Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

Hardware-Aware Neural Architecture Search: Survey and Taxonomy

Hadjer Benmeziane '*, Kaoutar El Maghraoui®, Hamza Ouarnoughi ?, Smail Niar 2, Martin
Wistuba * and Naigang Wang *
Université Polytechnique Hauts-de-France, LAMIH/CNRS, Valenciennes, France.
2Université Polytechnique Hauts-de-France, LAMIH/CNRS, INSA, Valenciennes, France.
3 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA.

4 IBM Research Al IBM Technology Campus, Dublin, Ireland.
{firstname.lastname } @uphf.fr, {kelmaghr, nwang} @us.ibm.com, martin.wistuba@ibm.com

Abstract

There is no doubt that making Al mainstream by
bringing powerful, yet power hungry Deep Neural
Networks (DNNSs) to resource-constrained devices
would require an efficient co-design of algorithms,
hardware and software. The increased popularity
of DNN applications deployed on a wide variety of
platforms, from tiny microcontrollers to datac en-
ters, have resulted in multiple questions and chal-
lenges related to constraints introduced by the hard-
ware. In this survey on Hardware-Aware Neural
Architecture Search (HW-NAS), we present some
of the existing answers proposed in the literature
for the following questions: “Is it possible to build
an efficient Deep Learning (DL) model that meets
the latency and energy constraints of tiny edge de-
vices?”, "How can we find the best trade-off be-
tween the accuracy of a DL model and its ability to
be deployed in a variety of platforms?”. The survey
provides a new taxonomy of HW-NAS and assesses
the hardware cost estimation strategies. We also
highlight the challenges and limitations of exist-
ing approaches and potential future directions. We
hope that this survey will help to fuel the research
towards efficient deep learning.

1 Introduction

The past years have witnessed a remarkable development
in neural network models and algorithms targeting multiple
tasks from computer vision and natural language processing
to games. Given the difficulty to manually design a Deep
Learning (DL) model, many researchers turn to Neural Archi-
tecture Search (NAS). Current state-of-the-art model in image
classification and object detection, EfficientNet-L2 [Pham et
al., 2020], was obtained by automatically searching for the
hyperparameters and operators of the architecture.

A typical NAS process is composed of three fundamental
parts. First, the search space which represents a considerable
number of different architectures and different value ranges
for each hyperparameter. Second, the search algorithm that
explores the search space looking for the best architecture that

*Contact Author

maximizes the objective function. Finally, as we need a way
to measure an architecture’s performance to compute the ob-
jective function, a third component, the evaluator, is used to
obtain the model’s accuracy.

While considerable efforts have focused on the accuracy,
the resulting models tend to be exponentially complex and
require increasing memory and compute. Therefore, in real-
world applications such as autonomous driving cars, hard-
ware constraints come out as a critical limiting factor to ex-
ploit DL models at their full potential. Besides, an archi-
tecture’s manual design is significantly more difficult if we
consider the hardware variety and limitations. This is why,
since 2017, we have seen a new wave of NAS algorithms,
hardware-aware neural architecture search (HW-NAS), that
incorporate the hardware constraints into their objective func-
tion and optimize their search space according to a target
hardware platform.

The goal of this survey is to provide a comprehensive sum-
mary of HW-NAS by highlighting the following attributes:

- The survey proposes a special taxonomy for HW-NAS ac-
cording to the final hardware target in section 2.

- It explains how the multi-objective problem is formulated
and how the hardware constraints such as the latency, en-
ergy and memory footprint are incorporated into the objective
function (see section 3).

- The survey also describes, in section 4, the Hardware Search
Space, a new component in HW-NAS, as opposed to the con-
ventional Architecture Search Space used in NAS.

- One crucial component is how to profile the hardware met-
rics and collect them. We discuss these in section 5.

- Finally, in section 6, the paper focuses on helping quickly
ramp up new ideas in HW-NAS by exposing the limita-
tions and the future directions towards building efficient deep
learning models.

2 HW-NAS Taxonomy

HW-NAS has multiple objectives and multiple views of the
problem emerging from the variety of hardware platforms
available. As shown in figure 1, we can classify these goals
into three categories, described in the following subsections.

4322

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

| Goals of Hardware-Aware Neural Architecture Search |

¥
Single Target |
I

¥
| Multiple Targets

]

} !

| Fixed Platform Configurations |

Select a Set of Hardware

A 4
Hardware-aware Search
Space

T

A 4
Hardware-aware Search
Strategy

Targets

T
'

Multi-Hardware
Architecture Search Space

Architecture Search
Space ™
Conv, Pooling, ...

Architecture Search
Space
Conv, Pooling, ...

Architecture
Search Space
Conv, Pooling, ...

Intersection of all
architectures that can be

Hardware Search
Space
Tiling parameters
Number of PE

E . i
' 1 1
= | it
i b "
: . | |
1 i

i o Hw Cost |1}
' /| Search Strategy [(Energy :.

/ \ ' |
i ‘ \ 1! latency ...) !}
Vo |4 i
o\ Hw Cost o B
E N (Energy, 7 E H Search ! E
' latency) [Strategy i
! o "

Best Platform
Configuration

Search
/| strategy |\

deployed in all targets. H

| ‘ Search Special
\. Hw Cost Strategy Metric
< (Energy, |~
latency) —

search strategy selects an architecture

request performance measure

D remove inefficient architectures D

|

Best Architecture

Figure 1: Taxonomy of HW-NAS

2.1 Single Target, Fixed Configuration.

Most of the existing HW-NAS fall under this category. The
goal is to find the best architecture in terms of accuracy and
hardware efficiency for one fixed target hardware. Let’s sup-
pose that our hardware platform is an edge NVIDIA GPU, the
HW-NAS will explore the space of architectures to look for
the one that optimize accuracy, latency, energy consumption,
etc. Within this category, two approaches are adopted:

-Hardware-aware search strategy where the search is cast
as a multi-objective optimization problem [Tan et al., 2018,;
Caieral.,2018; Wu et al., 2019]. While searching for the best
architecture, the search algorithm calls the accuracy evaluator
component to get the accuracy of the generated architecture
and a special evaluator that measures the hardware cost met-
ric (e.g., latency, memory usage, energy consumption). Both
model accuracy and hardware cost guide the search and en-
able the NAS to find the most efficient architecture.

-Hardware-aware Search Space uses a restricted pool of
architectures. Before the search, we either measure the op-
erators’ performance on the target platform or define a set
of rules that will refine the search space; eliminate all the
architectures’ operators that do not perform well on the tar-
get hardware. The prior empirical study helps define the
rules. HURRICANE [Zhang er al., 2020] uses different op-
erator choices for three types of mobile processors: Hexagon
DSP, ARM CPU and Myriad Vision Processing Unit (VPU).
Accumulated domain knowledge from prior experimentation
on a given hardware platform help narrow down the search

space. For instance, they do not use depthwise convolutions
for CPU, squeeze and excitation mechanisms for VPU and
they do not lower the kernel sizes for a DSP.

2.2 Single Target, Multiple Configurations.

This category aims not only to get the most optimal archi-
tecture based on the accuracy but also to get an optimal ar-
chitecture with latency guaranteed to meet the target hard-
ware specification. For example, the authors of FNAS [Jiang
et al., 2019b] define a new hardware search space contain-
ing the different FPGA specifications (e.g., tiling configu-
rations). They also use a performance abstraction model to
measure the searched neural architectures’ latency without
training. This allows them to quickly prune architectures that
do not meet the target hardware specifications. In [Yang ez al.,
20201, the authors use the same ASICs approach and define a
hardware search space containing various ASIC templates.

2.3 Multiple Targets.

In this third category, the goal is to find the best architec-
ture when given a set of hardware platforms to optimize for.
In other words, we try to find a single model that performs
relatively well across different hardware platforms. This ap-
proach is the most favourable choice, especially in mobile de-
velopment, as it provides more portability. This problem was
tackled by [Chu et al., 2020; Jiang et al., 2020b] by defining
a multi-hardware search space. The search space contains
the intersection of all the architectures that can be deployed

4323

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

in the different targets. Note that, targeting multiple hard-
ware specifications is more challenging as the best model for
a GPU, can be very different to the best model for a CPU (i.e.,
for GPUs wider models are more appropriate while for CPUs
deeper models are).

3 HW-NAS Problem Formulation

The Hardware-aware NAS is cast as a multi-objective op-
timization problem in which we consider the accuracy and
hardware constraints, such as the latency, memory footprint
and energy consumption, as different objectives. In this sec-
tion, we classify the formulations into two classes: single and
multi-objective optimization.

We denote the space of all feasible architectures as A, also
called architecture search space. The optimization method
is looking for the architecture o that maximizes the perfor-
mance metric denoted by f for a given dataset d.

1. Single-Objective Optimization:

A) Two-Stage optimization: In this formulation (equa-
tion 1), the search is solely based on the accuracy f.
Once an architecture is found, different compression
techniques are applied to specialize it. [Han et al., 2019]
applies a reinforcement learning agent to find the best
quantization bitwidth and pruning level after selecting
the most accurate model. [Cai er al., 2020] searches
over a pre-trained and selected architecture to find the
most efficient one in terms of latency and energy con-
sumption in the second stage.

max f(a,d) 1)
B) Constrained optimization: As illustrated in equation
2, we consider in this formulation the hardware met-
rics g; as constraints to our optimization problem. The
threshold 7T; and the trade-off between different con-
straints can be adapted to practical requirements. As
most of the optimization methods used by NAS (i.e. re-
inforcement learning and evolutionary algorithms) were
designed for unconstrained optimization problems, this
formulation is hard to be adopted directly. There-
fore, many researchers turned to penalty methods to
transform the equation into a single objective function
that contains the hardware constraints, and the accu-
racy measurement [Tan er al., 2018; Wu er al., 2019;
Cai et al., 2018]. For example, MNASNet [Tan et al.,
2018] defines g as the latency of the model and uses a
learnable parameter to control the effect of the hardware
constraints on the global objective function.

max f(a,d)
acA)
subject to g;(a) < T; Vi€ I

2. Multi-objective Optimization:
A) Scalarization Methods: In this approach, we use
a parameterized aggregation function h to transform
the multi-objective optimization problem into a single-
objective optimization problem. The function & can be a
weighted sum, a weighted exponential sum, a weighted

4324

min-max or a weighted product. However, in most situa-
tions, finding all pareto optimal solutions in solving this
problem with a fixed setting of the weights is not possi-
ble. Therefore, the problem is solved for multiple values
of the vector w, which requires multiple optimization
runs. [Hsu et al., 2018] proposes to use the weighted
sum as the objective function. The proposed formula-
tion of this function is described by equation 3. ACC
refers to the accuracy metric, E refers to the energy con-
sumed by the architecture o and w is a learned parameter
to adjust the effect of the energy on the reward function.

max w - ACC(a,d) — (1 —w) - E(a) 3)

(1S

Since the accuracy is not differentiable, some search
strategies, including gradient-based once [Cai et al.,
20181, use the cross-entropy to which they add the hard-
ware constraint.

B) NSGA-II: An alternative approach is to use the eli-
tist evolutionary algorithm NSGA-II [Deb ez al., 2002].
Hardware-aware NAS works [Lu et al., 2019b; Chu
et al., 2019] have been using NSGA-II algorithm to
ensure the exploration of diverse architectures in the
search space. Moreover, NSGANet [Lu et al., 2019b]
uses Bayesian Optimization to profit from search his-
tory. MoreMNAS [Chu et al., 2019] uses a hybrid search
strategy combining NSGA-II with reinforcement learn-
ing to regulate random mutations.

Inajf fl(a>5)af2(a75)a"'a.fn(ayé) (4)

ae

4 Hardware Search Space

When the HW-NAS targets a single hardware platform with
multiple configurations, the NAS process includes a new
component that we call the Hardware Search Space (HSS), as
shown in figure 1: ”Single Target, Multiple Platform Configu-
rations”. This section describes this search space’s character-
istics and proposes a taxonomy based on the existing works.
We refer the readers to [Wistuba et al., 2019] to read more
about the architecture search space.

First of all, we need to discuss the different hardware plat-
forms used for DL applications. We classify them according
to these three categories.

Server Processors. This type of platforms is found in cloud
data centers, on-premise data centers, edge servers, or super-
computers. They provide abundant computational resources
and can vary from CPUs, GPUs, FPGAs and ASICs. When
available, machine learning researchers focus on accuracy.
Many HW-NAS works target server processors to speed up
the training process.

Mobile Devices. With billions of users worldwide, ML re-
searchers’ focus has shifted to enable fast and efficient DL
on mobile devices. As these devices are heavily constrained
with respect to their memory and computational capabilities,
ML researchers’ objective becomes to assess the trade-off be-
tween accuracy and efficiency. Many HW-NAS algorithms
target smartphones including FBNet [Wu er al., 2019] and
ProxylessNAS [Cai et al., 2018].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

Targeted Hardware Platforms
17 31 67

No Specific
Target
ﬂ = FPGA
= Multiple
ASIC
s GPU

s CPU

100%

75%

50%

25%

0% —"2018 2019 2020

Figure 2: Statistics on the targeted platforms. No specific target
categorizes the HW-NAS that incorporate model size or number of
parameters in their objective function. Multiple categorizes the HW-
NAS that targets various platforms at ones.

Tiny Devices . The strong growth in the use of microcon-
trollers and IoT applications gave rise to TinyML [TX Zhuo
and Collins, 2020]. TinyML refers to all machine learning al-
gorithms dedicated to tiny devices, i.e., capable of on-device
inference at extremely low power. One relevant HW-NAS
method that targets tiny devices is MCUNet [Lin et al., 20201,
which optimizes the search space and handles various con-
straints such as device, latency, energy, memory under low
search costs. Thanks to the efficient search, MCUNet is the
first to achieve >70% ImageNet top-1 accuracy on an off-the-
shelf commercial microcontroller.

Figure 2 shows the types of hardware targeted by HW-NAS
from 2017. We can see an increasing variety of platforms
with the rise of domain-specific processors and FPGAs for
inference. ’'no specific target’ means that the hardware met-
rics are either the FLOPs or the number of parameters.

The HSS generates different hardware specifications and
optimizations by applying various algorithmic transforma-
tions to fit the hardware design. Although the co-exploration
is effective, it increases the search space-time complexity sig-
nificantly as the search strategy looks for different pairs of
(architecture, platform configuration).

Hardware Search Space (HSS) can be further categorized
as follows.

Parameter-based. A set of different parameter configura-
tions formalizes the search space. If we take FPGAs as an
example, their design space may include IP instance cate-
gories, IP reuse strategies, quantization schemes, parallel fac-
tors, data transfer behaviours, tiling parameters, and buffer
sizes. FNAS [Jiang et al., 2019b] and FNASs [Yu et al.,
2019] are two HW-NAS that builds on this representation.
The authors in [Jiang ef al., 2019a; Lu et al., 2019a] used a
multi-FPGA hardware search space. The search consists of
dividing the architecture into pipeline stages that can be as-
signed to an FPGA according to its memory and DSP slices,
in addition to applying an optimizer that adjusts the tiling pa-
rameters. Another example is [Mohamed er al., 2020], where
the adopted approach takes the global structure of an FPGA
and adds all possible parameters to its hardware search space
including the input buffer depth, memory interface width, fil-
ter size and ratio of the convolution engine.

4325

Template-based. In this category, the search space is de-
fined as a set of pre-configured templates. For example, NA-
SAIC [Yang er al., 2020] integrates NAS with Application-
Specific Integrated Circuits (ASIC). Their search space in-
cludes templates of several existing successful designs. The
goal is to find the best model with the different possible par-
allelizations among all templates. In addition to the tiling
parameters and bandwidth allocation, the authors in [Jiang er
al., 2020a] define a set of FPGA platforms, and the search
finds a coupling of the architecture and FPGA platform that
fits a set of pre-defined constraints (e.g., max latency 5ms)

5 Hardware Metrics Collection

In this section, we will review the methods to collect hard-
ware performance. First of all, let’s discuss the different met-
rics used to judge if a deep learning model is efficient or not.

FLOPs. HW-NAS methods presented in 2016 and 2017 use
[Smithson ef al., 2016; Gordon et al., 2017] as an analytical
function to minimize the number of parameters and the num-
ber of FLOPs. Such strategies presume that the number of
operations is positively correlated with the execution time.
However, recent work has shown that two models may have
the same number of FLOPs, but different latencies [Bouzidi et
al., 2021; Zhang et al., 2020; Wang et al., 2020a]. For exam-
ple, NASNet-A and MobileNetV1 have about the same num-
ber of FLOPs, but NASNet-A may have slower latency due
to its hardware-unfriendly structure. Therefore, using FLOPs
as a hardware cost metric is not effective and can return sub-
optimal architectures.

Latency. Low-latency architectures at inference time are
crucial on edge scenarios where the edge devices impose a
constraint on the latency. Therefore, many works consider
latency in their objective function and attempt a trade-off be-
tween inference time and accuracy.

Energy Consumption. Energy is often profiled by
NVIDIA’s given hardware platform profilers, such as nvprof.
We can formalize energy either as peak or average power
usage, and the two metrics are used by various HW-NAS
works, including [Hsu et al, 2018; Yang er al., 2018;
Gong et al., 2019].

Area. Another metric that is of concern to chip manufactur-
ers is the chip’s area. The aim is to get the smallest processor
to run the best model. [Yang er al., 2020] uses MAESTRO
[Kwon et al., 2019] to profile the area and power consump-
tion. They posit that the area of the circuit is also a good
indicator of static power consumption. These two values are
correlated.

Memory Footprint. This metric corresponds to the exact
amount of memory a DL model uses. Rather than calculating
the number of parameters an architecture has, one can pro-
file the memory footprint and use it as an objective term. To
reduce the memory footprint in edges devices, model com-
pression techniques [Deng et al., 2020] are usually applied.
We can classify the types of methods that collect the hard-
ware metrics into four categories:

1. Real-time Measurements in which the explored models
are executed on the target hardware while searching.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

m Search Time Speedups ®RMSE
@6 6
=3
S
°
@
Q4 4
F 3
)
£ =
= LK
c2
e
©
]
@9
Real-time LUT MLP XGBoost Analytical
measurements Estimation

Measurements Methods

Figure 3: Comparison of hardware cost measurement methods. LUT
stands for Look Up Table. The speedups are calculated w.r.t the real-
time measurements.

2. Lookup Table Models where a lookup table is created
beforehand and filled with each operator hardware met-
rics on the targeted hardware. Once the search starts, the
system calculates the overall cost from the lookup table.

3. Analytical Estimation which consists of computing a
rough estimate using the processing time, the stall time,
and the starting time.

4. Prediction Model where we build an ML model to pre-
dict the cost using architecture and dataset features.

Real-world measurements provide high accuracy in measur-
ing the hardware efficiency of an architecture. MnasNet
[Tan er al., 2018] uses this method in the exploration. It
achieves 75.2% top-1 accuracy with 78ms latency on a Pixel
phone platform, which is 1.8x faster than MobileNetV2 with
0.5% higher accuracy. However, this method considerably
slows down the search algorithm by averaging hundreds of
runs to get precise measurements. Additionally, this strat-
egy is not scalable and requires that all the hardware plat-
forms are available. That’s why many works tend to use
a prediction model [Cai et al., 2018; Zhang et al., 2020;
Jiang et al., 2019a; Lu et al., 2019a; Zhang et al., 2019;
Hao et al., 2019] or a pre-collected lookup table [Wu et
al., 2019; Mohamed et al., 2020; Jiang et al., 2020a] or
computing an analytical estimation [Zhang et al., 2019;
Marchisio ef al., 2020]. Although these techniques are ef-
ficient, they require hardware knowledge to build the models.

To fairly compare each method’s accuracy, we computed,
in figure 3, each architecture’s latency in NAS-Bench-101
[Ying et al., 2019] and compare it to the real-time measure-
ments, according to three collecting methods: lookup table,
prediction model and analytical estimation (Figure 3). For
the lookup table, we calculated each operator’s latency in the
cell of the benchmark. When a cell is generated, we sum the
constructing operators’ latency, and we get the whole cell’s
latency. For the prediction model, we used two models: a
simple MLP and XGBoost, both trained on a portion of the
benchmark’s real-time measurements. We choose these two
methods because they are both used by popular HW-NAS in
[Cai et al., 2018] and [Wu et al., 2019] respectively. Lastly,
for the analytical estimation, we computed the number of
MAC for the cell and multiplied that by the latency of one
multiply-add tensor instruction. We ran this experiment on
a Tesla K80 GPU, the prediction model MLP was trained

4326

for 50 epochs with early stopping. NAS-Bench-101 defines
more than 400k cells. The search algorithm used to calcu-
late the search time is an evolutionary algorithm based on the
benchmark’s validation accuracy and the different methods’
latency. As expected, the analytical estimation does not pro-
duce good results compared to the prediction models or the
lookup table method. We expected the analytical estimation
to be the fastest, but looping through the model graph to ex-
tract the number of MAC is time consuming. Even with a
simple XGBoost, the prediction models give the best results
and accelerate the search more than five times compared to
the real-time measurements. However, it is worth mentioning
that prediction methods require large dataset and consume a
considerable preparation time in order to collect the data and
train the model.

6 Challenges and Limitations

In this section, we set out the critical obstacles that keep
from exploiting the HW-NAS’s full potential. The majority
of problems often apply to general NAS approaches as well.

6.1 Benchmarking and Reproducibility

To compare different search algorithms, we need to unify the
search spaces. To that end, many benchmarks were released
[Ying et al., 2019; Siems et al., 2020]. These benchmarks
present a dataset of architectures with their respective accu-
racy and latency metrics. However, two limitations are rele-
vant in the context of HW-NAS. (1) most of them define Con-
vNets architectures with a cell-based approach, i.e., the ar-
chitectures aren’t flexible enough for different hardware plat-
forms, (2) most of the performance are measured on CPU or
GPU which isn’t suited for HW-NAS. A more recent paper
introduced the first hardware-aware NAS benchmark, HW-
NAS-Bench [Li et al., 2021]. This work extends the number
of hardware metrics and records the latency, the energy con-
sumed on six hardware devices, including commercial edge
devices, FPGA, and ASIC. Its search space is a combination
of FBNet [Wu et al., 2019] search space and NAS-Bench-201
[Dong and Yang, 2020].

6.2 Transfer Learning

Transfer Learning is one of the fundamental concepts in DL.
It consists on training a model on a proxy dataset, then fine-
tuning its weights on the target dataset. Using this technique,
better precision with the final model is obtained. However,
not all architectures are easily transferable from one dataset to
another. Cell-based search space [Zoph et al., 2018] enhance
transferability by adding more repeating cells to the model
and updating a small number of hyperparameters. However,
stacking the same blocks seems to be not efficient when in-
corporating hardware constraints. As MNASNet [Tan ez al.,
2018] argued, restricting cell diversity is critical for achieving
high accuracy and low latency on mobile settings.

Many NAS works [Liu et al., 2018; Nayman et al., 2019]
have included dedicated evaluations of the transferability of
their final model. XNAS [Nayman et al., 2019] transferred
their final cell structure on six popular classification bench-
marks surpassing other conventional NAS methods while tak-
ing into account the hardware constraints.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

NAT [Lu er al., 2020] leverages the NAS process to find
transferable weights directly and get rid of the fine-tuning
stage. NAT’s key idea is that they start from a supernetwork
and adaptively modify it to obtain a task-specific supernet-
work. This latter can then be used directly to search for archi-
tectures within one task without the additional training cost.
They demonstrated the efficacy of NAT on 11 benchmarks,
including ImageNet, on mobile settings.

6.3 Transferability of HW-NAS Across Multiple
Platforms

HW-NAS suffers from conditional optimality due to the va-
riety of existing devices. Ideally, we should design different
architectures for different platforms. However, in real situa-
tions, given the prohibitive cost of the search and the cost of
training on multiple architectures, we often resort to design-
ing one architecture and deploying it anywhere. Transferring
a model from one platform to another or producing hardware
transferable models via the NAS process is an exciting chal-
lenge for HW-NAS. In the following section, we discuss two
popular approaches. Each approach has its pros and cons, as
discussed below.

Transfer the entire NAS process. It consists of re-
executing the single-target HW-NAS to suit a new target. This
includes finding a collection method that is scalable and flex-
ible to multiple hardware platforms. When using real-world
measurements, [Han et al., 2019] ran the NAS search for
three hardware platforms. However, using real-world mea-
surements considerably slows down the search algorithm and
requires the targeted hardware’s availability during the search
time. Using other collection methods such as the lookup ta-
ble or the prediction model, we’ll need to collect data from
the new platforms by rerunning the entire set of operators.
For example, Once-for-all [Cai et al., 2020] created a lookup
table with the reported inference latency on each tested hard-
ware platforms. According to the used measurement method,
transferring the NAS process to target another platform is in-
creasingly difficult and not scalable.

Transfer the final model. This approach consists of find-
ing the best model for one hardware platform and then spe-
cialize it for another one. It has been proposed by [Cai et
al., 2020; Cai et al., 2018; Nayman et al., 2019]. The spe-
cialization is usually done by compressing the model using
quantization, enabling the model to fit in tiny devices. How-
ever, specialization presents the following challenges:

* An operator may be efficient for one platform and less
efficient in another: In [Chu et al., 20201, the authors ar-
gued that separable convolutions give great results when
ran on GPUs but perform badly on CPUs.

e Limits of the compression methods: We consider here
the quantization and pruning. We know that theoret-
ically, the compression ratio has a threshold that can-
not be surpassed for these two methods. For example,
quantizing a model implies encoding its activations and
weights into the minimum possible bit length. Theoreti-
cally, this length is 2 (one bit).

4327

6.4 Outlook and Future Directions

HW-NAS suffers from the same limitations as NAS. The
main one is the cost of the search algorithm. The current
popular way to speed up the process is to use differentiable
NAS and create a supernetwork that can represent the whole
search space. This supernetwork is trained once to get the
weights of all the sub-networks and thus avoids training each
sampled architecture. This technique reduces the search time
from several days to hours. However, a major disadvantage
of this network is the restriction it makes on the targeted task
and domain. More research is needed to explore efficient
ways and tricks to make HW-NAS more practical and more
amenable to a diverse set of tasks and domains. This would
especially be useful in commercial settings.

There is no doubt that the future of mobile and handheld
devices is Al. Al-focused mobile chips from top manufactur-
ing companies like Apple, Samsung, Huwaei and others are
making their ways into the mainstream. These devices use
SoCs that take advantage of multiple platforms (e.g., GPUs,
CPUs and NPU in the same chip). However, this hetero-
geneity of platforms needs to be well understood to speed
up the inference time of deep neural networks [Wang et al.,
2020b]. This motivates further the research community to si-
multaneously explore both the architecture search space and
the hardware design space to identify the best neural architec-
ture and hardware pairs that maximize both test accuracy and
hardware efficiency. Such co-exploration will be key to allow
designing architectures that can be deployed efficiently on a
variety of platforms: data center, edge, mobile, and embed-
ded. The HW-NAS methods should co-explore compression
techniques and models search spaces to find the best trade-off
between model size, inference time and accuracy.

HW-NAS should also look at exploring neural architec-
ture search with emerging computing paradigms such as in-
memory-computing [Jiang et al., 2021]. These new non-von-
Neumann paradigms present novel solutions to Al computing
based on emerging nano-devices called Phase-Change Mem-
ory (PCM) [Sebastian et al., 2019]. The optimization space
spans multiple design points that range from device types, to
circuit topologies, to device non-idealities and variations, to
neural architectures.

While DNNs have clear commercial use cases, the next
Al breakthrough may require an entirely different combina-
tion of algorithm, hardware and software. HW-NAS offers a
paradigm that opens up the design space and pushes forward
the Pareto frontier between hardware efficiency and model
accuracy for efficient and improved hardware/software co-
design, hence pushing Al to its next frontiers.

7 Conclusion

Efficient deep learning techniques are increasingly attracting
both academia and industry researchers. This paper explores
one of the trending approaches to build a model that respects
the trade-off between accuracy and hardware constraints. We
point out several potential improvements and new directions
in this area, such as accounting for new hardware platforms
(e.g., heterogeneous systems-on-chip and in-memory com-
puting) and extending it to new application domains.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

References

[Bouzidi et al., 2021] Halima Bouzidi, Hamza Ouarnoughi,
Smail Niar, and Abdessamad Ait El Cadi. Performance
prediction for convolutional neural networks on edge gpus.
In CF °21: Computing Frontiers Conference, pages 54—62.
ACM, 2021.

[Cai et al., 2018] Han Cai, Ligeng Zhu, and Song Han. Prox-
ylessnas: Direct neural architecture search on target task
and hardware. CoRR, abs/1812.00332, 2018.

[Cai et al., 2020] Han Cai, Chuang Gan, Tianzhe Wang,
Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In Sth
International Conference on Learning Representations,
ICLR, 2020.

[Chu er al., 2019] Xiangxiang Chu, Bo Zhang, Ruijun Xu,
and Hailong Ma. Multi-objective reinforced evolution in
mobile neural architecture search. CoRR, abs/1901.01074,
2019.

[Chu et al., 2020] Grace Chu, Okan Arikan, Gabriel Bender,
Weijun Wang, Achille Brighton, Pieter-Jan Kindermans,
Hanxiao Liu, Berkin Akin, Suyog Gupta, and Andrew
Howard. Discovering multi-hardware mobile models via
architecture search. CoRR, abs/2008.08178, 2020.

[Deb er al., 2002] Kalyanmoy Deb, Amrit Pratap, Sameer
Agarwal, and TAMT Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions
on evolutionary computation, 6(2):182-197, 2002.

[Deng et al., 2020] Lei Deng, Guoqi Li, Song Han, Luping
Shi, and Yuan Xie. Model compression and hardware ac-
celeration for neural networks: A comprehensive survey.
Proc. IEEE, 108(4):485-532, 2020.

[Dong and Yang, 2020] Xuanyi Dong and Yi Yang. Nas-
bench-201: Extending the scope of reproducible neural ar-
chitecture search. In International Conference on Learn-
ing Representations (ICLR), 2020.

[Gong er al., 2019] Chengyue Gong, Zixuan Jiang, Dilin
Wang, Yibo Lin, Qiang Liu, and David Z Pan. Mixed pre-
cision neural architecture search for energy efficient deep
learning. In /CCAD, 2019.

[Gordon et al., 2017] Ariel Gordon, Elad Eban, Ofir
Nachum, Bo Chen, Tien-Ju Yang, and Edward Choi.
Morphnet: Fast & simple resource-constrained structure
learning of deep networks. CoRR, abs/1711.06798, 2017.

[Han er al., 2019] Song Han, Han Cai, Ligeng Zhu, Ji Lin,
Kuan Wang, Zhijian Liu, and Yujun Lin. Design automa-
tion for efficient deep learning computing. CoRR, page
arXiv:1904.10616, 2019.

[Hao er al., 2019] Cong Hao, Xiaofan Zhang, Yuhong Li,
Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu,
and Deming Chen. Fpga/dnn co-design: An efficient de-
sign methodology for iot intelligence on the edge. In Pro-
ceedings of the 56th Annual Design Automation Confer-
ence, 2019.

4328

[Hsu et al., 2018] Chi-Hung Hsu, Shu-Huan Chang, Da-
Cheng Juan, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and
Shih-Chieh Chang. MONAS: multi-objective neural ar-
chitecture search using reinforcement learning. CoRR,
abs/1806.10332, 2018.

[Jiang et al., 2019a] Weiwen Jiang, Lei Yang, Edwin Hsing-
Mean Sha, Qingfeng Zhuge, Shouzhen Gu, Yiyu Shi, and
Jingtong Hu. Hardware/software co-exploration of neural
architectures. CoRR, abs/1907.04650, 2019.

[Jiang er al., 2019b] Weiwen Jiang, Xinyi Zhang, Ed-
win Hsing-Mean Sha, Lei Yang, Qingfeng Zhuge, Yiyu
Shi, and Jingtong Hu. Accuracy vs. efficiency: Achieving
both through fpga-implementation aware neural architec-
ture search. In Proceedings of the 56th Annual Design
Automation Conference. ACM, 2019.

[iang et al., 2020a] Weiwen Jiang, Lei Yang, Sakyasingha
Dasgupta, Jingtong Hu, and Yiyu Shi. Standing on the
shoulders of giants: Hardware and neural architecture co-
search with hot start, 2020.

[Jiang et al., 2020b] Yuhang Jiang, Xin Wang, and Wenwu
Zhu. Hardware-aware transformable architecture search
with efficient search space. In IEEE International Confer-
ence on Multimedia and Expo, ICME, 2020.

[Jiang et al., 2021] Weiwen Jiang, Qiuwen Lou, Zheyu Yan,
Lei Yang, Jingtong Hu, Xiaobo Sharon Hu, and Yiyu Shi.
Device-circuit-architecture co-exploration for computing-
in-memory neural accelerators. IEEE Trans. Computers,
2021.

[Kwon et al., 2019] Hyoukjun Kwon, Prasanth Chatarasi,
Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and
Tushar Krishna. Understanding reuse, performance, and
hardware cost of dnn dataflow: A data-centric approach.
In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2019.

[Li et al., 2021] Chaojian Li, Zhongzhi Yu, Yonggan Fu,
Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue
Wang, Cong Hao, and Yingyan Lin. {HW}-{nas}-bench:
Hardware-aware neural architecture search benchmark. In

International Conference on Learning Representations,
2021.

[Lin et al., 2020] Ji Lin, Wei-Ming Chen, Yujun Lin, John
Cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep
learning on iot devices. In Advances in Neural Information
Processing Systems (NeurlPS’20), 2020.

[Liu et al., 2018] Chenxi Liu, Barret Zoph, Maxim Neu-
mann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Pro-
gressive neural architecture search. In Proceedings of the
European Conference on Computer Vision (ECCV), 2018.

[Lueral,2019a] Qing Lu, Weiwen Jiang, Xiaowei Xu,
Yiyu Shi, and Jingtong Hu. On neural architecture search
for resource-constrained hardware platforms. CoRR,
abs/1911.00105, 2019.

[Lu et al., 2019b] Zhichao Lu, Ian Whalen, Vishnu Boddeti,
Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)
Survey Track

Wolfgang Banzhaf. Nsga-net: Neural architecture search
using multi-objective genetic algorithm. In Proceedings

of the Genetic and Evolutionary Computation Conference,
2019.

[Lu et al., 2020] Zhichao Lu, Gautam Sreekumar, Erik D.
Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, and
Vishnu Naresh Boddeti. Neural architecture transfer.
CoRR, abs/2005.05859, 2020.

[Marchisio et al., 2020] Alberto Marchisio, Andrea Massa,
Vojtech Mrazek, Beatrice Bussolino, Maurizio Martina,
and Muhammad Shafique. Nascaps: A framework for neu-
ral architecture search to optimize the accuracy and hard-

ware efficiency of convolutional capsule networks. In IC-
CAD, 2020.

[Mohamed et al., 2020] Abdelfattah Mohamed, Lukasz
Dudziak, Thomas C. P. Chau, Royson Lee, Hyeji Kim,
and Nicholas D. Lane. Best of both worlds: Automl
codesign of a cnn and its hardware accelerator. In
Proceedings of the 57th ACM/EDAC/IEEE Design
Automation Conference, 2020.

[Nayman et al., 2019] Niv Nayman, Asaf Noy, Tal Rid-
nik, Itamar Friedman, Rong Jin, and Lihi Zelnik-Manor.
XNAS: neural architecture search with expert advice. In

Advances in Neural Information Processing System 32
(NeurIPS), pages 1975-1985, 2019.

[Pham er al., 2020] Hieu Pham, Qizhe Xie, Zihang Dai, and
Quoc V. Le. Meta pseudo labels. CoRR, abs/2003.10580,
2020.

[Sebastian er al., 2019] Abu Sebastian, Irem Boybat, Mar-
tino Dazzi, Iason Giannopoulos, Vara Prasad Jonnala-
gadda, Vinay Joshi, Geethan Karunaratne, Benedikt Kerst-
ing, Riduan Khaddam-Aljameh, S. R. Nandakumar, Anas-
tasios Petropoulos, Christophe Piveteau, Theodore Anton-
akopoulos, Bipin Rajendran, Manuel Le Gallo, and Evan-
gelos Eleftheriou. Computational memory-based infer-
ence and training of deep neural networks. In 20719 Sym-
posium on VLSI Circuits. IEEE, 2019.

[Siems et al., 2020] Julien Niklas Siems, Lucas Zimmer, Ar-
ber Zela, Jovita Lukasik, Margret Keuper, and Frank Hut-
ter. {NAS}-bench-301 and the case for surrogate bench-
marks for neural architecture search, 2020.

[Smithson et al., 2016] Sean C. Smithson, Guang Yang,
Warren J. Gross, and Brett H. Meyer. Neural networks de-
signing neural networks: Multi-objective hyper-parameter
optimization. CoRR, abs/1611.02120, 2016.

[Tan et al., 2018] Mingxing Tan, Bo Chen, Ruoming Pang,
Vijay Vasudevan, and Quoc V. Le. Mnasnet: Platform-

aware neural architecture search for mobile. CoRR,
abs/1807.11626, 2018.
[TX Zhuo and Collins, 2020] Fika Ventures TX Zhuo

and Huston Collins. Why tinyml is a giant op-
portunity. https://venturebeat.com/2020/01/11/
why-tinyml-is-a-giant-opportunity/, 2020. Accessed:
2020-01-20.

4329

[Wang er al., 2020a] Hanrui Wang, Zhanghao Wu, Zhijian
Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han.
HAT: Hardware-aware transformers for efficient natural
language processing. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics,
2020.

[Wang et al., 2020b] Sigi Wang, Anuj Pathania, and Tulika
Mitra. Neural network inference on mobile socs. /EEE
Des. Test, 2020.

[Wistuba et al., 2019] Martin Wistuba, Ambrish Rawat, and
Tejaswini Pedapati. A survey on neural architecture
search. CoRR, abs/1905.01392, 2019.

[Wu er al., 2019] Bichen Wu, Xiaoliang Dai, Peizhao Zhang,
Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet:
Hardware-aware efficient convnet design via differentiable
neural architecture search. In Conference on Computer
Vision and Pattern Recognition, CVPR. Computer Vision
Foundation / IEEE, 2019.

[Yang et al., 2018] Tien-Ju Yang, Andrew G. Howard,
Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne
Sze, and Hartwig Adam. Netadapt: Platform-aware neu-
ral network adaptation for mobile applications. In Vittorio
Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair
Weiss, editors, ECCV 15th European Conference Com-
puter Vision, 2018.

[Yang ez al., 2020] Lei Yang, Zheyu Yan, Meng Li, Hy-
oukjun Kwon, Liangzhen Lai, Tushar Krishna, Vikas
Chandra, Weiwen Jiang, and Yiyu Shi. Co-exploration of
neural architectures and heterogeneous ASIC accelerator
designs targeting multiple tasks. In 57th Design Automa-
tion Conference, DAC. IEEE, 2020.

[Ying er al., 2019] Chris Ying, Aaron Klein, Eric Chris-
tiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture
search. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the 36th International Con-
ference on Machine Learning, ICML, Proceedings of Ma-
chine Learning Research. PMLR, 2019.

[Yuetal,2019] Ye Yu, Yingmin Li, Shuai Che, Niraj K.
Jha, and Weifeng Zhang. Software-defined design space
exploration for an efficient Al accelerator architecture.
CoRR, abs/1903.07676, 2019.

[Zhang et al., 2019] Xinyi Zhang, Weiwen Jiang, Yiyu Shi,
and Jingtong Hu. When neural architecture search meets
hardware implementation: from hardware awareness to
co-design. In IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), 2019.

[Zhang er al., 2020] Li Lyna Zhang, Yuqing Yang, Yuhang
Jiang, Wenwu Zhu, and Yunxin Liu. Fast hardware-aware
neural architecture search. In Conference on Computer
Vision and Pattern Recognition, CVPR. IEEE, 2020.

[Zoph et al., 2018] Barret Zoph, Vijay Vasudevan, Jonathon
Shlens, and Quoc V. Le. Learning transferable architec-
tures for scalable image recognition, 2018.

https://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/
https://venturebeat.com/2020/01/11/why-tinyml-is-a-giant-opportunity/

	Introduction
	HW-NAS Taxonomy
	Single Target, Fixed Configuration.
	Single Target, Multiple Configurations.
	Multiple Targets.

	HW-NAS Problem Formulation
	Hardware Search Space
	Hardware Metrics Collection
	Challenges and Limitations
	Benchmarking and Reproducibility
	Transfer Learning
	Transferability of HW-NAS Across Multiple Platforms
	Outlook and Future Directions

	Conclusion

