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Abstract
We study the problem of subtrajectory alignment
over massive-scale trajectory data. Given a collec-
tion of trajectories, a subtrajectory alignment query
returns new targeted trajectories by splitting and
aligning existing trajectories. The resulting func-
tionality targets a range of applications, including
trajectory data analysis, route planning and recom-
mendation, ridesharing, and general location-based
services. To enable efficient and effective subtra-
jectory alignment computation, we propose a novel
search algorithm and filtering techniques that en-
able the use of the parallel processing capabilities
of modern processors. Experiments with large tra-
jectory datasets are conducted for evaluating the
performance of our proposal. The results show that
our solution to the subtrajectory alignment problem
can generate high-quality results and are capable of
achieving high efficiency and scalability.

1 Introduction
With the continued proliferations of GPS-enabled devices
(e.g., smartphones, vehicle navigation systems, wearable
smart devices) and online location-based services (e.g., Uber,
Lyft, Google Maps), trajectory data is being generated at
an unprecedented scale. For example, the average num-
ber of for-hire vehicle trips per day from New York City
during the first half of year 2020 is well over 400K.1 The
availability of massive-scale trajectory data enables trajectory
similarity search [Chen et al., 2010; Driemel et al., 2020;
Xie et al., 2017; Yuan and Li, 2019; Shang et al., 2014],
which finds trajectories that are similar in some specific sense
to a set of query locations. Trajectory similarity search is
one of the fundamental problems in spatio-temporal data an-
alytics. It has a broad range of applications, including in-
depth trajectory data explorations, ridesharing service analyt-
ics, route planning and recommendations for energy saving
and emission reduction, and other location-based services.

Given a collection of trajectory data D, existing studies
formulate the trajectory similarity search problem as a query

∗Corresponding author.
1https://data.cityofnewyork.us/browse?q=trip

that finds a subset of D based on spatial (i.e., proximity to
query locations) and temporal (i.e., travel time interval) con-
straints. However, it is likely that the quality of query results
fails to meet users’ expectation due to data sparsity, especially
when a user defines a very stringent spatio-temporal con-
straint (i.e., a narrow time interval, a high similarity thresh-
old). Consider a toy example in Figure 1, where vs and ve,
denoted by red pentagon and star, respectively, are source and
destination locations, O = {o1, o2, o3} are query locations,
T = [8:30,9:30] denotes the query constraint of travel time
interval. Let τ1 (yellow), τ2 (dark blue), τ3 (green), τ4 (pur-
ple), and τ5 (light blue) be five trajectories in D. Traditional
trajectory similarity search aims to find trajectories that are
spatially and temporally close to the query. In this example,
we may find that τ1 is the only trajectory that meets departure
(vs), destination (ve), and time interval ([8 : 30, 9 : 30]) re-
quirements. However, this result may not be good enough in
real applications like ridesharing recommendations because
τ1 is not close enough to query locations. Additionally, if a
user set a stringent requirement on similarity threshold, it is
very likely that no trajectory in D meets query requirements.

In this light, we study a novel problem of Sub-Trajectory
Alignment (STA) over a collection of trajectory data D. The
STA problem not only considers existing trajectories in D,
but also generates and evaluates new trajectories by splitting
and aligning exiting trajectories in D. Specifically, given
source and destination locations, vs and ve, respectively, a
set of query locations O, a travel time interval T = [ts, te], a
similarity threshold θ, the maximum number of sub-trajectory
alignmentsM , the STA problem finds all existing trajectories
in D and all trajectories generated by sub-trajectory align-
ments from D such that: (1) Each result trajectory τr covers
vs and ve and the arrival timestamps regarding vs and ve are
within T ; (2) The similarity between τr and O is no less than
θ; (3) Trajectory τr is generated from the alignment of at most
M + 1 existing trajectories from D. Consider the example in
Figure 1, we may derive two feasible trajectories by aligning
two existing trajectories: τr1 = vs → τ2 → v0 → τ5 → ve;
τr2 = vs → τ2 → v3 → τ3 → ve. Compared to the orig-
inal result trajectory τ1, τr2 is more similar (closer) to query
locations o1, o2, and o3. Thus, we may acquire results with
higher quality by aligning only two existing trajectories.

It is challenging to answer the STA problem efficiently.
Given query location set O, we have

∑M
i=0 S(|O|, i+ 1) dif-
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ferent partitionings where S(·, ·) denotes the Stirling number
of the second kind. Thus, it is computationally prohibitive
to enumerate and evaluate all possible location partitionings.
To address the challenge, we develop Parallel Sub-Trajectory
Alignment Search (PSTAS) algorithm for answering the STA
problem. The high-level idea of PSTAS works as follow. Let
q be an STA query, which consists of source location vs, des-
tination location ve, a set of query locations O, travel time in-
terval T = [ts, te], similarity threshold θ, and the maximum
number of sub-trajectory alignments M . The PSTAS has
two phases: (1) Generation of trajectory candidates through
network expansion; (2) Alignment of trajectory candidates
through bottom-up merging.

Initially, we regard vs, ve, and each location in O as indi-
vidual network expansion centers. We run Dijkstra’s Algo-
rithm [Dijkstra, 1959] to explore the road network and to find
trajectory candidates that are close to each expansion center.
Here, we propose a pruning technique to filter out unquali-
fied candidates at an early stage. Note that the expansions
from different locations are independent of each other so they
can be executed in parallel.

Next, we generate partitionings of the set O. Each parti-
tioning contains k disjoint expansion center sets (k ∈ [1,M+
1]). For each expansion center set in each partitioning, we
evaluate and merge the trajectory candidates associated with
the expansion center. For each partitioning, we merge the
candidates associated with each expansion center set in a
bottom-up fashion. The computations in each group and in
each partitioning occur in parallel. Similarly, the computa-
tions in different partitionings are independent of each other
so they are capable of running in parallel.

Our contributions are summarized as follows. First, we de-
fine and study a novel problem of Sub-Trajectory Alignment
(STA), aiming to address the limitation of low result qual-
ity for traditional trajectory similarity search with insufficient
trajectory data. Second, we develop a PSTAS algorithm that
is capable of answering the STA problem efficiently. Third,
we conduct extensive experiments on large trajectory data.
The experiment results confirm that: (1) Answering the STA
problem is substantially more likely to find high-quality tra-
jectory results in comparison to answering existing trajectory
similarity search problem; (2) Our PSTAS algorithm is capa-
ble of answering the STA problem over a collection of up to
10M trajectories with user interaction time.

2 Preliminaries and Problem Definition
2.1 Road Network and Trajectory
We formulate a road network by a connected and undirected
graph G = (V,E, F,W ), where V denotes a set of vertices
and E ⊆ {{vi, vj}|vi, vj ∈ V ∧ vi 6= vj} denotes a set of
edges. Here, a vertex v ∈ V denotes a road intersection or
endpoint, an edge e = {vi, vj} ∈ E denotes a road segment.
Function F : V ∪ E → Geometries denotes the following
two mapping operations: (1) Mapping a vertex to the point
location (road intersection or endpoint); (2) Mapping an edge
to a polyline that represents the corresponding road segment.
Function W : E → R assigns a weight W (e) to an edge e,
which denotes the corresponding road segment’s length. For
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Figure 1: An example of STA problem

simplicity, we assume that the location points are located on
vertices.

This modeling of road networks aligns with previous stud-
ies (e.g. [Chen et al., 2010; Shang et al., 2014]). Trajectory
and sub-trajectory are defined as follow.

Definition 1 (Trajectory) Trajectory τ is a sequence of
vertex-timestamp pairs 〈p1, p2, ..., pn〉. Note that pi =
(vi, ti) where vi represents the vertex and ti denotes the
timestamp when τ passes vi.

Definition 2 (Sub-trajectory) A sub-trajectory of τ , denoted
by τ(pi → pj), is a segment of τ , where pi, pj ∈ τ and pi
and pj are the start and end vertex-timestamp pairs of the
segment, respectively.

2.2 Problem Formulation
Definition 3 (Valid Sub-Trajectory Alignment) Given a
source location vs, a destination location ve, a time inter-
val T = [ts, te], and a collection of trajectories D, a valid
sub-trajectory alignment, denoted by 〈τ1(p1 → p2), τ2(p2 →
p3), ..., τn(pn → pn+1)〉, satisfies the following conditions:
(1) n ≥ 2; (2) τi ∈ D (i ∈ [1, n]); (3) p1 = (vs, t1) where
t1 ≥ ts; (4) pn+1 = (ve, tn+1) where tn+1 ≤ te.
Definition 4 (Sub-Trajectory Alignment (STA) Problem)
Given a collection D of trajectories, the STA problem takes
the following arguments as input: (1) Source and destina-
tion locations, vs and ve, respectively, and a set of query
locations O; (2) A travel time interval T = [ts, te]; (3)
A similarity threshold θ; (4) The maximum number of sub-
trajectory alignments M . The STA problem finds all valid
sub-trajectory alignments R such that: (1) The similarity be-
tween O and each sub-trajectory alignment τr ∈ R, denoted
by Sim(O, τr), is no less than θ (i.e., Sim(O, τr) ≥ θ); (2)
The number of sub-trajectories in each alignment does not
exceed M .

2.3 Similarity Measures
Given a location v and a trajectory τ , the proximity d(v, τ)
between v and τ is defined by Equation 1.

d(v, τ) = min
vi∈τ
{dmin(v, vi)}, (1)

where dmin(v, vi) denotes the shortest network distance be-
tween v and vi. Given a set O of locations and a trajectory
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τ , the similarity Sim(O, τ) between them is defined by the
aggregate distance [Chen et al., 2010; Shang et al., 2017]:

Sim(O, τ) =

∑
v∈O e

−d(v,τ)

|O|
(2)

3 Parallel Subtrajectory Alignment Search
Our PSTAS algorithm consists of two phases: (1) Generation
of trajectory candidates (Section 3.1); (2) Alignment of sub-
candidates (Section 3.2).

3.1 Generating Trajectory Candidates
This section presents our algorithm details regarding how to
generate trajectory candidates associated with each location.
Specifically, we present how to generate trajectory candidates
associated with vs, ve, and each location in O, respectively.
Trajectory candidates are potentially capable for alignment.
To generate trajectory candidates associated with vs and ve,
we retrieve all trajectories that pass vs after ts, and retrieve
all trajectories that pass ve before te. To generate trajectory
candidates associated with each location in O (i.e., o1, o2, o3,
and o4), we perform network expansion from each location
based on Dijkstra’s algorithm [Dijkstra, 1959].

We terminate the network expansion from each location oi
when we are unable to find potentially qualified trajectory for
alignment through further network expansion. As such, we
pre-identify a network expansion region ri for each location
oi. Region ri is a circle in network space. The center of ri
is oi and the radius is the network distance from oi to the ex-
pansion boundary. From Figure 1, we see that the expansion
boundaries of o1, o2, and o3 are illustrated by light yellow ar-
eas. Note that Dijkstra’s algorithm iteratively selects the ver-
tex from road networks with the minimum distance label for
expansion. As such, given a trajectory τ , if pm.vm (pm ∈ τ )
is the first vertex visited by the expansion from oi, vm is the
vertex nearest to oi. It is worthy of noting that expansions
from different locations are independent of each other. Thus,
they can be performed in parallel.

Given an expansion center oi, we proceed to present how to
determine the radius of its expansion region ri. Specifically,
if a vertex v is visited during the Dijkstra’s expansion from
oi and trajectory τ covers v, we calculate the similarity upper
bound between O and τ , denoted by Sim>oi(O, v), based on
Equation 3.

Sim>oi(O, v) =
|O|+ e−dmin(oi,v) − 1

|O|
(3)

During the process of network expansion from oi, if
Sim>oi(O, v) < θ, we terminate the expansion from oi be-
cause all unvisited trajectories so far are unqualified for align-
ment. As shown in Figure 1, when we run network expansion
from o1, we retrieve τ1 and τ4 as trajectory candidates be-
cause both trajectories spatially overlap with o1’s expansion
region. Likewise, we retrieve τ2 and τ3 as trajectory as candi-
dates associated with o2, and retrieve τ1 and τ3 as candidates
associated with o3.

Data structure. During the expansion process, we main-
tain a candidate set S(o) for expansion center o, including
vs, ve, and all oi ∈ O. Each trajectory candidate τ in S(o)
is represented by a trajectory label, denoted by lo(τ, vp) =
〈e, vp, d〉, where e is the entry of τ , vp denotes the vertex cov-
ered by τ that is visited during the network expansion from o,
and d denotes the network distance from vp to o.

Algorithm for generating trajectory candidates. Algo-
rithm 1 presents the pseudo code for generating trajectory
candidates associated with vs, ve, and each location oi ∈ O.
The inputs are start and end locations (vs and ve), locationsO,
similarity threshold θ, and travel time interval T . The output
is trajectory candidate sets of vs, ve, and each location in O
(i.e., S = {S(vs), S(ve), S(o1), ..., S(o|O|)}). In particular,
each S(·) ∈ S is indexed by a min-heap consisting of trajec-
tory labels associated with each location. Trajectory labels
in S(o) are sorted in ascending order of lo(τ, vp).d (i.e., the
network distance between o and vp). First, we initialize the
result trajectory candidate set associated with vs, ve, and each
oi ∈ O (lines 1–2). Next, we find trajectory candidates asso-
ciated with vs and ve respectively (lines 3–10). Specifically,
we first evaluate all trajectories that cover vs. For each trajec-
tory τ , we add τ into vs’s candidate pool if τ passes vs after
T.ts (lines 5–6). Likewise, we proceed to evaluate all trajec-
tories that cover ve. For each trajectory τ , we add τ into ve’s
candidate pool if τ passes vs before T.te (lines 9–10). Next,
we perform a Dijkstra’s Algorithm based network expansion
from eachinte location oi ∈ O. We iteratively retrieve the
next vertex that has not been scanned (line 12). Then we
compute the upper bound of similarity between O and trajec-
tories covering vp (i.e., simub

i ) (line 14). If simub
i ≥ θ, we

insert the labels of trajectories that cover vp to S(oi) (lines
16–17); Otherwise, we terminate the expansion process.

3.2 Alignment of Trajectory Candidates
Having trajectory candidates of vs, ve, and O, we need to
find qualified alignment of these trajectory candidates. Our
high-level idea works as follow. First, we derive all qualified
partitionings for location set O. Each qualified partitioning,
denoted by P (|P| ≤ M), is a set of disjoint location subsets
Os ofO, and the union of these subsets isO. Second, for each
partitioning we generate trajectory candidates associated with
each location subset Os ∈ P. Finally, based on those trajec-
tory candidates, we generate qualified sub-trajectory align-
ments regarding each possible partitioning.

We present the data structure we used for processing tra-
jectory candidate alignment. In order to represent and index
each trajectory candidate associated with each location sub-
set Os ∈ P, we maintain a subset trajectory candidate label
of each trajectory τ associated with each location subset Os.
The label is denoted by l(τ,Os) = 〈e,H, su〉 where e is the
entry of τ ,H is a hashmap where keys are locations inOs and
values are their corresponding vertices visited by the expan-
sion algorithm, and su denotes the upper bound of similarity
between O and τ , which is computed by Equation 4.

l(τ,Os).su =
|O|+

∑
〈oi,vp〉∈H e

−d(oi,vp) − |Os|
|O|

, (4)
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Algorithm 1: TrajCandidatesGen
Data: Start location vs, end location ve, query

location set O, similarity threshold θ, travel
time interval T

Result: S = {S(vs), S(ve), S(o1), ..., S(o|O|)}
1 for each S(·) in S do
2 S(·)←∅;
3 for each trajectory τ that covers vs do
4 p← τ.p1;
5 if p.t1 is after T.ts then
6 S(vs).add(lvs(τ, vs));

7 for each trajectory τ that covers ve do
8 p← τ.p|τ |;
9 if p.t|τ | is before T.te then

10 S(ve).add(lve(τ, ve));

11 for each location oi ∈ O do
12 while NetworkExpansion(oi).hasNext() do
13 vp ←NetworkExpansion(oi).next();
14 simub

i ← |O|+ e−dmin(oi,vp) − 1;
15 if simub

i ≥ θ then
16 for each τ that covers vp do
17 S(oi).add(loi(τ, vp));

18 else
19 break;

20 return S;

where vp denotes the vertex visited by the network expansion
from oi.

Algorithm of alignment. Algorithm 2 presents the pseudo
code of trajectory alignment. We evaluate each qualified par-
titioning P of O where the number of subsets ranges from
1 to M . For each location subset Os ∈ P we evaluate tra-
jectory candidates associated with each oi ∈ Os and derive
trajectory candidates associated with Os (lines 4–10). For
each qualified trajectory candidate of Os, we generate and
index its label (lines 9–10). Next, we merge all subset tra-
jectory candidates in a bottom-up manner. We evaluate each
alignment (sequence) of subsets P , denoted by Q, by merg-
ing candidates from adjacent subsets hierarchically (lines 11–
28). Specifically, given an adjacent subset pair 〈Os, O

′

s〉 we
evaluate each indexed subset trajectory candidate pair, τi and
τ

′

i , and check if they are mergeable (lines 19–21). In partic-
ular, τi and τ

′

i are mergeable if they have intersection vertex
and their arrival timestamps on the intersection vertex meet
temporal alignment requirement. If they are mergeable, we
generate the label for τc, which is an aligned trajectories of
τi and τ

′

i (lines 22–23). Next, we update Q by merging Os
and O

′

s (line 24). The merging process terminates when Q
only has one set. Upon termination, we have generated la-
bels associated with the entire location set. Here, we add all
trajectories that cover vs and ve into the result pool.

Algorithm 2: TrajAlignment
Data: Trajectory candidate sets S , source location vs,

destination location ve, location set O,
similarity threshold θ, travel time interval T ,
maximum alignment count M

Result: Result sub-trajectory alignments R
1 k ← 0;
2 while k ≤M do
3 for each partitioning P of O where |P| = k do
4 for each subset Os in P do
5 S(Os)← ∅;
6 for each oi ∈ Os do
7 for each τ ∈ S(oi) do
8 Generate l(τ,Os);
9 if l(τ,Os).su ≥ θ then

10 S(Os).add(l(τ,Os));

11 for each alignment P of P do
12 Q← P;
13 Initialize Oc;
14 while |Q| > 1 do
15 for each disjoint adjacent subset pair

〈Os, O
′

s〉 in Q do
16 for each label pair 〈li, l

′

i〉 where
li ∈ Os and l

′

i ∈ O
′

s do
17 Oc ← Os ∪O

′

s;
18 τi ← li.e; τ

′

i ← l
′

i.e;
19 if τi and τ

′

i are mergeable then
20 τc ← τi + τ

′

i ;
21 Generate l(τc, Oc);
22 if l(τc, Oc).su ≥ θ then
23 S(Oc).add(l(τc, Oc));

24 Q.remove(Os); Q.remove(O
′

s);
Q.add(Oc);

25 for each label l in S(Oc) do
26 τ ← l.e;
27 if τ covers vs and ve then
28 R.add(τ);

29 return R;

4 Experiments

4.1 Experiment Settings

Datasets. We apply the following two road networks: Bei-
jing Road Network (BN) and the New York Road Network
(NYN)2. BN consists of ∼28K vertices and ∼27K edges.
NYN consists of ∼95K vertices and ∼261K edges. For
BN, we use taxi trajectory data collected by the T-drive
project [Yuan et al., 2013], which consists of 800K trajec-

2https://lab-work.github.io/data/
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Figure 2: Effect of similarity threshold (effectiveness)
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tories. For NYN, we use taxi trip data from New York3,
which consists of 800M trips. Note that each taxi trip from
New York only contains pick-up and drop-off locations and
timestamps. As such, we generate a trajectory by deriving the
shortest network path from the pick-up location to the drop-
off location.

Implementations. The road networks, trajectories, and in-
dices are memory resident. All algorithms are implemented
in Java and run on a server with two Intelr Xeonr Processors
Gold 5120 and 64GB RAM. Unless stated otherwise, exper-
iment results are averaged over 100 independent trials using
different vs, ve, andO for efficacy and efficiency evaluations.

Baselines. We evaluate the following methods. (1) Trajec-
tory Similarity Search without Alignment (TSS): Given a col-
lection of trajectories, TSS returns a set of existing trajecto-
ries satisfying the similarity and temporal requirements. Note
that TSS is equivalent to PSTAS where M = 0. (2) Parallel
Sub-Trajectory Alignment Search (PSTAS): Algorithm 1 and
Algorithm 2. (3) PSTAS without Pruning Technique (OriP-
STAS): PSTAS without calculating the similarity upper bound
for filtering unqualified trajectory candidates at an early stage.

Evaluation metrics. We use the following metrics to evalu-
ate the effectiveness and efficiency of each method. (1) Ratio
of qualified results: Given N independent trials, let Nq be the
number of trials that return at least one qualified trajectory
alignment. The ratio of qualified results is defined by Nq

N .
(2) Runtime: The average time cost of query processing. The
parameter settings are listed in Table 1.

3https://data.cityofnewyork.us/browse?q=trips

BN NYN
Number of trajecto-
ries

100K–500K / de-
fault 300K

2M–10M / de-
fault 2M

Maximum number of
alignments M

1–3 / default 2 1–3 / default 2

Number of intermedi-
ate locations |O|

3–7 / default 5 3–7 / default 5

Similarity threshold θ 0.60–0.90 / default
0.80

0.80–0.95 / de-
fault 0.90

Travel time interval T randomly gener-
ated from 0.5 to 3
hours

randomly gener-
ated from 0.5 to
3 hours

Thread count 16–48 / default 48 16–48 / default
48

Table 1: Parameter settings

4.2 Experiment Results
Varying similarity threshold (effectiveness). First, we
evaluate the ratio of individual trails that return qualified tra-
jectories. We vary the similarity threshold θ on BN and NYN.
In Figure 2, the “x” from “PSTAS-x” denotes the value ofM .
As we increase the similarity threshold, all methods exhibit a
decreasing trend regarding the ratio of results with qualified
trajectories. PSTAS-x performs consistently better than TSS.
In particular, when we let θ be 0.8 in BN, TSS only has 3%
trails (queries) that return qualified trajectories. When we in-
crease θ to 0.9, none of the trails find qualified trajectories.
In contrast, PSTAS-1, PSTAS-2, and PSTAS-3 have 27%,
33%, and 59% trails that return qualified results, respectively,
when we set θ to 0.8. Such contrast clearly demonstrates that
PSTAS, even with a small number of trajectory alignments,
is substantially more likely to find high-quality results (i.e.,
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trajectories that are highly similar to query locations) than
traditional trajectory similarity search method.
Varying the number of locations (effectiveness). Next, we
evaluate the ratio of individual trails that return qualified tra-
jectories as we vary the number of intermediate locations
(|O|). From Figure 3, we see that all methods perform worse
as we increase the number of intermediate locations.
Varying the number of trajectories. This set of experi-
ments evaluates the efficiency of each method as we vary
the number of trajectories. Note that OriPSTAS fails to an-
swer the STA problem within interaction time on NYN. Thus,
we only report the performance of OriPSTAS on BN in re-
maining experiments. From Figure 4 we see that all methods
perform worse as we increase the number of trajectories in
datasets. In particular, the time cost of OriPSTAS exhibits
an exponential increasing trend as we increase the number of
trajectories. In contrast, the time cost increment regarding
PSTAS is close to a linear trend, which confirms the effec-
tiveness of our pruning technique in Algorithms 1 and 2.
Varying similarity threshold θ. This set of experiments
investigates the efficiency as we vary the similarity thresh-
old θ. From Figure 5 we see that the performance of TSS
and OriPSTAS is relatively consistent as we vary the value of
θ. In contrast, the time cost of PSTAS exhibits a decreasing
trend as we increase θ. This can be explained by the effect
of our pruning technique. More unqualified trajectory candi-
dates can be pruned when we increase θ, thus the time cost
can be reduced substantially.
Varying the number of locations |O|. We proceed to study
the efficiency of each method as we vary the number of in-
termediate locations |O|. Figure 6 shows that the time cost
of TSS is consistent as we vary |O|. While the time costs of
PSTAS and OriPSTAS increase when the number of locations
increases. The reason is that a higher value of |O| indicates
more partitionings to be evaluated.
Effect of thread counts. Finally, we study the effect of
thread count on the efficiency of all methods. Figure 7 show
that all methods exhibit lowered time cost as we increase the
number of threads. The results show that all methods are ca-
pable of parallel processing.

5 Related Work
Trajectory similarity search has been extensively investi-
gated by existing studies. In particular, given a collection

of trajectories, the problem of trajectory similarity search
aims to find trajectories that meet query arguments de-
fined by users [Frentzos et al., 2007; Zheng et al., 2013;
Shang et al., 2012; Driemel et al., 2020; Zheng et al., 2017;
Xie et al., 2017; Yuan and Li, 2019; Shang et al., 2014].
The query arguments can be spatial requirement [Chen et al.,
2010], temporal requirement [Shang et al., 2014], and text-
based requirements [Shang et al., 2012; Zheng et al., 2013].
The problem of trajectory similarity search by multiple lo-
cations was first investigated by Chen et al. [Chen et al.,
2010]. Specifically, the problem takes a location set from
road networks as argument and finds trajectories that are spa-
tially close to the query location set on the basis of some spe-
cific metrics. Existing studies on this matter aim to develop
spatial and network indexing structures for effectively orga-
nizing a large volume of trajectory data [Zheng et al., 2018;
Zhao et al., 2018; Liu et al., 2016; Liu et al., 2014; Chen
et al., 2020]. However, the aforementioned studies are de-
veloped for supporting the retrieval of existing trajectories.
They do not consider the problem of deriving new trajecto-
ries by splitting and aligning existing trajectories. [Chen et
al., 2019] target the problem of route recommendation by
combining past travel routes. However, their proposal does
not consider the temporal dimension in route combination.

6 Conclusions
We define and study the problem of Sub-Trajectory Align-
ment (STA), aiming to address the limitation of low result
quality for traditional trajectory similarity search with insuf-
ficient trajectory data. To solve the STA problem, we develop
a PSTAS algorithm consisting of two phases: (1) Generation
of trajectory candidates through network expansion and (2)
alignment of trajectory candidates through bottom-up merg-
ing. The experiment results confirm that: (1) Answering the
STA problem is substantially more likely to find high-quality
trajectory results in comparison to answering existing trajec-
tory similarity search problem; (2) Our PSTAS algorithm is
capable of answering the STA problem over a collection of
up to 10M trajectories with user interaction time.
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