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Abstract
Acrobatic flight with quadrotors is extremely chal-
lenging. Maneuvers such as the loop, matty flip
or barrel roll require high thrust and extreme angu-
lar accelerations that push the platform to its lim-
its. Human drone pilots require years of practice to
safely master such maneuvers. Yet, a tiny mistake
could make the platform lose control, and brutally
crash. This short paper describes an approach to
safely train acrobatic controllers in simulation and
deploy them with no fine-tuning zero-shot transfer
on physical quadrotors. The approach uses only on-
board sensing and computation.

1 Introduction
Acrobatic flight with quadrotors is extremely challenging.
Human drone pilots require many years of practice to safely
master maneuvers such as power loops and barrel rolls1. Ex-
isting autonomous systems that perform agile maneuvers re-
quire external sensing and/or external computation [Lupashin
et al., 2010; Abbeel et al., 2010; Bry et al., 2015]. For aerial
vehicles that rely only on onboard sensing and computation,
the high accelerations that are required for acrobatic maneu-
vers together with the unforgiving requirements on the con-
trol stack raise fundamental questions in both perception and
control. Therefore, they provide a natural benchmark to com-
pare the capabilities of autonomous systems against trained
human pilots.

Acrobatic maneuvers represent a challenge for the actua-
tors, the sensors, and all physical components of a quadrotor.
While hardware limitations can be resolved using expert-level
equipment that allows for extreme accelerations, the major
limiting factor to enable agile flight is reliable state estima-
tion. Vision-based state estimation systems either provide
significantly reduced accuracy or completely fail at high ac-
celerations due to effects such as motion blur, large displace-
ments, and the difficulty of robustly tracking features over
long time frames [Cadena et al., 2016]. Additionally, the
harsh requirements of fast and precise control at high speeds
make it difficult to tune controllers on the real platform, since

*These two authors contributed equally.
1https://www.youtube.com/watch?v=T1vzjPa5260

even tiny mistakes can result in catastrophic outcomes for the
platform.

The difficulty of agile autonomous flight led previous work
to mostly focus on specific aspects of the problem. One
line of research focused on the control problem, assuming
near-perfect state estimation from external sensors [Lupashin
et al., 2010; Abbeel et al., 2010; Hwangbo et al., 2017;
Bry et al., 2015]. While these works showed impressive ex-
amples of agile flight, they focused purely on control. The
issues of reliable perception and state estimation during ag-
ile maneuvers were cleverly circumvented by instrumenting
the environment with sensors (such as Vicon and OptiTrack)
that provide near-perfect state estimation to the platform at
all times. Recent works addressed the control and perception
aspects in an integrated way via techniques like perception-
guided trajectory optimization [Falanga et al., 2018; Falanga
et al., 2017; Shen et al., 2013] or training end-to-end visuo-
motor agents [Zhang et al., 2016]. However, acrobatic per-
formance of high-acceleration maneuvers with only onboard
sensing and computation has not yet been achieved.

In this paper, we show for the first time that a vision-based
autonomous quadrotor with only onboard sensing and com-
putation is capable of autonomously performing agile maneu-
vers with accelerations of up to 3g, as shown in Fig. 1. This
contribution is enabled by a novel simulation-to-reality trans-
fer strategy, which is based on abstraction of both visual and
inertial measurements. We demonstrate both formally and
empirically that the presented abstraction strategy decreases
the simulation-to-reality gap with respect to a naive use of
sensory inputs. Equipped with this strategy, we train an end-
to-end sensimotor controller to fly acrobatic maneuvers ex-
clusively in simulation. Learning agile maneuvers entirely
in simulation has several advantages: (i) Maneuvers can be
simply specified by reference trajectories in simulation and
do not require expensive demonstrations by a human pilot,
(ii) training is safe and does not pose any physical risk to the
quadrotor, and (iii) the approach can scale to a large number
of diverse maneuvers, including ones that can only be per-
formed by the very best human pilots.

Our sensorimotor policy is represented by a neural network
that combines information from different input modalities to
directly regress thrust and body rates. To cope with different
output frequencies of the onboard sensors, we design an asyn-
chronous network that operates independently of the sensor
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Figure 1: A quadrotor performs a Barrel Roll (left), a Power Loop (middle), and a Matty Flip (right). We safely train acrobatic controllers
in simulation and deploy them with no fine-tuning (zero-shot transfer) on physical quadrotors. The approach uses only onboard sensing and
computation. No external motion tracking was used.

Figure 2: Network architecture. The network receives a history of feature tracks, IMU measurements, and reference trajectories as input.
Each input modality is processed using temporal convolutions and updated at different input rates. The resulting intermediate representations
are processed by a multi-layer perceptron at a fixed output rate to produce collective thrust and body rate commands.

frequencies. This network is trained in simulation to imitate
demonstrations from an optimal controller that has access to
privileged state information.

We apply the presented approach to learning autonomous
execution of three acrobatic maneuvers that are challenging
even for expert human pilots: the Power Loop, the Barrel
Roll, and the Matty Flip. Through controlled experiments
in simulation and on a real quadrotor, we show that the pre-
sented approach leads to robust and accurate policies that are
able to reliably perform the maneuvers with only onboard
sensing and computation.

2 Approach Overview
We train a sensorimotor controller to predict low-level ac-
tions from a history of onboard sensor measurements and a
user-defined reference trajectory. An observation o[k] ∈ O
at time k ∈ [0, . . . , T ] consists of a camera image I[k] and
an inertial measurement φ[k]. Since the camera and IMU
typically operate at different frequencies, the visual and in-
ertial observations are updated at different rates. The con-
troller’s output is an action u[k] = [c,ω>]> ∈ U that con-
sists of continuous mass-normalized collective thrust c and
bodyrates ω = [ωx, ωy, ωz]

> that are defined in the quadro-
tor body frame.

The controller is trained via privileged learning [Chen et
al., 2019]. Specifically, the policy is trained on demonstra-
tions that are provided by a privileged expert: an optimal
controller that has access to privileged information that is not

available to the sensorimotor student, such as the full ground-
truth state of the platform s[k] ∈ S. The privileged expert is
based on a classic optimization-based planning and control
pipeline that tracks a reference trajectory from the state s[k]
using MPC [Falanga et al., 2018].

3 Deep Sensorimotor Controller
In contrast to the privileged expert, the deep sensorimotor
controller is only provided with onboard sensor measure-
ments from the forward-facing camera and the IMU. There
are three main challenges for the controller to tackle: (i) it
should keep track of its state based on the provided inputs,
akin to a visual-inertial odometry system, (ii) it should be
invariant to environments and domains, so as to not require
retraining for each scene, and (iii) it should process sensor
readings that are provided at different frequencies.

We represent the policy as a neural network that fulfills
all of the above requirements. Figure 2 illustrates the net-
work architecture. We account for the different input fre-
quencies by allowing each of the input branches to operate
asynchronously. The output of the neural network is then pro-
cessed by a low-level controller, which converts the provided
thrust and body-rates in rotor commands. While the low-level
controller is platform specif and informed about the physics
of the drone, the network actions are mostly platform inde-
pendent. The network is trained with an off-policy learning
approach. More details about the training procedure can be
found in the main manuscript [Kaufmann et al., 2020].
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Figure 3: Tracking error (left) and success rate (right) over time when a maneuver is executed repeatedly in simulation. The controllers were
trained to complete the maneuver for six seconds and generalize well to longer sequences. Our learned controller, which leverages both IMU
and visual data, provides consistently good performance without a single failure.

3.1 Training Methodology
Training the above controller requires significant amount of
data. Not only is collection of this data with a real robot te-
dious and expensive, but also challenging. Specifically, the
two main challenges are: (i) How to provide perfect state in-
formation to a real drone? and (ii) How to protect the platform
from damage when a partially trained network is in control?
To circumvent these challenges, we train exclusively in sim-
ulation. This significantly simplifies the training procedure,
but presents a new hurdle: how do we minimize the differ-
ence between the sensory input received by the controller in
simulation and reality?

Our approach to bridging the gap between simulation and
reality is to leverage abstraction. Rather than operating
on raw sensory input, our sensorimotor controller operates
on an intermediate representation produced by a perception
module. This intermediate representation is more consistent
across simulation and reality than raw visual input. We for-
mally show that training a network on abstraction of sensory
input reduces the gap between simulation and reality [Kauf-
mann et al., 2020].

In our case, we use feature tracks as an abstraction of
camera frames. The feature tracks are provided by a visual-
inertial odometry (VIO) system. Thanks to this abstraction,
we do not require any randomization of the geometry and ap-
pearance of the scene during data collection. In contrast to
camera frames, feature tracks primarily depend on scene ge-
ometry, rather than surface appearance. We also make inertial
measurements independent of environmental conditions, such
as temperature and pressure, by integration and de-biasing.

4 Results
Influence of Maneuver Length. As shown in Figure 3, our
experimental evaluation reveals that for very short maneuvers
(up to 6 seconds) IMU measurements were sufficient for acro-
batic flight. However, for longer flight duration, visual infor-
mation was necessary to successfully address the IMU drift
and complete the maneuver. Indeed, visual information re-
duces the odds of a crash by up to 30% in the longest ma-
neuvers. Interestingly, the neural network learns to find a bal-

Input Train Test 1 Test 2

Error (↓) Success (↑) Error (↓) Success (↑) Error (↓) Success (↑)
Image 90± 32 80% ∞ 0% ∞ 0%
Ours 53 ± 15 100% 58 ± 18 100% 61 ± 11 100%

Table 1: Sim-to-sim transfer for different visual input modalities.

ance between feature tracks and inertial measurements. In-
deed, when looking at images with low features (for example
when the camera points to the sky), the neural net will mainly
rely on IMU. When more features are available, the network
uses them to correct the accumulated drift of the IMU. On
all maneuvers, we outperform the tradition pipeline of state-
estimation and control (VIO-MPC) in term of tracking error
and odds of a crash.

Abstraction Helps Training & Generalization. To vali-
date the importance of input abstraction, we compare our ap-
proach to a network that uses raw camera images instead of
feature tracks as visual input. We then compare the results
of this naive approach with our proposed abstraction pro-
cedure in Table 1. In the training environment, the image-
based network has a success rate of only 80%, with a 58%
higher tracking error than the controller that receives an ab-
straction of the visual input in the form of feature tracks
(Ours). Even more dramatically, the image-based controller
fails completely when tested with previously unseen back-
ground images (Test 1, Test 2). In contrast, our approach
maintains a 100% success rate in these conditions.

Real World Results. We further evaluate the learned con-
trollers with a series of quantitative experiments on the phys-
ical platform. Without any finetuning on real data, our con-
trollers can fly all maneuvers with no intervention. The real-
world experiments confirm the findings obtained in simula-
tion, i.e. visual information is crucial to compensate the drift
of inertial measurements during long maneuvers [Kaufmann
et al., 2020]. We refer the reader to the supplementary video
to understand the dynamic nature of the experiments.
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5 Conclusion
Our approach is the first to enable an autonomous flying ma-
chine to perform a wide range of acrobatics maneuvers that
are highly challenging even for expert human pilots. The
approach relies solely on onboard sensing and computation,
and leverages sensorimotor policies that are trained entirely
in simulation. The presented methodology is not limited to
autonomous flight and can enable progress in other areas of
robotics.
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