the following methods: Deep
Domain Confusion (DDC) [Tzeng et al., 2014], Deep Adap-
tation Network (DAN) [Long et al., 2015], Deep Correla-
tion Alignment (CORAL) [Sun and Saenko, 2016], Domain-
adversarial Neural Network (DANN) [Ganin et al., 2016],
Central Moment Discrepancy (CMD) [Zellinger et al., 2017],
Higher-order Moment Matching (HoMM) [Chao et al.,
2020], Convolutional Domain Adaptation for Time Series
(CoDATS). Specially, DDC, DAN, CORAL and CMD are
the representative metric-based methods, while DANN and
CoDATS are the representative domain-discrimination-based

methods. Among them, CoDATS is the latest state-of-the-art
adaptation method for time series data.

4.3 Experimental Settings
All the comparison methods are based on the same FCN
backbone network for a fair comparison. We implemented
our experimental framework by following the official codes
of CoDATS. Following CoDATS’s released codes, the differ-
ence between CoDATS and DANN is the domain/task clas-
sifier with different layers. We split the data in each dataset
into training, validation and test. The training-test were split
at 80% and 20%, respectively, and the training data were fur-
ther split into training-validation with the same proportions.
We randomly selected 5 adaptation problems between two
domains. For each data point, we average over three differ-
ent randomly initialized network weights on test set. During
the training, we performed model selection by selecting the
model that performed best on the validation set. We evalu-
ate the models every 4,000 iterations in addition to the end
of the training. The framework was trained for 30,000 iter-
ations, which means that the best model was selected from
nine models. Our codes 1 are published online.

4.4 Results
Table 1 tabulate the experimental results on four datasets.
Boldface is used to highlight the best result of each case.
”FCN” in the table represents the no adaptation model. From
the results, we can observe that our method achieves the high-
est accuracy in all cases, which demonstrates the superiority
of our method in various cross-domain scenarios. The poor

1https://github.com/jarheadjoe/Adv-spec-ker-matching

Problems FCN DDC DAN CORAL DANN CMD HoMM CoDATS Ours
HAR 14→19 13.9±0.0 20.4±0.7 76.4±6.0 79.6±8.8 85.6±9.4 54.6±3.3 88.9±11.2 66.2±4.3 98.1±0.7
HAR 17→25 22.0±2.0 28.9±8.3 91.6±3.4 96.3±1.0 90.7±2.1 87.8±3.6 92.3±7.1 93.5±1.5 97.6±2.6
HAR 7→24 23.4±9.2 34.6±2.2 99.6±0.6 100.0±0.0 97.4±0.0 98.7±1.1 97.8±0.6 99.1±1.2 100.0±0.0
HAR 9→18 16.0±1.3 21.5±5.6 74.0±1.1 84.9±1.1 71.2±5.8 75.8±3.2 86.8±3.9 89.5±7.6 93.2±3.9
HAR 12→18 16.9±2.6 77.6±2.8 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 99.5±0.6 100.0±0.0
HAR Avg 18.44 36.6 88.32 92.16 88.98 83.38 93.16 89.56 97.78
uWave 2→6 11.3±3.0 73.5±4.5 92.6±0.4 91.4±0.4 83.0±0.7 90.5±1.1 92.3±2.2 92.3±4.4 99.1±0.7
uWave 4→8 14.0±2.1 92.3±0.8 100.0±0.0 100.0±0.0 98.2±1.3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
uWave 7→8 13.4±1.3 85.7±2.9 99.4±0.4 96.1±1.5 87.2±3.0 97.9±0.4 97.6±1.1 100.0±0.0 100.0±0.0
uWave 3→5 14.9±3.4 79.2±3.4 99.4±0.4 94.9±0.4 81.5±4.1 91.4±1.5 91.7±2.6 98.8±1.7 100.0±0.0
uWave 2→5 11.6±1.9 75.6±2.1 100.0±0.0 98.8±0.4 83.9±6.0 92.6±1.5 100.0±0.0 100.0±0.0 100.0±0.0
uWave Avg 13.04 81.26 98.28 96.24 86.76 94.48 96.32 98.22 99.82
HHAR 2→7 17.5±1.8 45.2±1.3 56.0±7.5 43.0±0.6 50.1±1.9 49.1±1.9 46.7±0.4 59.4±0.1 73.0±18.0
HHAR 0→6 17.9±2.6 42.7±5.0 48.2±6.6 44.7±3.0 41.9±3.8 43.0±1.8 36.9±1.1 71.0±9.3 81.9±3.8
HHAR 1→6 20.7±4.3 62.0±1.8 89.9±1.0 85.5±1.4 85.7±0.7 88.7±1.0 82.7±4.8 90.1±1.7 93.1±0.9
HHAR 3→8 21.1±3.1 74.4±2.8 92.0±1.4 83.8±0.2 78.7±1.9 85.6±1.6 77.7±3.5 92.7±0.8 94.2±0.7
HHAR 4→5 18.9±0.3 59.1±4.6 91.5±0.7 79.6±1.3 76.5±3.4 81.5±0.9 70.5±1.4 94.2±0.6 95.1±0.2
HHAR Avg 19.22 56.68 75.52 67.32 66.58 69.58 62.9 81.48 87.46

WS AR 21→31 31.4±0.0 57.1±0.0 76.2±2.7 70.5±11.5 79.0±1.3 81.9±3.6 74.3±13.0 73.3±2.7 86.7±1.3
WS AR 2→25 37.2±2.8 16.7±4.7 93.3±0.0 87.8±0.8 87.8±2.1 83.9±1.6 73.3±15.3 92.8±1.6 98.9±0.8
WS AR 2→32 19.6±0.0 38.6±9.1 75.2±0.9 69.9±4.6 70.6±1.6 54.9±2.8 52.3±8.8 66.0±0.9 79.1±8.2
WS AR 4→15 82.7±1.6 27.6±12.7 82.7±5.4 86.5±0.0 82.7±1.6 78.8±0.0 77.6±5.0 86.5±2.7 89.7±0.9
WS AR 7→30 37.5±0.0 44.6±5.3 83.3±16.0 67.9±0.0 62.5±5.3 82.1±5.3 70.2±3.4 55.4±0.0 93.5±1.7
WS AR Avg 41.68 36.92 82.14 76.52 76.52 76.32 69.54 74.8 89.58

Table 1: classification accuracy(source→target, mean±std%) on 5 randomly chosen problems for 5 datasets.
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(a) None (b) CMD (c) HoMM (d) CoDATS (e) Ours

(f) None (g) CMD (h) HoMM (i) CoDATS (j) Ours
Figure 4: Feature visualization on the HAR 14→19 task. The first row illustrates the t-SNE embedding features where each color symbolizes
a category. The second row illustrates the t-SNE embedding features which are marked by domain information, red and green points represent
the samples drawn from the source and target domains.

performance of the no adaptation model indicates the sig-
nificant difference between the source and target domains
and the necessity for domain adaptation. The DDC model
is much worse than our method on the HAR and WISDM
AR datasets, indicating that the first-order statistic cannot
characterize the samples between domains. Our method sur-
passes the second-order method CORAL by a large mar-
gin (20%) on the uWave and HHAR. Compared to the third
and fourth order methods CMD and HoMM, our method
outperforms them by 3-10% on the HAR dataset and far
exceeds them on WS AR dataset. Our approach surpasses
above metric-based approaches, which shows the importance
of non-stationary, non-monotonic properties captured by our
hybrid spectral kernel network. Besides, our method out-
performs the domain-discrimination-based methods (DANN,
CoDATS). Besides, from the feature visualization result in
Fig. 4, we can see that these methods can confuse domains
by domain-oriented discrimination. But they may eventually
lead to the failure of the classification task due to the inter-
class confusion during domain matching.

4.5 Feature Visualization
We also used the visualization tool t-SNE to help prove the
validity of the AdvSKM. We visualize the final features ob-
tained by different methods on the HAR 14→19 task. T-SNE
embedding results are in Fig. 4(a)-4(j). We can distill the fol-
lowing observations: The shift between source and target do-
mains is significant. The third and fourth order metric-based
methods CMD and HoMM cannot effectively align domain
despite the relatively higher classification accuracy. The latest
domain-discrimination-based method CoDATS neglects cat-
egory aggregation while conducting relatively effective do-
main confusion. With our proposed method, the source and
target samples are matched better and categories are discrim-
inated better as well.
4.6 Sensitivity Analysis
Two hyperparameters including λ and L are prepared for sen-
sitivity analysis on four tasks. The influence of parameter
variations on accuracy is shown in Fig. 5(a)-5(b). As shown

(a) λ (b) L
Figure 5: Sensitivity analysis on parameters (a) λ, (b) Ł. The dashed
line parallel to the y-axis represents the default parameters.

in Fig. 5(a), since the accuracy rate does not fluctuate much,
our model is not sensitive to the change of λ. Fig. 5(b) shows
that our model is relatively insensitive within the appropri-
ate range of adversarial iteration L. Specifically, L = 0 in
Fig. 5(b) indicates that the distance metric is calculated using
the initialized kernel mapping without updating the weights
in the maximization phase.

5 Conclusion
In this paper, a novel metric-based domain matching method
AdvSKM is proposed for UTSDA task by reform MMD met-
ric with a well-designed hybrid spectral kernel network. Spe-
cially, the hybrid spectral kernel network maps the time series
samples to RKHS and preserves the non-stationary and non-
monotonic statistics in the distributions, and thus bringing a
more accurate discrepancy metric and ensuring the effective
domain matching for UTSDA. Experimental results on dis-
tinct datasets demonstrate the superiority of our method to
several state-of-the-art adaptation methods.
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