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Abstract

Capacity management has always been a great
challenge for cloud platforms due to massive, het-
erogeneous on-demand instances running at differ-
ent times. To better plan the capacity for the whole
platform, a class of cloud computing instances have
been released to collect computing demands be-
forehand. To use such instances, users are allowed
to submit jobs to run for a pre-specified uninter-
rupted duration in a flexible range of time in the
future with a discount compared to the normal on-
demand instances. Proactively scheduling those
pre-collected job requests considering the capacity
status over the platform can greatly help balance
the computing workloads along time. In this work,
we formulate the scheduling problem for these pre-
collected job requests under uncertain available ca-
pacity as a Prediction + Optimization problem with
uncertainty in constraints, and propose an effec-
tive algorithm called Controlling under Uncertain
Constraints (CUC), where the predicted capacity
guides the optimization of job scheduling and job
scheduling results are leveraged to improve the pre-
diction of capacity through Bayesian optimization.
The proposed formulation and solution are com-
monly applicable for proactively scheduling prob-
lems in cloud computing. Our extensive exper-
iments on three public, industrial datasets shows
that CUC has great potential for supporting high
reliability in cloud platforms.

1 Introduction

The cloud computing paradigm manages resources as a
shared pool of configurable virtual machines (VMs), and of-
fers an opportunity for users to allocate or release VMs when-
ever necessary. Deploying workloads on large-scale cloud
platforms, such as Amazon Web Service, Microsoft Azure,
Google Cloud, has thus gained significant popularity in re-
cent years. The total market of worldwide public cloud will
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grow to $364B in 2022 based on Gartner forecasts'.

For cloud platforms, it remains a huge challenge to prop-
erly allocate the computing resources with a high utilization
rate and with a high reliability level at the same time due to
the plug-and-play and pay-as-you-go styles in cloud comput-
ing [Mesbahi et al., 2018; Gawali and Shinde, 2018]. From
an operational perspective, the total demand in a public cloud
is in the order of millions of VMs per day. This high request
rate must be satisfied by the platform while maintaining fast
response time, and therefore would result in a waste of re-
sources along the fluctuations between peaks and valleys of
customers’ demands.

To reduce the resource waste due to demand fluctuations, a
stream of VM products with pre-collected demands has been
released by major cloud platforms, where customers can book
resources in a coming time window by specifying the re-
quired VM type, the duration in hours, as well as the earliest
and latest time for the job to start. Collecting the demands
for these VMs and scheduling these jobs properly can greatly
shave peaks and fill valleys of resource utilization along time,
and can therefore achieve a higher utilization rate and higher
overall revenue for the platform.

However, it is challenging to intelligently schedule these
pre-collected job requests due to the uncertain available re-
sources (normally referred to as capacity in cloud computing)
in the future and not affect the system’s high reliability level
at the same time. More specifically, deploying jobs violating
the capacity will largely reduce system reliability in cloud
computing. To this end, we resort to a Prediction + Optimiza-
tion framework to tackle this difficulty in this paper. More
specifically, we provide a general formulation for the schedul-
ing problem on the pre-collected job requests under uncertain
capacity, and propose a solution called Controlling under Un-
certain Constraints (CUC) for this Prediction + Optimization
problem. With CUC, we can flexibly control the violation
level on capacity constraints in the application, and maximize
the overall utilization for the pre-collected job requests under
the pre-specified violation level. Extensive experiments on
three public datasets from Microsoft Azure show that CUC
can strictly control the violation level to the available capac-

'https://www.gartner.com/en/newsroom/press-releases/2020-
07-23-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-
6point3-percent-in-2020



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

ity and outperforms existing state-of-the-art methods .
We list the main contributions of this work as follows:

* We provide an effective formulation for a class of
scheduling problems with uncertain constraints to be
predicted, and furthermore introduce a violation level on
the constraints to be controlled.

* We propose CUC, a novel approach for solving the job
scheduling problem under uncertain constraints, and can
flexibly control the violation level on uncertain con-
straints to fulfill system requirements.

* CUC is demonstrated to be able to strictly control the vi-
olation level on the uncertain constraints with industrial
datasets on extensive experiments and meet rigorous re-
liability requirements in cloud computing.

2 Related Work

The pre-collected job scheduling problem in cloud computing
can be treated as a variant of the general machine scheduling
problem [Chen et al., 1998]. Even when the future capac-
ity is known, this problem is known to be an NP-hard prob-
lem and usually formulated as a mixed integer programming
(MIP) problem [Fanjul-Peyro et al., 2017]. Solving this type
of problems often needs to resort to heuristics or other ap-
proximation algorithms [Fleszar and Hindi, 2018].

Another type of problem related to the pre-collected job
scheduling problem in cloud computing is the general re-
source allocation problem. Most of the works on resource
allocation focus on considering demand or workload uncer-
tainty with known capacity [Calzarossa et al., 2019]. How-
ever, in many application scenarios, the capacity itself may
suffer from uncertainty, such as the case in appointment
scheduling and room allocation in health-care systems [Gupta
and Denton, 2008; Zhou et al., 2020]. Rather than just as-
suming the future available capacity to be known, resource
(capacity) prediction based planning methods have been ex-
plored both by academia [Huang er al., 2018] and industry.
Further more, the uncertainty considered in these works is
in the form of a fixed probability distribution, which we can
hardly well capture in reality. Instead, we usually need to
develop a statistical distribution of the unknown value from
historical data. Therefore, the actual performance of the op-
timization problems under this ‘uncertain uncertainty’ would
largely depend on the prediction performance on the uncer-
tain value.

The literature [Verderame et al., 2010] has reviewed sev-
eral ways to take into parameter uncertainty in an explicit
manner, including two-stage stochastic programming, para-
metric programming, fuzzy programming, chance constraint
programming, robust optimization, and conditional value-
at-risk frameworks. Moreover, a group of methods have
been raised recently dealing with the Prediction + Optimiza-
tion problem [Demirovic et al, 2019; Luo et al., 2020;
Mandi et al., 2020], where the optimization objective con-
tains unknown parameters that needs to be predicted before
optimization. Currently, these works have not considered the
uncertainty in constraints and are therefore not applicable for
the pre-collected job scheduling problem under uncertain ca-
pacity constraints considered in this work.

3 Problem Formulation

In this section, we formally formulate the job scheduling
problem under uncertain capacity constraints as follows.

Definitions on job requests. Given a set of pre-collected
job requests B = {b1,...,bn}, each job request includes
basic requirements for the job to run. Specifically, for a job
request b; € B,i € {1,..., N}, it can be represented as b; =
(ci,d;, e;l;), where ¢; is the requested resource capacity for
job i, d; is the duration for the job, e; and [; are the earliest
start time and latest start time for the job, respectively. In
practice, the most valuable computing resource is the CPU
cores in cloud computing [Luo et al., 20201, and it can be any
other type of resources according to the specific application.
Here d; is restricted to be an integer hours of duration, e; and
l; are restricted to be the beginning of each hour, and e; < [;
fori € {1,...,N}. For each of the job requests, it is only
valid between its earliest start time and latest start time and
should be deployed during this period, or it is treated as failed
otherwise.

Definitions on predicted capacity. From the view of the
supply side, the cloud platform can only deploy these pre-
collected job requests on the remaining capacity, which is ob-
tained by subtracting the capacity occupied by on-demand job
requests from the whole available resource pool in the cloud
platform. Therefore, due to the uncertainty on the on-demand
workloads, the available capacity for deployment of these
pre-collected jobs also suffers from the uncertainty, and needs
to be predicted at a regular basis for scheduling these pre-
collected jobs. For each scheduling scope containing 7" hours,
the predicted capacity is a time series A = {d1, g, ..., a7}
where G;, 1 € {1, ..., T} is the predicted distribution of avail-
able capacity for job requests measured in the unit of CPU
cores.

Problem formulation. The job scheduling process is run-
ning in a regular basis, covering the time period of 7' time
units (e.g., 7' = 24 hours in the application scenario consid-
ered in this work). Each scheduling run needs to determine
for the following 7" time units, which job requests should start
at the beginning of each time unit. The process can be for-
mally formulated as a combinatorial optimization problem.
The decision variables are {X;;}, ¢ =1,...,N,t =1,...,T,
where X;; = 1 if job request ¢ is scheduled to start at time
t, and X;; = O otherwise. The goal of the job scheduling
practice is to maximize the overall computing resources mul-
tiplied by the duration time for the deployed job requests and
try not to affect the on-demand workloads. This combinato-
rial optimization problem formulation is as follows:

NE

Maximize u = Z cid; Xit
=1 t=1
T
s.t. Z X <1 for1<i< N
t=1 (])
Z Xu=0 for1 <i< N
t<e;Vt>l;
N t
> Zt/:t_di Xy <ar forl<t<T

X € {0,1} for1<i<N,1<t<T
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where a, is the real available capacity for the pre-collected
jobs at time ¢, ¢ € {1,...,T}. Note that A = {ay,...,ar}
remains unknown when solvmg this scheduling problem, we

can only estimate A with A where A is the output of a specific
time series prediction method using historical capacity data.
In essence, the above combinatorial optimization problem
cannot be directly solved since A is unknown. In this case
of not knowing the real available capacity, we cannot guar-
antee any scheduled plan would not affect the on-demand
workloads unless no request for the pre-collected jobs is actu-
ally deployed. Therefore, we propose a new formulation (2)
which allows a specific low level of impact on the normal on-
demand workloads, and tries to control the impact so that it
is below this specific level. The goal has thus turned to max-
imizing the benefits from these scheduled pre-collected jobs
on the condition that the violation frequency for on-demand
capacity is controlled under a pre-specified level p by adjust-
ing the capacity constraints in the optimization problem. In

an ideal situation, the predicted distribution A would be the
true distribution of A, then the following optimization prob-
lem would be sufficient to achieve our goal:

T
Z CdLXLt

1 t=1

1 for1 <i< N

Maximize

Mz

o
Il

T

S.t. Zt:l XL
Zt<eivt>li X =0

ZN_ Zt = <
C"('t/ S ag
=1 t'=t—d; Ea

=sup{y|P(at >~v) >1—p} forl<t<T
X € {0,1} for1<i<N,1<t<T

IN

for1<i< N (2)

for1 <t<T

However, there is always error between our predicted dis-
tribution A and the true distribution of A. Therefore, we still
need to improve our prediction based on the result from the
optimization step to achieve better performance. Formally,
we use a two-layer optimization formulation for this schedul-
ing problem with predicted uncertainty:

Minimize max(v — p,0)
N T
s.t. X = arg max Zi:l thl cidi Xit
T
>, X<l forl <i< N

fori<i<nN 3

E Xit = O
t<e;Vi>l;
N t B
E g ciXi < ag
i=1 t'=t—d;

=sup {7|P(G: > v) > 1—p}
Xit € {O, 1}

forl1 <t<T

for1 <t<T

where p is the pre-specified violation level, and v is the actual
violation rate comparing the scheduled capacity with the true
capacity:

T N t
=> 1 (Z > X > at> JT. 4)

t=1 i=1t'=t—d;
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Figure 1: Overall design of the proposed CUC algorithm.

In this formulation (3), the objective is to 1) achieve the
highest utilization under the capacity constraints that is pre-
dicted to meet the pre-specified violation level p; 2) improve
the predictive performance on future capacity according to
the performance of the optimization result in the training
stage, which will be further explained in Section 4.

4 Controlling under Uncertain Constraints

In this section, we introduce Controlling under Uncertain
Constraints (CUC), our scheduling algorithm under uncertain
constraints for the Prediction + Optimization problem for pre-
collected job requests.

4.1 Overall Design of CUC

The illustration of the overall design of CUC is shown in Fig-
ure 1. As stated before, we try to schedule the pre-collected
job requests in a coming period under unknown capacity. To
deal with this uncertainty, the capacity is predicted using his-
torical capacity so as to get an estimation on the constraints
under which the job requests should be scheduled. Then the
predicted distribution of future capacity is used to determine
the capacity constraints according to the pre-specified viola-
tion level for the inner level optimization in (3), which gives a
scheduled plan for the job requests. To improve the prediction
as well as the scheduling performance, the actual violation
rate and the error between that and the pre-specified viola-
tion level are calculated and sent to the Bayesian optimization
module to update parameters for the prediction model. After
several iterations when the violation error is well controlled,
we get the optimized scheduling plan as well as the improved
parameters for the prediction model in the specific dataset.

4.2 Technical Details of CUC

More specifically, the use of the proposed CUC can be di-
vided into the training stage and the testing stage. In the
training stage of CUC, the major objective is to learn bet-
ter prediction model parameters for real prediction applica-
tions. The training procedures of CUC are summarized in
Algorithm 1.

To obtain the predicted distribution for the capacity in the
next 7' time units, we adopt the time series prediction model
based on sliding windows [Box and Jenkins, 1976] and fit
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Algorithm 1: Training Procedures of CUC

Algorithm 2: Prediction Method in CUC

Input: Historical capacity A~, Requests
B = {bi}icq1,...,n} Violation level p,
Converge threshold -y, Max iteration steps k;
Output: Schedule { Xt }icq1,... N} teq1,.... T}
Prediction parameters 6;
1 Set iter_num = 1, initialize parameters 6 = 6 for the
prediction model;
2 while max (v — p,0) > v or iter_num < k do
3 Get predicted distribution A with 6 and historical
capacity A~ using Algorithm 2;
4 A+ <I>;‘1(p);
5 Conduct the greedy constructive algorithm with
capacity constraints A, get

{Xi(tO)}ie{l,.‘.,N},te{l,.u,T};

6 Calculate the violation rates according to (4);

7 Update the parameters € in the prediction through
BO according to max (v — p, 0);

8 iter_num < iter_num + 1;

9 return X, 0;

the distribution of prediction error similar to the prediction
component in [Luo er al., 2020]. The detail of the predic-
tion method is shown in Algorithm 2. We first construct pre-
diction samples using a sliding window, and then calculate
the prediction errors on the samples and fit the distribution of
prediction uncertainty using Gaussian mixture model (GMM)
[Luo et al., 2020] with these calculated prediction errors. Al-
though CUC can work with any parametric time series pre-
diction model since it treats the prediction function as a black
box, in this work we use a time series decomposition based
forecasting approach [Hyndman and Athanasopoulos, 2018]
considering its performance and computational efficiency for
the experiments in this work.

The predicted distributions for future capacity in 7' con-
secutive time units are then used to calculate the expected
capacity constraints A = @;1(1)) where <I>;§1(~) is the in-
verse cumulative distribution functionA(CDF) for distribution
A. Ideally, the predicted distribution A is close enough to the
true distribution, and then setting the constraints A according
to this formula would better control the violation rate.

For our imperfect prediction results, the model parameters
0 for the prediction model are then iteratively updated in the
training stage so as to achieve the optimization goal in (3),
which is to control the actual violation rate v of capacity at a
specific low level and maximize the utilization of all deployed
jobs. A greedy constructive method described in Algorithm 3
is designed to tackle with the inner-level optimization prob-
lem with high computational efficiency under the capacity
constraints A.

Note that in (3) the inner layer optimization problem is a
standard MIP problem which is known to be NP-hard, and
therefore we propose a new, greedy constructive method to
meet the requirement on computational cost in our schedul-

Input: Prediction parameters ¢, Historical capacity
A= ={ay, a0
Output: Predicted capacity distribution

A= {&1, ceny &T};
1 for t< 1to L — 2T+ 1do
2 Get prediction a,_ T ey LoT—1 trained on
previous L — [ capacity values ;
3 Calculate 6; +— a; —a; for

ie{t+T,..,t+2T -1}
4 A={dy,..ar} <
predict with previous capacities {a;_, ,-.-,az };
s e={er,...,ep}
fit the error distribution by GMM using
{0r—1+1,- 001}
6 fl = A =+ €;
7 return A

ing application. It has been demonstrated both theoretically
[Du and Pardalos, 1998] and practically [Cai ef al., 20171
that greedy strategy is a major way of designing algorithms
for NP-hard optimization problems. Moreover, experiments
in Section 5 also demonstrate the effectiveness of our greedy
constructive algorithm.

The violation error, i.e., the difference between the actual
violation rate v and the pre-specified level p when v is larger
than p, is then calculated as the objective for choosing pre-
diction model parameters. In practice, there are usually many
samples in the training set, and in this case the error on the

violation level is calculated by: Ele max (vs — p,0) /S,
where S is the number of samples in the training set. The
violation error is then sent to the Bayesian optimization (BO)
[Mockus and Mockus, 1991] module which basically builds
and maintains a surrogate model to select better parameters
for reducing the violation error. The prediction and optimiza-
tion steps conducted in an iterative manner until the actual
violation rate v is still smaller but close enough to the pre-
specified violation level p, or the number of iteration steps
is large enough with regard to the system requirements. The
schedule X for the final optimization step is then output as
the scheduled plan, and the parameters 6 is output as the pre-
diction model parameters to be adopted in the testing stage or
in production environment.

For the testing stage, the prediction model is run with the
learned parameters and then the corresponding optimization
problem is solved only once for each sample in the testing set
with Algorithm 3. The output scheduled plan X is then output
as the actual deployment plan for the jobs in application. The
testing procedures of CUC are concluded in Algorithm 4.

S Experiments

To evaluate the performance of our proposed scheduling algo-
rithm CUC, we conduct extensive experiments on three pub-
lic datasets and one synthetic dataset. Then we illustrate the
effects of both the BO module and the uncertainty prediction
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Algorithm 3: Greedy Construction Method in CUC

Algorithm 4: Testing Procedures of CUC

Input: Capacity Constraints A = {G; }1eq1,....7)5
Requests B = {b; }ic(1,...N}3

Output: Schedule { Xt }icq1,... N} teq1,....T}5
1 Sort the set of request by descending order of ¢; /d;;
2 fori < 1to N do
3 A «+ initialize an empty list of capacity gaps;
4 ST; + min(l;,T — d; + 1), the latest start time;
5 fort + e; to ST; do

i—1 i
6 0 < min ap—ci— Y, ¢ Yy Xjul;
te{t,t+d;} =1 u=i—d;+1
7 add element ¢; to the list A;

8 04« < find the largest §; € A,

9 if 6, > 0 then

10 | Xi¢= < 1, deploy job i at time ¢*;
1 else

12 L continue, skip job i;

—
w

return { Xy }bicq1, . N} 1,7}

module, as well as the power of controlling violation level in
our proposed formulation for the pre-collected jobs.

5.1 Datasets

The experiments in this work are conducted on three public
datasets, which are all collected from Microsoft Azure. In
particular, two public datasets are introduced in the literature
[Cortez et al., 2017] and each of both contains the representa-
tive VM workload of Microsoft Azure across 30 consecutive
days; the other dataset is described in [Hadary et al., 2020]
and includes the representative VM workload of Microsoft
Azure across 14 consecutive days. To make these datasets
applicable with our algorithm and consistent for evaluation,
we extract the job requests and the corresponding available
capacity for each hour to obtain three datasets with 14 days
of data for each dataset. The job requests in these datasets are
the jobs with duration from 1 to 6 hours. The pre-processed
dataset will also be publicly available in order to provide
benchmarking datasets for this type of scheduling problems.

Each of the three datasets is divided into a training set and a
testing set. For the first 5 days out of the 14 days, we only use
the hourly available capacity for fitting our prediction model.
Then a sliding window is adopted to generate samples, with
each sample containing past hourly capacity for 5 days (i.e.,
120 data points for prediction), future capacity for T' = 24
hours, and the job requests in the next 24 hours. The last
2 days are left as the testing set, and therefore there are al-
together 144 samples for Day 6 to Day 11. Job requests in
Day 12 are left out to avoid data leakage in constructing the
dataset.

5.2 State-of-the-art Competitors and Setup

We consider the following methods as our state-of-the-art
competitors. The first one is the classical two-stage method
where we use several classical time series prediction models
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Input: Requests {b; };c(1,... v}, Prediction parameters
0, Feasibility level p;
Output: Schedule {Xit}ie{l,,..,N},te{l,u.,T};
1 Get predicted distribution A according to 6,
2 Calculate the corresponding capacity constraints A
according to the inverse cdf of A;
3 Solve the optimization problem (2) with Algorithm 3,

get { Xitbieq1,... N} te{1,...T}S
4 return X

to predict the future capacity at once and then solve the corre-
spondent MIP problem with Gurobi, a professional solver for
linear and non-linear optimization problems. The prediction
methods in our experiments include linear regression (LR),
time series decomposition based forecasting approach (TS-
Dec) [Hyndman and Athanasopoulos, 2018], automatic au-
toregressive integrated moving average (AutoARIMA) [Hyn-
dman and Athanasopoulos, 2018], long short-term memory
(LSTM) [Luo er al., 2019], un-observed component model
(UCM) [Durbin and Koopman, 2012] and Prophet [Taylor
and Letham, 2018]. Besides, we also compare our scheduling
algorithm with OptNet [Amos and Kolter, 2017] who solves
differentiable optimization problems through a layer in neu-
ral networks. Note that it has been claimed in [Amos and
Kolter, 2017] that OptNet is not practical with a too heavy
computational burden when the number of hidden variables
in an OptNet layer is larger than 1000, and our preliminary
experiments also confirm that OptNet is not applicable for
the data of 100k-scale decision variables in the three datasets
we use. Therefore, we have down-sampled the job requests
and capacity correspondingly in the Azure 2020 dataset with
a factor of 0.01 to make a fourth synthetic data for incorpo-
rating OptNet as a competitor of our algorithm.

In this work, all experiments were conducted on a ma-
chine with Intel Xeon E5-2690 v4 CPU, 112GB memory and
NVIDIA Tesla P100 GPU. In CUC, we set the number of BO
steps as k = 50 as suggested in [Wu e al., 2019] if not ex-
plicitly presented in the table.

5.3 Experiment Results

Scheduling Performance against Competitors

The experiment results for comparing the proposed CUC
method with the other 7 state-of-the-art scheduling methods
are shown in Table 1. We record the utility ratio on the testing
set (denoted by ‘Util’), which is calculated as follows:

Zil\il ZtT=1 cid; Xt
Zij\il Zthl cidi X3

where X, is the optimal schedule obtained by actually solv-
ing the MIP problem with all the capacity known by Gurobi
solver on the testing set. Besides, the actual violation rate
on the testing set (denoted by ‘Vio’) is also computed by
Vio = 2% 4,/8 x 100%, where S is the number of sam-
ples in the testing set. Note that, when a scheduling plan

Util = x 100% (5)
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Method Azure 2017 Azure 2019 Azure 2020 Synthetic

Util(%) Vio(%) Time(s) Util(%) Vio(%) Time(s) Util(%) Vio(%) Time(s) Util(%) Vio(%) Time(s)
LR+Gurobi 100.11  55.03 5017 100.98 62.33 3537 99.03 37.85 5065 99.01 19.97 19
TSDec+Gurobi 99.75 49.22 3050 99.72  45.31 3177 99.10 33.25 12269 98.90 11.55 20
AutoARIMA+Gurobi 101.60 80.90 3024 98.63 4444 3300 101.20 8247 13375 100.74 38.37 20
LSTM+Gurobi 99.52  42.62 2205 98.01 2196 2363 98.98 1233 5769 98.76  27.08 21
UCM+Gurobi 99.30 41.15 2007 99.02 36.11 3209 97.70 11.11 6764 97.97 0 21
Prophet+Gurobi 101.59 80.73 2184 100.33 5990 3694 101.15 81.86 7889 100.74 35.59 21
OptNet - - - - - - - - - 94.45 0 20
CUC (p = 0.1%) 93.52 0 31 90.94 0.09 33 92.17 0 53 92.04 0 1.44

Table 1: Performance comparison for CUC with other 7 competitors on 3 real datasets and 1 synthetic dataset, including the utility ratio,
violation rate and running time in seconds. OptNet is not applicable in real datasets due to its heavy computational cost.

violates the capacity constraints (i.e., Vio is greater than 0),
the resulted utility ratio might be larger than 1.
Considering the cloud computing application scenario of

Azure 2017 Azure 2019 Azure 2020
Util(%) Vio(%) Util(%) Vio(%) Util(%) Vio(%)

Method

W/o Uncertainty 99.34 4444 9890 45.13 98.07 24.13
W/0BO (p=0.1%) 97.58 1536 9552 651 9574 043
CUC (p = 0.1%) 93.52 0 9094 0.09 92.17 0

CUC, the violation rate should be well controlled at a low
level (we set p = 0.1% here according to the common re-
liability requirements in cloud computing) in order to avoid

severe impact for on-demand workloads. Therefore, all the
scheduling methods compared in this experiment should be
able to stably achieve a low violation rate on testing set and
provide a satisfactory utility ratio as well.

Table 2: Results of ablation experiments on the uncertainty module
and BO module.

The comparison results are shown in Table 1, from which Method ~_ fzure 2017 Azure 2019 Azure 2020
WZ canhob;ain theffollowing observaﬁpns. hFirs.t, 1C'UC pro- Util(%) Vio(%) Util(%) Vio(%) Util(%) Vio(%)
vides the best performance in controlling the violation rate, —
and at the same time does not sacrifice much on the utility p _ 8;;'//0 g;g; 8 3(1)347; 8(1)3 g%; 8
ratio. According to [Luo et al., 2020], achieving the utility g; 0:572 94.49 0 9145 017 9258 0
ratio around 80% is already favorable in production. More- p=1% 94.50 0 9218 034 9327 0
over, CUC performs around 100 times faster than any other p=2% 95.47 0 9296 069 9393 0
compared method in the computational time for scheduling. p="5% 96.24 052 9415 382 9479 095

p=10% 9692 365 9534 955 9551 2.86

Discussion. We note that, a production cloud platform must
achieve a high reliability, so a scheduling plan with high vi-
olation rate is not applicable. As demonstrated in Table 1,
all our competitors exhibit high violation rates, while CUC
can achieve high utilization rate (> 90%) while keep low vi-
olation rate (< 0.1%), indicating that the superiority of CUC
over all competitors in real-world applications.

Ablation Analysis

To demonstrate the effectiveness of the uncertainty modeling
and the Bayesian optimization module in CUC, an ablation
analysis is conducted. Here we compare our proposed CUC
algorithm with its two variants: in the first variant we con-
duct prediction on the capacity value without error distribu-
tion considered, and thus just set constraints as the predicted
capacity; for the second variant, we set the iteration times of
BO as k£ = 1 to avoid iterated update on the prediction model
parameters, and set the violation level parameter as p = 0.1%
to keep consistent with the setting of CUC. The related results
are reported in Table 2, and clearly show that both the uncer-
tainty modeling and the BO module contributed to the good
performance of CUC on reducing the violation rate.

Controlling Violation Level by p

Another appealing property of CUC is that the violation rate
can be flexibly controlled according to the required system
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Table 3: Performance with different violation level p.

reliability level. We have compared the violation rate under
different pre-specified violation levels p in Table 3. The re-
sults demonstrate that by setting different p values in CUC,
the actual violation rate can be well controlled under p and
the utility ratio can still be satisfactory. This study further
demonstrates that CUC can be flexibly and efficiently applied
in a wide range of job scheduling applications with different
reliability requirements.

6 Application in Practice

Microsoft Azure has been continuously evolving to provide
products and services to meet emerging demands from cus-
tomers. The feature of pre-collecting VM requests with a dis-
count is such an example. In practice, we allow customers to
submit jobs in advance which will run continuously for 1-6
hours. The proposed method has supported the scheduling
plan for this type of pre-collected VM requests in Microsoft
Azure. According to the evaluation result during a pilot study,
we observe a 65% increase in utilization ratio with the pro-
posed scheduling method compared to the traditional first-in-
first-out fashion, with the average waiting time for the VM
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requests not significantly prolonged.

7 Conclusion

To utilize the computing resources more effectively and ef-
ficiently, it is of critical importance for cloud platforms to
develop intelligent scheduling methods for pre-collected de-
mands under uncertain available capacity in the near future,
such as the job format considered in this work. We formally
formulate the job scheduling problem under uncertain capac-
ity constraints as a Prediction + Optimization problem , and
propose a novel and effective algorithm CUC for solving this
type of scheduling problem. Our proposed algorithm CUC
can effectively control the violation level according to spe-
cific requirements of the whole resource management system
and maximize the resource utilization at the same time. The
effectiveness of CUC has been validated through extensive
experiments on three public, real-world application datasets.

For future work, we plan to consider the optimization prob-
lem with uncertainty in both constraints and objective func-
tions, which can be applied in a broader range of real-world
scenarios. Moreover, although currently reinforcement learn-
ing techniques cannot be directly applied to the predictive job
scheduling problem, it is still a promising direction to explore
how to adopt advanced models on reinforcement learning on
this problem.
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