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Abstract

Although measuring held-out accuracy has been the
primary approach to evaluate generalization, it of-
ten overestimates the performance of NLP models,
while alternative approaches for evaluating models
either focus on individual tasks or on specific be-
haviors. Inspired by principles of behavioral testing
in software engineering, we introduce CHECKLIST, a
task-agnostic methodology for testing NLP models.
CueckList includes a matrix of general linguistic
capabilities and test types that facilitate compre-
hensive test ideation, as well as a software tool to
generate a large and diverse number of test cases
quickly. We illustrate the utility of CHEckLisT with
tests for three tasks, identifying critical failures in
both commercial and state-of-art models. In a user
study, a team responsible for a commercial senti-
ment analysis model found new and actionable bugs
in an extensively tested model. In another user study,
NLP practitioners with CHEckLIST created twice as
many tests, and found almost three times as many
bugs as users without it.

1 Introduction

One of the primary goals of training NLP models is general-
ization. Since testing “in the wild” is expensive and does not
allow for fast iterations, the standard paradigm for evaluation
is using train-validation-test splits to estimate the accuracy of
the model, including the use of leader boards to track progress
on a task [Rajpurkar et al., 2016]. While performance on
held-out data is a useful indicator, held-out datasets are often
not comprehensive, and contain the same biases as the training
data [Rajpurkar et al., 2018], such that real-world performance
may be overestimated [Patel et al., 2008]. Further, by sum-
marizing the performance as a single aggregate statistic, it
becomes difficult to figure out where the model is failing, and
how to fix it [Wu et al., 2019].

A number of additional evaluation approaches have been
proposed, such as evaluating robustness to noise [Belinkov
and Bisk, 2018] or adversarial changes [Ribeiro et al., 2018;

*Extended version appears in the proceedings of Annual Meeting
of the Association for Computational Linguistics (ACL) 2020.

Iyyer et al., 2018], fairness [Prabhakaran er al., 2019], logical
consistency [Ribeiro et al., 20191, explanations [Ribeiro et al.,
20161, diagnostic datasets [Wang et al., 2019], and interactive
error analysis [Wu et al., 2019]. However, these approaches
focus either on individual tasks such as Question Answering
or Natural Language Inference, or on a few capabilities (e.g.
robustness), and thus do not provide comprehensive guidance
on how to evaluate models. Software engineering research, on
the other hand, has proposed a variety of paradigms and tools
for testing complex software systems. In particular, “behav-
ioral testing” (also known as black-box testing) is concerned
with testing different capabilities of a system by validating the
input-output behavior, without knowledge of the internal struc-
ture [Beizer, 1995]. While there are similarities, insights from
software engineering are yet to be applied to NLP models.

In this work, we propose CHECKLIST, a new evaluation
methodology and accompanying tool for comprehensive be-
havioral testing of NLP models. CHeckLisT guides users in
what to test, by providing a list of linguistic capabilities, which
are applicable to most tasks. To break down potential capabil-
ity failures into specific behaviors, CHEckLisT introduces dif-
ferent fest types, such as prediction invariance in the presence
of certain perturbations, or performance on a set of “sanity
checks.” Finally, our implementation of CHECKLIST includes
multiple abstractions that help users generate large numbers of
test cases easily, such as templates, lexicons, general-purpose
perturbations, visualizations, and context-aware suggestions.

As an example, we CHEcKLIST a commercial sentiment anal-
ysis model in Figure 1. Potential tests are structured as a
conceptual matrix, with capabilities as rows and test types as
columns. As a test of the model’s Negation capability, we use
a Minimum Functionality test (MFT), i.e. simple test cases
designed to target a specific behavior (Figure 1A). We gener-
ate a large number of simple examples filling in a template
(‘“I {NEGATION} {POS_VERB} the {THING}.’’) with pre-
built lexicons, and compute the model’s failure rate on such
examples. Named entity recognition (NER) is another capa-
bility, tested in Figure 1B with an Invariance test INV) —
perturbations that should not change the output of the model.
In this case, changing location names should not change sen-
timent. In Figure 1C, we test the model’s Vocabulary with a
Directional Expectation test (DIR) — perturbations to the input
with known expected results — adding negative phrases and
checking that sentiment does not become more positive. As
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Capability Min Func Test INVariance = DIRectional
Vocabulary  Fail. rate=15.0% 16.2% 34.6%
NER 0.0% 20.8% N/A
Negation 76.4% N/A N/A

Test case

Testing Negation with MFT Labels: negative, positive, neutral
Template: I {NEGATION} {POS_VERB} the {THING}.

Expected Predicted Pass?

| can’t say | recommend the food. neg pos X
| didn’t love the flight. neg neutral X

Failure rate = 76.4%

Testing NER with INV Same pred. (inv) after removals / additions

@AmericanAir thank you we got on a py pos

X

different flight to [ Chicago — Dallas ]. neutral

@VirginAmerica | can’t lose my luggage, , neutral
. . inv

moving to [ Brazil — Turkey ] soon, ugh. neg

Failure rate = 20.8%

Testing Vocabulary with DIR Sentiment monotonic decreasing ({)

@AmericanAir service wasn't great. You 1 neg

are lame. neutral
@JetBlue why won't YOU help them?! 1 neg X
Ugh. | dread you. neutral

Failure rate = 34.6%

Figure 1: CueckListing a commercial sentiment analysis model (G).
Tests are structured as a conceptual matrix with capabilities as rows
and test types as columns (examples of each type in A, B and C).

these examples indicate, the matrix works as a guide, prompt-
ing users to test each capability with different test types.

We demonstrate the usefulness and generality of CHEck-
List via instantiation on three NLP tasks: sentiment analysis
(Sentiment), duplicate question detection (QQP, [Wang et al.,
2019]), and machine comprehension (MC, [Rajpurkar et al.,
2016]). While traditional benchmarks indicate that models on
these tasks are as accurate as humans, CHECKLIST reveals a vari-
ety of severe bugs, where commercial and research models do
not effectively handle basic linguistic phenomena such as nega-
tion, named entities, coreferences, etc, as they pertain to each
task. Further, CHECKLIST is easy to use and provides immediate
value — in a user study, the team responsible for a commercial
sentiment analysis model discovered many new and actionable
bugs in their own model, even though it had been extensively
tested and used by customers. In an additional user study,
we found that NLP practitioners with CHEckLisT generated
more than twice as many tests (each test containing an order
of magnitude more examples), and uncovered almost three
times as many bugs, compared to users without CHECKLIST.

2 CHEckLIST

Conceptually, users “CHeckLisT” a model by filling out cells in
a matrix (Figure 1), each cell potentially containing multiple
tests. In this section, we go into more detail on the rows
(capabilities), columns (test types), and how to fill the cells
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(tests). CueckList applies the behavioral testing principle
of “decoupling testing from implementation” by treating the
model as a black box, which allows for comparison of different
models trained on different data, or third-party models where
access to training data or model structure is not granted.

Capabilities While testing individual components is a com-
mon practice in software engineering, modern NLP models
are rarely built one component at a time. Instead, CHECKLIST
encourages users to consider how different natural language
capabilities are manifested on the task at hand, and to create
tests to evaluate the model on each of these capabilities. For
example, the Vocabulary+POS capability pertains to whether
a model has the necessary vocabulary, and whether it can ap-
propriately handle the impact of words with different parts of
speech on the task. For Sentiment, we may want to check if the
model is able to identify words that carry positive, negative,
or neutral sentiment, by verifying how it behaves on examples
like “This was a good flight.” For QQP, we might want the
model to understand when modifiers differentiate questions,
e.g. accredited in (“Is John a teacher?”, “Is John an accredited
teacher?”). For MC, the model should be able to relate com-
paratives and superlatives, e.g. (Context: “Mary is smarter
than John.”, Q: “Who is the smartest kid?”, A: “Mary”).

We suggest that users consider at least the following ca-
pabilities: Vocabulary+POS (important words for the task),
Taxonomy (synonyms, antonyms, etc), Robustness (to typos,
irrelevant changes, etc), NER (appropriately understanding
named entities), Fairness, Temporal (understanding order of
events), Negation, Coreference, Semantic Role Labeling (un-
derstanding roles such as agent, object, etc), and Logic (ability
to handle symmetry, consistency, and conjunctions). We will
provide examples of how these capabilities can be tested in
Section 3. This listing of capabilities is not exhaustive, but a
starting point for users, who should also come up with addi-
tional capabilities that are specific to their task or domain.

Test Types We prompt users to evaluate each capability with
three different test types (when possible), represented by the
columns in the matrix in Figure 1. A Minimum Functionality
test (MFT), inspired by unit tests in software engineering, is a
collection of simple examples (and labels) to check a behavior
within a capability. MFTs are similar to creating small and fo-
cused testing datasets, and are particularly useful for detecting
when models use shortcuts to handle complex inputs with-
out actually mastering the capability. The Vocabulary+POS
examples in the previous section are all MFTs.

We also introduce two additional test types inspired by soft-
ware metamorphic tests [Segura et al., 2016]. An Invariance
test (INV) is when we apply label-preserving perturbations
to inputs and expect the model prediction to remain the same.
Different perturbation functions are needed for different capa-
bilities, e.g. changing location names for the NER capability
for Sentiment (Figure 1B), or introducing typos to test the
Robustness capability. A Directional Expectation test (DIR) is
similar, except that the label is expected to change in a certain
way. For example, we expect that sentiment will not become
more positive if we add “You are lame.” to the end of tweets
directed at an airline (Figure 1C). The expectation may also
be a target label, e.g. replacing locations in only one of the
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questions in QQP, such as (“How many people are there in
England?”, “What is the population of [England->Turkey]?”),
ensures that the questions are not duplicates. INVs and DIRs
allow us to test models on unlabeled data — they test behaviors
that do not rely on ground truth labels, but rather on rela-
tionships between predictions after perturbations are applied
(invariance, monotonicity, etc).

Generating Test Cases at Scale Users can create test cases
from scratch, or by perturbing an existing dataset. Starting
from scratch makes it easier to create a small number of high-
quality test cases for specific phenomena that may be underrep-
resented or confounded in the original dataset. Writing from
scratch, however, requires significant creativity and effort, of-
ten leading to tests that have low coverage or are expensive and
time-consuming to produce. Perturbation functions are harder
to craft, but generate many test cases at once. To support both
these cases, we provide a variety of abstractions that scale up
test creation from scratch and make perturbations easier to
craft. These include templates, RoBERTa [Liu et al., 2019]
suggestions, lexicons, perturbations, and visualizations. Code
is available at https://github.com/marcotcr/checklist.

3 Testing SOTA Models with CHECKLisT

We CreckList the following commercial Sentiment analy-
sis models via their paid APIs: Microsoft’s Text Analytics
(8@, Google Cloud’s Natural Language (G), and Amazon’s

Comprehend (8,). We also CueckList BERT-base (@) and
RoBERTa-base (RoB) [Liu ef al., 2019] finetuned on SST-
2(acc: 92.7% and 94.8%) and on the QQP dataset (acc: 91.1%
and 91.3%). For MC, we use a pretrained BERT-large fine-
tuned on SQuAD [Wolf et al., 2019], achieving 93.2 F1.

Sentiment Analysis Since social media is listed as a use
case for these commercial models, we test on that domain and
use a dataset of unlabeled airline tweets for INV! and DIR
perturbation tests. We create tests for a broad range of capabil-
ities, and present subset with high failure rates in Table 1. The
Vocab.+POS MFTs are sanity checks, where we expect models
to appropriately handle common neutral or sentiment-laden

words. @ and RoB do poorly on neutral predictions (both are
trained on binary labels). Surprisingly, G and &, fail (7.6%
and 4.8%) on sentences that are clearly neutral, with G also
failing (15%) on non-neutral sanity checks (e.g. “I like this
seat.”). In the DIR tests, the sentiment scores from 2@ and G
frequently (12.6% and 12.4%) go down considerably when
positive phrases (e.g. “You are extraordinary.”) are added, or
up (G: 34.6%) for negative ones (e.g. “You are lame.”).

All models are sensitive to addition of random (not adver-
sarial) shortened URLSs or Twitter handles (e.g. 24.8% of a
predictions change), and to name changes, such as locations
(G: 20.8%, &.: 14.8%) or person names (G: 15.1%, &.:9.1%).
None of the models do well in tests for the Temporal, Nega-
tion, and SRL capabilities. Failures on negations as simple
as “The food is not poor.” are particularly notable, e.g. G

(54.2%) and B, (29.4%). The failure rate is near 100% for all

'For all the INV tests, models fail whenever their prediction
changes and the probability changes by more than 0.1.

commercial models when the negation comes at the end of
the sentence (e.g “I thought the plane would be awful, but it
wasn’t.”), or with neutral content between the negation and
the sentiment-laden word.

Commercial models do not fail simple Fairness sanity
checks such as “I am a black woman.” (template: ‘‘I am
a {PROTECTED} {NOUN}.’’), which are predicted as neutral.
Similar to software testing, absence of test failure does not
imply that these models are fair — just that they are not unfair

enough to fail these simple tests. On the other hand, @ always
predicts negative when {PROTECTED} is black, atheist, gay,
and lesbian, while predicting positive for Asian, straight, etc.

With the exception of tests that depend on predicting “neu-

tral”, @ and RoB did better than all commercial models on
almost every other test. This is a surprising result, since the
commercial models list social media as a use case, and are un-
der regular testing and improvement with customer feedback,

while @ and RoB are research models trained on the SST-

2 dataset (movie reviews). Finally, @v and RoB fail simple
negation MFTs, even though they are fairly accurate (91.5%,
93.9%, respectively) on the subset of the SST-2 validation set
that contains negation in some form (18% of instances). By
isolating behaviors like this, our tests are thus able to evalu-
ate capabilities more precisely, whereas performance on the
original dataset can be misleading.

Question Paraphrasing and Machine Comprehension

While @ and RoB surpass human accuracy on both QQP
and MC, a subset of tests presented in the full paper [Ribeiro
et al., 2020] indicate that these models are far from solving
these tasks , and are likely relying on shortcuts for their high
accuracy. We omit examples here due to space.

Discussion We applied the same process to very different
tasks, and found that tests reveal interesting failures on a vari-
ety of task-relevant linguistic capabilities. While some tests
are task specific (e.g. positive adjectives), the capabilities and
test types are general; many can be applied across tasks, as
is or with minor variation (changing named entities yields
different expectations depending on the task). The selection
of tests in [Ribeiro et al., 2020] illustrates the benefits of sys-
tematic testing in addition to standard evaluation. These tasks
may be considered “solved” based on benchmark accuracy
results, but the tests highlight various areas of improvement
— in particular, failure to demonstrate basic skills that are de
facto needs for the task at hand (e.g. basic negation). Even
though some of these failures have been observed by others,
we believe the majority are not known to the community, and
that comprehensive and structured testing will lead to avenues
of improvement in these and other tasks.

4 User Evaluation

The failures discovered in the previous section demonstrate
the usefulness and flexibility of CHeckLisT. In this section, we
further verify that CHeckLisT leads to insights both for users
who already test their models carefully and for users with little
or no experience in a task.
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Labels: positive, negative, or neutral; INV: same pred. INV) after removals/ additions; DIR: sentiment should not decrease (' 1) or increase (| )

Test TYPE and Description Failure Rate (%)

® G 3 & RoB

Example test cases & expected behavior

MFT: Short sentences with neu-

tral adjectives and nouns 0.0 76

4.8 94.6 81.8 Thecompany is Australian. neutral
That is a private aircraft. neutral

0
e MFT: Short sentences ] with 40 150 28 00 02 Thatcabincrew isextraordinary. pos
; sentiment-laden adjectives I despised that aircraft. neg
<
S le: Add positive phrases, fails 126 124 14 02 102 @SouthwestAir Great trip on 2672 yesterday... You are extraordinary. 1
if sent. goes down by > 0.1 @ AmericanAir AA45 ... JFK to LAS. You are brilliant. 1
D(RJ. Add negative phrases, 08 346 50 00 132 @USAirways your service sucks. You are lame. |
fails if sent. goes up by > 0.1 @JetBlue all day. Iabhor you. |
Robust. INV: Adg }rlang?mly generated 96 134 248 114 74 @]JetBlue that selfie was extreme. @pi9QDK INV
URLs and handles to tweets @united stuck because staff took a break? Not happy 1K.... https:/t.co/PWK1jb INV
INV:  Switching IQCZ}ﬁOPS 70 208 148 7.6 64 @JetBluelwantyou guys to be the first to fly to # Cuba» Canada... INV
& should not change predictions @VirginAmerica I miss the #nerdbird in San Jose+ Denver INV
Z o
INV: Switching person names 5, |s| 9| ¢ 24 --Airportagents were horrendous. Sharon Erin was your saviour INV
should not change predictions @united 8602947, Jon» Sean at http://t.co/58tuTgliOD, thanks. INV
Temporal MFT-' Sentimint ]Change 'IOVCT 410 36.6 422 188 11.0 I used to hate this airline, although now I like it. pos
time, present should prevai In the past I thought this airline was perfect, now I think it is creepy. neg
MFT: Negated negative should 0 ¢ 545 594 137 2 Thefoodisnotpoor. posor neutral
- be positive or neutral It isn’t a lousy customer service. pos or neutral
S . .
§, ~ MFT: Negation of negative at a0 904 1000 84.8 7.2 1thought the plane would be awful, but it wasn’t. pos or neutral
g the end, should be pos. or neut. I thought I would dislike that plane, but I didn’t. pos or neutral
MFT: Negated positive with g0 1000 1000 740 302 Iwouldn’tsay, given it’s a Tuesday, that this pilot was great. neg
neutral content in the middle I don’t think, given my history with airplanes, that this is an amazing staff. neg
MFT: Auth;)r SCI;tiH}lleﬂt is more 454 624 68.0 38.8 300 Some people think you are excﬂellent, but I think you are nasty. neg
O important than of others Some people hate you, but I think you are exceptional. pos
[~
n MFT: Parsing sentiment in

(question, “no”) form

96.8 90.8 81.6 554 54.8 Do I think the pilot was fantastic? No. neg
Do I think this company is bad? No. pos or neutral

Table 1: A selection of tests for sentiment analysis. All examples (right) are failures of at least one model.

CueckListing a Commercial System We approached the
team responsible for the sentiment analysis model sold as a ser-
vice by Microsoft (3 on Table 1). Since it is a public-facing
system, the model’s evaluation procedure is more compre-
hensive than research systems, including focused benchmarks
built in-house (e.g. negations, emojis) and many cycles of
bug discovery (either internally or through customers) and
subsequent fixes. Our goal was to verify if CHEckLisT would
add value even in a situation like this, where models are al-
ready tested extensively with current practices. After a 5-hour
session, the results were very encouraging: the team stated
that (1) they tested capabilities they had not considered, (2)
they tested capabilities that they had considered but are not in
the benchmarks, and (3) even capabilities for which they had
benchmarks (e.g. negation) were tested much more thoroughly
and systematically with CHEckList. This session, coupled with
the variety of bugs we found for three separate commercial
models in Table 1, indicates that CueckLisT is useful even in
pipelines that are stress-tested and used in production (more
details in [Ribeiro et al., 2020]). This session, coupled with
the variety of bugs we found for three separate commercial
models in Table 1, indicates that CHEckLIST is useful even in
pipelines that are stress-tested and used in production.

User Study: CaeckList MFTs We conduct a user study
to further evaluate different subsets of CHECKLIST in a more
controlled environment, and to verify if even users with no

previous experience in a task can gain insights and find bugs
in a model. We found that participants from industry and

academia testing @ finetuned on QQP created more than 2x
more tests with an order of magnitude more test cases, and
found almost 3x more bugs with CHeckLisT than without it
(details in [Ribeiro et al., 2020]).

5 Conclusion

While useful, accuracy on benchmarks is not sufficient for eval-
uating NLP models. We propose CHeckLisT, a model-agnostic
and task-agnostic testing methodology that tests individual
capabilities of the model using three different test types. To
illustrate its utility, we highlight significant problems at mul-
tiple levels in the conceptual NLP pipeline for models that
have “solved” existing benchmarks on three different tasks.
Further, CHEckLIsT reveals critical bugs in commercial sys-
tems developed by large software companies, indicating that
it complements current practices well. Tests created with
CHEeckLisT can be applied to any model, making it easy to
incorporate in current benchmarks or evaluation pipelines.
Our user studies indicate that CHECKLIST is easy to learn and
use, and helpful both for expert users who have tested their
models at length as well as for practitioners with little expe-
rience in a task. CHECKLIST is open source, and available at
https://github.com/marcotcr/checklist.
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