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Abstract
Document context-aware neural machine transla-
tion (NMT) remains challenging due to the lack
of large-scale document parallel corpora. To make
full use of source-side monolingual documents for
context-aware NMT, we propose a Pre-training ap-
proach with Global Context (PGC). In particu-
lar, we first propose a novel self-supervised pre-
training task, which contains two training objec-
tives: (1) reconstructing the original sentence from
a corrupted version; (2) generating a gap sen-
tence from its left and right neighbouring sen-
tences. Then we design a universal model for
PGC which consists of a global context encoder,
a sentence encoder and a decoder, with similar ar-
chitecture to typical context-aware NMT models.
We evaluate the effectiveness and generality of our
pre-trained PGC model by adapting it to various
downstream context-aware NMT models. Detailed
experimentation on four different translation tasks
demonstrates that our PGC approach significantly
improves the translation performance of context-
aware NMT. For example, based on the state-of-
the-art SAN model, we achieve an averaged im-
provement of 1.85 BLEU scores and 1.59 Meteor
scores on the four translation tasks.

1 Introduction
Document context-aware machine translation aims at trans-
lating each sentence in a document under the guidance of
the global context, with expectations to obtain more coherent
and less ambiguous translations. Due to the availability of
document-level parallel datasets, recent years have witnessed
great progress in context-aware neural machine translation
(NMT) with extensive attempts at leveraging document-level
context, from sentence concatenation [Tiedemann and Scher-
rer, 2017], and mechanisms with multiple encoders [Jean
et al., 2017; Wang et al., 2017; Zhang et al., 2018; Baw-
den et al., 2018; Voita et al., 2018; Miculicich et al., 2018;
Maruf et al., 2019; Yang et al., 2019], to cache and memory-
based NMT [Tu et al., 2018; Kuang et al., 2018; Maruf and
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Figure 1: Illustration of our pre-trained model (upper) and down-
stream context-aware NMT models (lower).

Haffari, 2018]. However, large-scale document parallel cor-
pora are costly to build as they require specialized expertise.
Conversely, monolingual document data is much easier to
find. In this paper, our goal is to leverage large-scale source-
side monolingual documents to improve context-aware NMT
performance.

There have been several attempts to boost context-aware
translation performance in the scenarios where the document-
level parallel corpora are small/middle-scale, or even not
available. On the one hand, sentence-level parallel data
is a natural resource to use. For example, [Zhang et al.,
2018] propose a two-stage training strategy for context-aware
NMT by pre-training the model on a sentence-level parallel
dataset. Such or similar training strategies are widely applied
in related studies [Miculicich et al., 2018; Tan et al., 2019;
Voita et al., 2019b; Miculicich et al., 2018; Maruf et al.,
2019]. On the other hand, monolingual target language doc-
ument data could be used to increase the coherence of doc-
ument translation. For example, [Voita et al., 2019a] pro-
pose DocRepair trained on target-side monolingual docu-
ments to correct the inconsistencies in sentence-level trans-
lation. [Yu et al., 2020] train a document-level language
model to re-rank N-best translation outputs. To the best of our
knowledge, [Junczys-Dowmunt, 2019] is the only work that
leverages large-scale source-side monolingual documents, in
which they simply concatenate sentences within a document
into a long sequence and explore multi-task training via the
BERT-objective [Devlin et al., 2019] on the encoder.

As typical context-aware NMT models usually contain a
component of capturing global context, in this paper we
aim at greatly enhancing the capability of capturing use-
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Figure 2: Illustration of the proposed pre-training task. Note that we
assume that the original document contains 6 sentences, i.e., X =
(X1, · · · , X6) while X3 and X5 are gap sentences.

ful global context by exploring large-scale source-side doc-
uments. Specifically, to achieve this goal, we propose a novel
self-supervised pre-training task on monolingual documents,
Pre-training with Global Context, i.e., PGC. We find that it
is beneficial to mask entire selected sentences from a docu-
ment and generate these gap-sentences from their neighbour-
ing sentences as a pre-training objective.

As shown in Figure 1, our PGC model consists of a con-
text encoder, a sentence encoder and a decoder, similar to
various context-aware NMT models [Zhang et al., 2018;
Miculicich et al., 2018; Maruf et al., 2019; Zheng et al.,
2020]. Therefore, the PGC model could easily and effec-
tively adapt to downstream context-aware NMT models. We
initialize the downstream NMT models’ two encoders with
the counterparts of the pre-trained PGC model and then fine-
tune the NMT models. Extensive experimental studies on
four different translation tasks suggesting that our approach
has strong generality to various downstream models.

Overall, this paper makes the following contributions:

• To leverage document-level monolingual corpora, we
first propose a novel self-supervised pre-training task, in
which sentence generation can benefit from document-
level context.

• We evaluate the effectiveness and generality of our ap-
proach by adapting it to various downstream context-
aware NMT models on four translation tasks.

2 Pre-training with Global Context (PGC) on
Monolingual Documents

In this section, we first propose our pre-training task with
global context (PGC). Then we present the details of our PGC
model which leverages global context.

2.1 PGC Task
To be consistent with context-aware NMT, our pre-training
task is sentence generation augmented by the document-level
context. Our pre-training objectives are inspired by both gap
sentence objective [Zhang et al., 2020] and masked language
model objective [Devlin et al., 2019].

Context-Aware Gap Sentence Generation (CA-GSG)
Given a document with N sentences, we randomly select M
sentences as gap sentences and replace them with a mask to-
ken [MASK1] to inform the model. For each selected gap
sentence, we use its left and right neighbours as input while
the gap sentence serves as output.

Context-Aware Denoisying Auto-Encoder (CA-DAE)
Given a sentence X , we follow BERT and randomly select
15% tokens in it. The selected tokens are (1) 80% of time
replaced by a mask token [MASK2], or (2) 10% of time re-
placed by a random token, or (3) 10% of time unchanged. For
a sentence, we use its masked X̂ as input while the original
X serves as output.

Combination of CA-GSG and CA-DAE
Both CA-GSG and CA-DAE are applied simultaneously in
our pre-training task. For convenience of presentation, we
use a concrete example to illustrate the input and output of
our pre-training task. As shown in Figure 2, let assume that
the original document X contains 6 sentences and the third
and fifth sentences (i.e., X3 and X5) are selected as gap sen-
tences while the others are not. On the one hand, for a sen-
tence which is not selected as gap sentence, e.g., X1, we use
its masked version (e.g., X̂1) as input while try to predict its
original sentence (e.g., X1). On the other hand, for a gap sen-
tence, e.g., X3, we concatenate its left and right neighbouring
sentences with separator [MASK1] and try to predict the gap
sentence (e.g., X3). As shown in Figure 2, sentences from S1

to S6 constitute document-level input S while sentences from
T1 to T6 make up output T . Note that we do not include ei-
ther gap sentences themselves or their masked version in S,
in case the document context contains obvious hints for gen-
erating gap sentences.

Overall, the pre-training task is to predict target output T
by giving source input S, which is the same as the task of
context-aware translation, except that in our pre-training task
S and T are in the same language while in the latter the two
are in different languages.

2.2 PGC Model
We define some notations and describe our model of pre-
training. Given a document-level source input S =
(S1, · · · , SN ) and target output T = (T1, · · · , TN ) with
N sentence pairs, we assume each source sentence Si =
(si,1, · · · , si,n) consists of n words. We use dm as the size
of embedding and hidden state through the entire model.

We now design model to generate T by given S. To be con-
sistent with our purpose that our model of pre-training could
easily adapt to various downstream context-aware NMT mod-
els, we propose a universal context-aware model, rather than
a sophisticated one.

Figure 3 shows our model for the pre-training task. It con-
tains two parts, namely global context encoder and a seq2seq
model augmented by context representation. Note that in our
pre-training, we take documents as input units.

Global Context Encoder
For the i-th input sentence Si in a document, the global con-
text encoder aims to extract useful global context for every
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Figure 3: Illustration of our PGC model. For simplicity, we omit residual connection and layer normalization in each sub-layer.

word si,j in it. As shown in Figure 3(a), the encoder consists
of a stack of Ng identical encoder layers. Each encoder layer
consists of three major sub-layers: a self-attention sub-layer,
a global context attention sub-layer and a feed-forward neural
sub-layer.

In the k-th encoder layer, the self-attention sub-layer takes
A

(k)
i ∈ Rn×dm as input and computes a new sequence B(k)

i

with the same length via multi-head attention function:

B
(k)
i = MultiHead

(
A

(k)
i , A

(k)
i , A

(k)
i

)
, (1)

where the output B(k)
i is in the shape of Rn×dm .1 For the first

encoder layer, A(1)
i is the addition of Si’s word embedding

and its position embedding while for other layers, A(k)
i is the

output of the proceeding encoder layer.
We denote B(k) ∈ R(N·n)×dm as the stacking result of(
B

(k)
1 , · · · , B(k)

N

)
. Note that B(k) is at document-level and

represents the global context. The global context attention
sub-layer extracts useful global context for si,j in Si. This is
also done via multi-head attention function:

C
(k)
i = MultiHead

(
B

(k)
i ,B(k),B(k)

)
, (2)

where the output C(k)
i is in the shape of Rn×dm .

Finally, the feed-forward sub-layer is applied to each posi-
tion separately and identically by two linear transformations
with a ReLU activation in between.

D
(k)
i = max

(
0, C

(k)
i WF1 + bF1

)
WF2 + bF2, (3)

where WF1,WF2 ∈ Rdm×dm , and bF1, bF2 ∈ Rdm are
model parameters.

We denote Gi ∈ Rn×dm as the final output of the global
context encoder, i.e., Gi = D

(Ng)
i . That is to say, Gi repre-

sents the context representation for sentence Si.

1The actual output of this sub-layer is LayerNorm(B
(k)
i +

A
(k)
i ), where LayerNorm is the layer normalization function. For

simplicity, we do not include the residual addition and layer normal-
ization functions in our sub-layers.

Sentence-Level Seq2Seq Model Augmented by Context
Representation
As shown in Figure 3 (b), the sentence-level seq2seq model is
almost same as the standard Transformer, except that it is now
equipped with context representation obtained by the global
context encoder. For sentence Si, we denote the sentence
encoder output as Hi ∈ Rn×dm . To leverage its context rep-
resentation Gi, we define a gate to linearly combine the two
kinds of representation via:

H ′i = λHi + (1− λ)Gi, (4)
where the gating weight is computed by

λ = sigmoid
(
[Hi;Gi]W

G
)
, (5)

where WG ∈ R2dm×dm are model parameters.
Then we use H ′i to replace Hi as the input to the decoder.

3 Applying Pre-trained Model to Downstream
Context-Aware NMT models

To test if our pre-trained model is helpful for context-aware
NMT, we select the following four typical NMT models:

• DocT [Zhang et al., 2018], takes two previous sentences
as context. As a Document-aware Transformer, the con-
text representations are fed into both sentence encoder
and decoder.

• HAN [Miculicich et al., 2018], leverages all previous
source and target sentences as context and proposes a
Hierarchical Attention Network to capture the context
in a structured and dynamic manner. The context repre-
sentations are then fed into the decoder.

• SAN [Maruf et al., 2019], further uses the whole doc-
ument as context. It uses Sparse Attention Network to
selectively focus on relevant sentences and then attends
to key words in those sentences.

• MCN [Zheng et al., 2020], use a encoder builds local
and global context from the entire document to under-
stand the inter-sentential dependencies towards making
the Most of Context.
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Meanwhile, we also provide the following contrastive NMT
model to test if it is necessary for the downstream NMT mod-
els to have same structure as the pre-trained model.

• PGC4NMT, is similar to our model of pre-training.
When use PGC for context-aware NMT, the only dif-
ference lies in that for NMT we use two different vocab-
ularies for the source and target sides.

All the above context-aware NMT models consist of a con-
text encoder, a sentence encoder and a decoder. Moreover,
all the context and sentence encoders are Transformer-based
with similar or same structure to the standard Transformer
encoder [Vaswani et al., 2017].
Applying pre-trained model to these context-aware NMT
models. We load generic parameters from the context en-
coder and the source encoder of the pre-trained model to ini-
tialize the downstream context-aware NMT models. That is
to say, if a sub-layer that does not exist in the pre-trained
model, it will be randomly initialized, otherwise it will be
initialized by the pre-trained model.
Fine-Tuning Strategy. We use a two-step fine-tuning strat-
egy to fine-tune the downstream context-aware translation
models. In the first step, as shown in Figure 1, generic param-
eters from the context encoder and the sentence encoder of
the pre-trained model are loaded to initialize the counterparts
in the translation model. Then we freeze the generic param-
eters and update the remaining parameters of the translation
model. In the second step, we train all model parameters with
a small number of iterations.

4 Experimentation
To test the effect of our approach in leveraging source-side
monolingual documents, we conduct experiments on various
tasks, including Chinese-English (ZH-EN), English-Spanish
(EN-ES), and English-German (EN-DE) translation.

4.1 Experimental Settings
Pre-Training Data Settings. We pre-train two models, one
for Chinese and the other for English based on the following
two corpora, respectively:

• Chinese Gigaword (LDC2009T27), consists of eight dis-
tinct international sources of Chinese newswire. We
convert traditional Chinese into simplified ones. Then
all sentences are segmented by Jieba.2

• English Gigaword (LDC2012T21), consists of six dis-
tinct international sources of English newswire. We per-
form sentence segmentation, and then tokenize and true-
case all sentences by Moses scripts.3

For both Chinese and English, we segment words into sub-
words by a BPE model with 30K operations. For efficient
training, we split long documents into sub-documents with
at most 30 sentences. We have 2.6M (7.3M) sub-documents
with 24M (102M) sentences in total for Chinese (English).
On the monolingual documents, we prepare training instances
for the pre-training task and set gap sentence ratio to 20%.

2https://github.com/messense/jieba-rs
3http://www.statmt.org/moses/

Context-Aware NMT Data Settings. For ZH-EN, the
document-level parallel corpus of training set include 41K
documents with 780K sentence pairs.4 We use the NIST MT
2006 dataset as the development set, and the NIST MT 02,
03, 04, 05, 08 datasets as test sets. The Chinese sentences
are segmented by Jieba while the English sentences are to-
kenized and lowercased by Moses scripts. For EN-ES, the
training set is from IWSLT 2014 and 2015 while the devel-
opment set is dev2010 and the test set is test2010, test2011,
and test2012.5 For EN-DE (TED), the training set is from
IWSLT 2017. We use test2016 and test2017 as our test set
while the other as the development set. For EN-DE (News),
the training set is News Commentary v11 corpus,6 while the
development set is news-test2015 and the test set is news-
test2016. We tokenize and truecase all the datasets by Moses
scripts. For all the translation datasets, we segment the source
sentences with the corresponding BPE model learned from
the pre-training data while all the target sentences are seg-
mented by the BPE model with 25K operations learned on
the corresponding target-side data. Meanwhile, we split long
documents into sub-documents with at most 30 sentences.
Model Settings. We use OpenNMT7 as the implementation
of Transformer and extend it to capture context. We also re-
implement DocT, HAN, and SAN as to better evaluate our
pre-trained PGC models.8 For all pre-trained and translation
models, the numbers of layers in the context encoder, sen-
tence encoder and decoder (i.e., Ng , Ne, and Nd in Figure 3)
to 4, 6, 6, respectively. In inferring, we set beam size to 5.
Evaluation We report BLEU score as calculated by the
multi-bleu.perl script and Meteor score. To be consistent with
related studies [Zhang et al., 2018; Miculicich et al., 2018;
Maruf et al., 2019; Yang et al., 2019], here we report case-
insensitive BLEU score for ZH-EN and case-sensitive BLEU
score for other translation tasks.

4.2 Experimental Results
Table 1 shows the BLEU and Meteor scores on the four
translation tasks. It shows that on the one hand, even with-
out pre-training, all context-aware NMT models outperform
sentence-level Transformer. On the other hand, by leverag-
ing source-side monolingual documents, our approach signif-
icantly improves the translation performance for all the four
context-aware NMT models, with 0.92 to 1.96 improvement
of BLEU scores and 1.04 to 1.85 improvement of Meteor
scores, suggesting the effectiveness and generality of our ap-
proaching in leveraging source-side documents.

Taking SAN as representative, we compare its performance
to that of PGC4NMT, and observe that although the struc-
ture of SAN is different from PGC4NMT and our pre-trained
model, the degree to which SAN can benefit from pre-trained

4It consists of LDC2002T01, LDC2004T07, LDC2005T06,
LDC2005T10, LDC2009T02, LDC2009T15, LDC2010T03.

5https://wit3.fbk.eu
6http://www.casmacat.eu/corpus/news-commentary.html
7https://github.com/OpenNMT/OpenNMT-py
8Although our experimental settings have subtle differences

from theirs, e.g., not sharing vocabulary, the performance of our re-
implemented systems is comparable to theirs.
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Model ZH-EN EN-ES EN-DE (TED) EN-DE (News)
BLEU Meteor BLEU Meteor BLEU Meteor BLEU Meteor

Transformer 39.64 27.56 35.50 34.60 23.02 43.66 22.03 41.37
DocT [Zhang et al., 2018] 40.35 27.91 37.07 36.16 24.00 44.69 23.08 42.40

+ our approach 41.52 28.96 38.12 37.31 24.95 45.26 24.33 43.51
HAN [Miculicich et al., 2018] 40.83 28.49 37.35 36.50 24.18 45.05 24.55 43.74

+ our approach 42.47 29.53 38.81 37.95 25.33 46.14 25.81 44.91
SAN [Maruf et al., 2019] 41.01 28.37 38.11 37.09 24.37 45.26 24.77 44.17

+ our approach 42.93 29.75 40.06 38.94 26.18 46.97 26.49 45.58
MCN [Zheng et al., 2020] 40.90 28.39 37.44 36.51 24.25 45.00 24.47 45.38

+ our approach 42.55 29.69 38.89 38.01 25.74 46.59 26.20 46.95
PGC4NMT 40.96 28.61 37.80 36.62 24.20 45.07 24.55 43.85

+ our approach 42.74 30.05 39.70 38.42 25.83 46.71 26.15 45.50

Table 1: Performance (BLEU and Meteor scores) on test sets. Significance test [Koehn, 2004] shows that the improvement achieved by our
approach is significant at 0.01 for all above context-aware NMT models.

Language #Para #Epoch Time
Chinese 95M 3.0 70h
English 89M 1.2 75h

Table 2: Statistics on our two pre-trained PGC models

model is similar to or even more than PGC4NMT. This fur-
ther demonstrates the generality of our pre-trained model.

4.3 Result Analysis
Next we analyze how the pre-trained PGC models affect
downstream translation performance.

Statistics on Our Pre-trained PGC Models
Table 2 presents statistics on our two pre-trained PGC mod-
els. With 500K training steps, we complete 3.0 and 1.2 passes
over the pre-training data within 70 and 75 hours for Chinese
and English, respectively.

In total, this batch size and number of steps corresponds
to pre-training on 500K × 8196 ≈ 4.1B tokens. To better
leverage pre-training dataset, it is a common practice to eke
out additional performance by using an ensemble of models.
We leave this in our future work.

Effect of Different Pre-Training Objectives
As shown in Figure 2, in this paper we combine both CA-
GSG and CA-DAE objectives in our pre-training. To investi-
gate the effect of CA-GSG, we use CA-DAE as the only ob-
jective in our pre-training task. In this way, the S3 and S5 in
Figure 2 (b), for example, will be X̂3 and X̂5, respectively.
Figure 4 compares the performance when the pre-training
task is of CA-DAE objective or combination of CA-GSG
and CA-DAE. For better illustration, for each translation task
we scale the BLEU scores by viewing the performance of
DocT·DAE as 1.0 and the performance of other systems as
the ratio of their BLEU scores over DocT·DAE score.

From the figure, we see that in 19 out of 20 cases, combin-
ing CA-GSG and CA-DAE achieves better performance than
CA-DAE. This result suggests pre-training benefits from the
CA-GSG, which is more challenging than CA-DAE.

ZH-EN EN-ES EN-DE(TED) EN-DE(News)

HAN·DAE
SAN·DAE+GSG

SAN·DAE
HAN·DAE+GSG

PGC4NMT·DAEDocT·DAE
DocT ·DAE+GSG PGC4NMT·DAE+GSG

0.98

0.99

1.00

1.01

1.02

1.03

Figure 4: Translation performance comparison when the pre-
training task is of CA-DAE (·DAE) or combination of CA-GSG and
CA-DAE (·DAE+GSG). For each translation task we scale the per-
formance of DocT as 1.0 for better illustration.

Effect of Gap Sentence Ratios
A significant hyper-parameter in designing the pre-training
task is the gap sentence ratio. A low ratio makes the pre-
training less challenging while choosing gap sentences at a
high ratio makes the global context have more overlapped.
For example, X4 and its masked version X̂4 in Figure 2(a)
appear three times on the source input S due to that both
its left and right neighbouring sentences X3 and X5 are gap
sentences. We compare three variants of gap sentence ratio
(10%, 20%, and 30%). As shown in Figure 5, we see that the
best performance always appears at the ratio of 20%.

Effect of Pre-Trained Global Context Encoder
Next we examine whether the proposed global context en-
coder actually learns to effectively extract global context from
the entire document. To this end, we change our per-training
task to be context-agnostic with a standard seq2seq frame-
work. As a result, only the pre-trained sentence encoders are
applied to downstream translation models. From Table 3 we
observe that pre-trained global context encoder helps context-
aware translation, suggesting that our pre-trained context en-
coder is indeed capable of extracting useful global context
from the entire document.
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Figure 5: Translation performance comparison when use different
gap sentence ratios.

Model deixis lex.c. ell.infl. ell.VP
Transformer 50.0 45.3 52.0 27.3
PGC4NMT 60.1 46.0 61.1 35.5

+ Our approach 65.0 46.3 63.7 51.9

Table 3: Accuracy(%) of discourse phenomena.

Discourse Phenomena
Following [Voita et al., 2019a; Zheng et al., 2020], we use
contrastive test sets for the evaluation of discourse phenom-
ena for English-Russian. There are four test sets in the suite
regarding deixis, lexicon consistency, ellipsis (inflection), and
ellipsis (verb phrase). Each test set contains groups of con-
trastive examples consisting of a positive translation and neg-
ative translations. The goal is to figure out if a model is more
likely to generate a correct translation compared to the incor-
rect variation. We summarize the results in Table 3, which
shows that our approach is better at resolving discourse con-
sistencies compared to both the context-agnostic baseline and
our proposed context-aware approach without pre-training.

5 Related Work
5.1 Context-Aware NMT
According to the scope of context being modeled, we group
the related studies into two categories: (1) those which use
partial context and (2) those which employ global context.

Among the first line, great efforts have been made in
modeling local context. Concatenation method proposed
by [Tiedemann and Scherrer, 2017] is an early attempt in
RNN-based NMT. Then mechanisms with multiple encoders
become promising in both RNNSearch and Transformer
NMT[Jean et al., 2017; Wang et al., 2017; Zhang et al., 2018;
Bawden et al., 2018; Voita et al., 2018; Voita et al., 2019b;
Yang et al., 2019]. Cache/Memory-based approaches [Tu et
al., 2018; Kuang et al., 2018; Maruf and Haffari, 2018] also
fall in this line because the cache stores word/translation in
previous sentences.

Another strand of context-aware NMT takes the whole
document as a translation unit and dynamically extracts use-
ful global knowledge for every sentence in the document.
The global context can be either source-side [Maruf and
Haffari, 2018; Mace and Servan, 2019; Maruf et al., 2019;
Tan et al., 2019; Zheng et al., 2020; Kang et al., 2020] or
target-side [Xiong et al., 2019].

Global Context Enc. DocT HAN SAN MCN PGC4NMT
Not Pre-trained 41.07 41.33 41.80 41.69 41.82
Pre-trained 41.52 42.47 42.93 42.55 42.74

Table 4: Translation performance comparison on ZH-EN translation
task when the global context encoder is pre-trained or not.

To make translations within a document more coherent,
[Voita et al., 2019a] propose DocRepair trained on monolin-
gual target language document corpora to correct the incon-
sistencies in sentence-level translation while [Yu et al., 2020]
train a context-aware language model to re-rank sentence-
level translations. Finally, [Junczys-Dowmunt, 2019] use
source-side monolingual documents to explore multi-task
training via the BERT-objective on the encoder. They sim-
ply concatenate sentences within a document into a long se-
quence, which is different from our approach.

5.2 Pre-training on Document-Level Corpora
Recently, pre-trained models with large corpora built with
Transformer have made great success. Among them, BART,
mBART and PEGASUS are built on document-level corpora.

BART [Lewis et al., 2020] and mBART [Liu et al., 2020]
use a (multilingual) denoising auto-encoder which learns
to reconstruct the original document from a corrupted ver-
sion. BART is effective for machine translation by achiev-
ing significant improvement over a back-translation system
while mBART produces significant performance gains across
a wide variety of translation tasks.

PEGASUS [Zhang et al., 2020] is a Transformer-based
encoder-decoder model with a self-supervised objective tai-
lored for abstractive text summarization. In PEGASUS, im-
portant sentences are removed/masked from a document then
generated together as one output sequence from the remain-
ing sentences, similar to an extractive summary.

BART, mBART and PEGASUS all fall into a standard
seq2seq framework by viewing a document (or masked sen-
tences) as a sequence. This is very different from ours, where
we use an additional global context extractor for context-
aware sentence generation.

6 Conclusion
To leverage monolingual document data, in this paper we
have proposed a PGC model with two different training ob-
jectives. PGC model consists of a global context encoder, a
sentence encoder and a decoder, which is similar to various
context-aware NMT models. We have evaluated the effective-
ness and generality of our pre-trained PGC model by adapting
it to various downstream context-aware NMT models. Exper-
imental results on various translation tasks demonstrate the
effectiveness and generality of our approach.
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